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We study the Maximum Zero-Sum Partition problem (or MZSP), defined as follows: given a 
multiset  = {𝑎1, 𝑎2, … , 𝑎𝑛} of integers 𝑎𝑖 ∈ ℤ∗ (where ℤ∗ denotes the set of non-zero integers) 
such that ∑𝑛

𝑖=1 𝑎𝑖 = 0, find a maximum cardinality partition {𝑆1, 𝑆2, … , 𝑆𝑘} of  such that, for 
every 1 ≤ 𝑖 ≤ 𝑘, ∑𝑎𝑗∈𝑆𝑖

𝑎𝑗 = 0. Solving MZSP is useful in genomics for computing evolutionary 
distances between pairs of species. Our contributions are a series of algorithmic results concerning
MZSP, in terms of complexity, (in)approximability, with a particular focus on the fixed-parameter 
tractability of MZSP with respect to either (i) the size 𝑘 of the solution, (ii) the number of negative 
(resp. positive) values in  and (iii) the largest integer in  .

1. Introduction

In this paper, we study the Maximum Zero-Sum Partition problem (or MZSP), defined as follows.

Maximum Zero-Sum Partition (MZSP)

Instance: A multiset  = {𝑎1, 𝑎2, … , 𝑎𝑛} of numbers 𝑎𝑖 ∈ℤ∗ s.t. 
∑𝑛

𝑖=1 𝑎𝑖 = 0.
Output: A maximum cardinality partition 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑘} of  such that, for every 1 ≤ 𝑖 ≤ 𝑘, 

∑
𝑎𝑗∈𝑆𝑖 𝑎𝑗 = 0.

This problem emerged in the context of bioinformatics [2], more precisely towards understanding large scale evolutionary events 
that occur in species, which we call genome rearrangements. In this setting, we are given two genomes 𝑔1 and 𝑔2, each one representing 
a given species. Each genome is modeled as an ordered sequence of genes, and we give ourselves a set  of operations that allow us to 
modify a genome. The goal consists in finding the minimum number of operations from  that are needed to obtain 𝑔2, starting from 
𝑔1. This number gives an estimate of the evolutionary distance between the two studied species; for instance, computing pairwise 
distances between genomes is useful to reconstruct phylogenetic trees. Genome rearrangements gave rise to many algorithmic studies 
and results (depending notably on the way a genome is modeled, and on the contents of set ), and we refer the interested reader 
to [3] for a survey.

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
✩✩ A preliminary version of this paper has been published in ICS 2022 [1].
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Table 1

Summary of our main results, in relation to parameters 𝑛, 𝑚, 𝑘, 𝑛∗, 𝐵 and 𝑏.

Parameter Results

𝑛 Strongly NP-complete (Theorem 1)
No 2𝑜(𝑛)𝑏𝑂(1) algorithm unless ETH fails (Theorem 4)
FPT (Theorem 5)
No approximation within ratio 𝑂(𝑛1−𝜖) (Theorem 7)

𝑚 NP-complete, even if bounded (Theorem 2)

𝑘 NP-complete, even if bounded (Theorem 2)

𝑚 W[1]-hard (Theorem 8)
Unary encoded instance XP(Corollary 2)

𝑘 W[1]-hard (Corollary 1)
Unary encoded instance XP(Theorem 9)

𝑛∗ No 2𝑜(𝑛∗)𝑏𝑂(1) algorithm unless ETH fails (Theorem 10)
XP(Theorem 11)

𝐵 FPT(Theorem 13)

𝑛∗+𝑘 FPT(Theorem 12)

In [2], set  is limited to a generic rearrangement operation called “weighted Double Cut and Join” (or wDCJ), and the minimum 
number of wDCJs needed to go from 𝑔1 to 𝑔2 is denoted 𝑤𝐷𝐶𝐽 (𝑔1, 𝑔2). The authors derived a closed formula for 𝑤𝐷𝐶𝐽 (𝑔1, 𝑔2), 
which is a sum of four terms: 𝑤𝐷𝐶𝐽 (𝑔1, 𝑔2) = 𝑛 − 𝑐 + 𝑛𝑢 − 𝑝. The three first terms are polynomial-time computable from 𝑔1 and 𝑔2. 
The relationship to the MZSP problem relies on the fourth parameter, 𝑝, which turns out to exactly correspond to the optimal solution 
to MZSP (where the input to MZSP is inferred, in polynomial time, from genomes 𝑔1 and 𝑔2). Thus, the complexity of computing 
wDCJ directly correlates to the complexity of MZSP.

In [2], the authors mostly focused on approximating 𝑤𝐷𝐶𝐽 (𝑔1, 𝑔2). Moreover, it turns out that MZSP has never been studied 
under a purely algorithmic viewpoint. Thus, in this paper, we are mainly interested in parameterized complexity, essentially because, 
as said above, approximations have already been addressed in [2], and also because such paradigm is a way to deal with NP-hard 
problems, while ensuring optimality (see e.g. [4]). In this context, the goal is to identify several candidate parameters and to study 
whether our problem is fixed-parameterized tractable (FPT) with respect to each of these parameters. The rationale being that if the 
problem is FPT for a given parameter that appears to be small in practice, then, although exponential, the corresponding algorithm 
can be used to determine the exact solution to the problem at hand, as it is expected to run in reasonable time.

Definitions and notations For any integer 𝑛, �1, 𝑛� denotes the set of integers from 1 to 𝑛. Given a (multi)set 𝑆 of integers and an integer 
𝑝, we say that 𝑆 sums to 𝑝 when the sum of the elements of 𝑆 is equal to 𝑝. When 𝑝 = 0, we say that 𝑆 is a zero-sum (multi)set. For 
any instance  of MZSP, we let neg (resp. pos) denote the number of negative (resp. positive) integers in  and 𝑚 =min{neg, pos}. 
We denote by 𝑛∗ the number of distinct values in  , by 𝑏 the number of bits needed to encode  (note that 𝑏 = Θ(

∑𝑛
𝑖=1⌈log2 (|𝑎𝑖|)⌉)), 

and by 𝐵 =max𝑖∈�1,𝑛�{|𝑎𝑖|}. The cardinality of an optimal partition of  , i.e. the size of the solution, is denoted by 𝑘. For example, 
if  = {−7, −7, −7, −1, −1, −1, 2, 3, 3, 4, 4, 4, 4}, then 𝑛 = 13, neg = 6, pos = 7, 𝑚 = 6, 𝑛∗ = 5, 𝐵 = 7 and it can be seen that the optimal 
solution is 𝑘 = 4: for instance, 𝑆1 = 𝑆2 = {−7, 4, 3}, 𝑆3 = {−7, −1, 4, 4} and 𝑆4 = {−1, −1, 2} form a solution. Unary MZSP denotes
MZSP for which unary encoding of the input instance is used. For any positive integer 𝑝, 𝑝-MZSP denotes the decision version of MZSP, 
in which, given 𝑝 and a zero-sum integer multiset  , we ask whether there exists a zero-sum partition 𝑆 of  such that |𝑆| ≥ 𝑝. We 
will also often use the 𝑂∗ notation, as frequently done in parameterized complexity (see e.g. [4]): for a given problem whose size of 
the input is 𝑛 and parameter is 𝑘, 𝑂∗(𝑓 (𝑘)) stands for 𝑂(𝑓 (𝑘) ⋅ 𝑝𝑜𝑙𝑦(𝑛)). In other words, 𝑂∗ only describes the exponential part of the 
running time (in 𝑘) and discards the polynomial factor (in 𝑛).

First observations Note that if we denote by − the multiset  to which all signs have been switched, then − is a valid instance 
for MZSP, and both  and − have the same optimum 𝑘. Consequently, any result that applies to neg (resp. pos) applies to pos
(resp. neg), and thus to 𝑚. Note also that an 𝑚-size zero-sum partition of  is necessarily optimal, since at least one positive (resp. 
negative) element of  needs to be present in any 𝑆𝑖 from the partition. In other words, we always have 𝑘 ≤𝑚. For any given 𝑝 ∈ℕ∗, 
a Yes-instance for 𝑝-MZSP is also a Yes-instance for 𝑝′-MZSP as long as 𝑝′ ∈ �1, 𝑝�. Indeed, merging any two sets in a size-𝑝 zero-sum 
partition of  yields a size-(𝑝 − 1) zero-sum partition of  . Finally, observe that if an integer 𝑎 and its opposite −𝑎 both belong 
to  , then there always exists an optimal solution 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑘} in which 𝑆𝑖 = {−𝑎, 𝑎} for some 𝑖 ∈ �1, 𝑛�. Indeed, suppose −𝑎
and 𝑎 both belong to  , and observe an optimal solution 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑘} in which 𝑆𝑖 ≠ {−𝑎, 𝑎} for every 𝑖 ∈ �1, 𝑘�. Clearly, no 
𝑆𝑖 is such that {−𝑎, 𝑎} ⊂ 𝑆𝑖, otherwise we could partition 𝑆𝑖 into {−𝑎, 𝑎} and 𝑆𝑖∖{−𝑎, 𝑎}, both summing to zero, contradicting the 
optimality of 𝑆 . Thus −𝑎 ∈ 𝑆𝑥 and 𝑎 ∈ 𝑆𝑦 for some 1 ≤ 𝑥 ≠ 𝑦 ≤ 𝑘. Now consider the following partition 𝑆′ = {𝑆′

1, 𝑆
′
2, … , 𝑆′

𝑘
} of  : 

(i) 𝑆′
𝑖
= 𝑆𝑖 for every 𝑖 ∈ �1, 𝑘� such that 𝑖 ≠ 𝑥 and 𝑖 ≠ 𝑦, (ii) 𝑆′

𝑥
= {−𝑎, 𝑎} and (iii) 𝑆′

𝑦
= (𝑆𝑥 ∪ 𝑆𝑦)∖{−𝑎, 𝑎}. Every 𝑆′

𝑖
, 𝑖 ∈ �1, 𝑘�, sums 

to zero, and |𝑆| = |𝑆′| = 𝑘.
In this paper, we study the MZSP problem under an algorithmic viewpoint, and, in particular, discuss its computational complexity, 
2

approximability and fixed-parameter tractability with respect to 𝑛, 𝑛∗ , 𝑚, 𝐵 and 𝑘 (see Table 1).
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2. Computational complexity of MZSP

Theorem 1. MZSP is strongly NP-complete, even if each 𝑆𝑖 in the solution 𝑆 contains at most four elements.

Proof. The proof is by reduction from 3-Partition, which has been proved to be strongly NP-complete [5], and whose definition 
is as follows.

3-Partition

Instance: An integer 𝐶 , a multiset 𝑋 = {𝑥1, 𝑥2, … , 𝑥3𝑝} of integers such that (i)
∑3𝑝

𝑖=1 𝑥𝑖 = 𝐶 ⋅ 𝑝 and (ii) ∀𝑥𝑖 ∈ 𝑋, 
𝐶

4 < 𝑥𝑖 <
𝐶

2 .
Question: Does there exist a partition {𝑋1, 𝑋2, … , 𝑋𝑝} of 𝑋 such that, for every 𝑖 ∈ �1, 𝑝�, 

∑
𝑥𝑗∈𝑋𝑖

𝑥𝑗 = 𝐶?

Let 𝐼 = (𝐶, 𝑋) be an instance of 3-Partition, and let  be the multiset such that  = {𝑥1, … , 𝑥3𝑝, −𝐶, … , −𝐶}, where −𝐶 appears 
𝑝 times in  . Note that, by definition of 3-Partition, the sum of all elements in  is equal to zero, hence  is an instance of MZSP. 
We now show that 𝐼 = (𝐶, 𝑋) is a Yes-instance for 3-Partition iff MZSP (with instance ) has a solution of cardinality 𝑝.

(⇒) If 𝐼 is a Yes-instance for 3-Partition, there exists 𝑡𝑗 = (𝑥𝑖𝑗,1 , 𝑥𝑖𝑗,2 , 𝑥𝑖𝑗,3 ), 𝑗 ∈ �1, 𝑝�, such that 𝑥𝑖𝑗,1 +𝑥𝑖𝑗,2 +𝑥𝑖𝑗,3 = 𝐶 . In particular, 
for every 𝑗 ∈ �1, 𝑝�, 𝑆𝑗 = {𝑥𝑖𝑗,1 , 𝑥𝑖𝑗,2 , 𝑥𝑖𝑗,3 , −𝐶} is a size-𝑝 partition of  in which every 𝑆𝑗 sums to zero. Moreover, such partition is 
optimal: since neg = 𝑝, no zero-sum partition of  can contain strictly more than 𝑝 sets.

(⇐) Suppose there exists a solution of MZSP of cardinality 𝑝, say 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑝}. Since any zero-sum subset in 𝑆 contains at 
least one negative element from  , every 𝑆𝑗 , 𝑗 ∈ �1, 𝑝�, contains exactly one negative element, namely −𝐶 . Since, in 3-Partition, 
every 𝑥𝑖 satisfies 𝐶4 < 𝑥𝑖 <

𝐶

2 , exactly 3 such elements are required to sum to 𝐶 . Thus, any 𝑆𝑗 , 𝑗 ∈ �1, 𝑝�, contains 3 elements of the 
form 𝑥𝑖, together with −𝐶 . Since each 𝑆𝑗 sums to zero, {𝑥1, … , 𝑥3𝑝} can be partitioned in triplets, each summing to 𝐶 , i.e. 𝐼 = (𝐶, 𝑋)
is a Yes-instance for 3-Partition.

In unary, 3-Partition and MZSP are both encoded in Θ(𝑝 ⋅ 𝐶) space. As 3-Partition is strongly NP-complete, MZSP is also 
strongly NP-complete. □

Theorem 1 proves that solving MZSP when every 𝑆𝑖 contains 4 elements is (strongly) NP-complete. Note that, consequently, this 
rules out parameter “maximum size of an 𝑆𝑖” for FPT considerations.

Theorem 2. MZSP is NP-complete, even when 𝑘 and 𝑚 are bounded.

Proof. We show NP-completeness of MZSP in the specific case 𝑚 = 𝑘 = 2, by reduction from Partition which is known to be
NP-complete [6].

Partition

Instance: A multiset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} of integers from ℕ∗.
Question: Does there exist a partition {𝑋1, 𝑋2} of 𝑋 s.t. 

∑
𝑥𝑖∈𝑋1

𝑥𝑖 =
∑

𝑥𝑗∈𝑋2
𝑥𝑗?

Let 𝑋 be an instance of Partition. We can always assume 
∑𝑛

𝑖=1 𝑥𝑖 to be even, otherwise we have a No-instance. Thus assume ∑𝑛
𝑖=1 𝑥𝑖 = 2𝑁 . The MZSP instance we build from 𝑋 is  =𝑋 ∪{−𝑁,−𝑁}. We show that 𝑋 is a Yes-instance for Partition iff MZSP

yields a size-2 zero-sum partition for  .
(⇒) Suppose there exists a partition {𝑋1, 𝑋2} of 𝑋 such that 

∑
𝑥𝑖∈𝑋1

𝑥𝑖 =
∑

𝑥𝑗∈𝑋2
𝑥𝑗 . We thus have 

∑
𝑥𝑖∈𝑋1

𝑥𝑖 =
∑

𝑥𝑗∈𝑋2
𝑥𝑗 =𝑁 , 

and {𝑋1 ∪ {−𝑁}, 𝑋2 ∪ {−𝑁}} is a zero-sum partition of  . Moreover, this partition is optimal since 𝑚 = neg = 2 and 𝑘 ≤𝑚.
(⇐) Suppose there exists a zero-sum partition of cardinality 𝑘 = 2 of  , say  = {𝑆1, 𝑆2}. Because neg = 2, we know that 𝑆1 (resp. 

𝑆2) contains exactly one negative integer; thus, both in 𝑆1 and 𝑆2, this integer is −𝑁 . Assume 𝑆1 =𝑋1 ∪{−𝑁} and 𝑆2 =𝑋2 ∪{−𝑁}. 
In that case, {𝑋1, 𝑋2} is a partition of 𝑋, and because both 𝑆1 and 𝑆2 sum to zero, we have 

∑
𝑥𝑖∈𝑋1

𝑥𝑖 =
∑

𝑥𝑗∈𝑋2
𝑥𝑗 =𝑁 . Thus 𝑋 is 

a Yes-instance for Partition. □

Although we just showed that MZSP is strongly NP-complete in general, and remains NP-complete when 𝑘 is bounded, we can 
show there exists a pseudo-polynomial algorithm that solves MZSP in the case 𝑘 = 2.

Theorem 3. 2-MZSP can be solved in pseudopolynomial time.

Proof. Let  = 𝑃 ∪ 𝑁 , where 𝑃 = {𝑝1, 𝑝2, … , 𝑝pos} (with 𝑝1 ≤ 𝑝2 ≤ 𝑝3 ≤ ⋯ ≤ 𝑝pos) is the set of positive numbers, and 𝑁 =
{𝑛1, 𝑛2, … , 𝑛neg} is the set of negative numbers, and recall that neg + pos = 𝑛. The proof is by dynamic programming. More pre-
cisely, we start by filling two tables, 𝑇𝑝𝑜𝑠 and 𝑇𝑛𝑒𝑔 . We describe in more detail the contents of 𝑇𝑝𝑜𝑠; filling 𝑇𝑛𝑒𝑔 is achieved in a similar 
fashion. 𝑇𝑝𝑜𝑠 is a Boolean table with 𝐷 =

∑pos
𝑖=1 𝑝𝑖 lines and pos columns. For any 𝑖 ∈ �1, pos� and any 𝑗 ∈ �1, 𝐷�, 𝑇𝑝𝑜𝑠[𝑖, 𝑗] is equal to
3

True if there exists a subset of {𝑝1, 𝑝2, … , 𝑝𝑖} that sums to 𝑗, and False otherwise. 𝑇𝑝𝑜𝑠 is initialized as follows:
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• for any 𝑗 ∈ �1, 𝐷�, 𝑇𝑝𝑜𝑠[1, 𝑗] =True if 𝑗 = 𝑝1, and False otherwise;
• for any 𝑖 ∈ �1, pos�, 𝑇𝑝𝑜𝑠[𝑖, 1] =True if there exists 𝑖′ ≤ 𝑖 such that 𝑝𝑖′ = 1, and False otherwise.

We then fill the rest of table 𝑇𝑝𝑜𝑠 using the following dynamic programming formula: for any 𝑖 ∈ �2, pos� and 𝑗 ∈ �2, 𝐷�:

• 𝑇𝑝𝑜𝑠[𝑖, 𝑗]=True if (a) 𝑇𝑝𝑜𝑠[𝑖 − 1, 𝑗 − 𝑝𝑖]=True or (b) 𝑇𝑝𝑜𝑠[𝑖 − 1, 𝑗]=True

• 𝑇𝑝𝑜𝑠[𝑖, 𝑗]=False otherwise

Case (a) above corresponds to the case where 𝑝𝑖 is used to obtain a sum equal to 𝑗, while (b) corresponds to the case where 𝑝𝑖 is 
not present in the sum. Clearly, 𝑇𝑝𝑜𝑠 is filled in time 𝑂(pos ⋅𝐷). Similarly, table 𝑇𝑛𝑒𝑔 is a Boolean table with neg lines and 𝐷 columns 
(recall that, by definition, 

∑neg
𝑖=1 𝑛𝑖 = −𝐷), and 𝑇𝑛𝑒𝑔[𝑖, 𝑗] is set to True if there exists a subset of {𝑛1, 𝑛2, … , 𝑛𝑖} that exactly sums to 

−𝑗, and to False otherwise. 𝑇𝑛𝑒𝑔 is filled in a similar fashion as 𝑇𝑛𝑒𝑔 , and the time complexity to fill it is 𝑂(neg ⋅𝐷). The above 
described algorithm thus takes 𝑂(𝑛𝐷) time and space. We now claim that  is a Yes-instance for 2-MZSP iff there exists a 𝑗 < 𝐷 such 
that 𝑇𝑝𝑜𝑠[pos, 𝑗] = 𝑇𝑛𝑒𝑔[neg, 𝑗] = True.

(⇒) Suppose  is a Yes-instance for 2-MZSP. Then  can be partitioned in two zero-sums multisets 𝑆1 and 𝑆2. Let 𝐷1 > 0 be the 
sum of positive values in 𝑆1, and note that 𝐷1 < 𝐷 by hypothesis. Since 𝑆1 sums to zero, −𝐷1 is the sum of the negative values in 
𝑆1. Thus, we necessarily have 𝑇𝑝𝑜𝑠[pos, 𝐷1] = 𝑇𝑛𝑒𝑔[neg, 𝐷1] = True.

(⇒) Assume 𝑇𝑝𝑜𝑠[pos, 𝑋] = 𝑇𝑛𝑒𝑔[neg, 𝑋] = True for some value 𝑋 <𝐷. By definition of 𝑇𝑝𝑜𝑠 (resp. 𝑇𝑛𝑒𝑔), we can identify a subset 
𝑆+
1 (resp. 𝑆−

1 ) of positive (resp. negative) values of  , whose sum is 𝑋 (resp. −𝑋). Thus 𝑆1 = 𝑆+
1 ∪ 𝑆−

1 is a zero-sum subset of  . 
Since 𝑋 < 𝐷, we know that 𝑆1 ⊂  . Thus 𝑆2 =  − 𝑆1 is non-empty, and is also a zero-sum subset of  , as both  and 𝑆1 sum to 
zero. We thus conclude that {𝑆1, 𝑆2} is a zero-sum partition of  . □

The following result gives two lower bounds on the time to solve MZSP, both based on the Exponential-Time Hypothesis (ETH, 
see e.g. [7] for a definition). Recall that 𝑏 is the size of the input  , assuming it is binary encoded.

Theorem 4. Unless ETH fails, MZSP cannot be solved (i) in 2𝑜(𝑛) ⋅ 𝑏𝑂(1) or (ii) in 2𝑜
(√

𝑏
)
.

Proof. We reduce from the Subset-Sum problem, which is defined as follows.

Subset-Sum

Instance: A multiset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} of integers from ℕ∗, an integer 𝐶 .
Question: Does there exist a subset 𝑃 ⊆𝑋 such that 

∑
𝑥𝑖∈𝑃 𝑥𝑖 = 𝐶?

It is known from [8] that, unless ETH fails, it is not possible to solve Subset-Sum in time 2𝑜(𝑛)𝛽𝑂(1), or in time 2𝑜
(√

𝛽
)

where 
𝛽 is the number of bits that are necessary to binary encode an instance 𝐼 = (𝑋, 𝐶) of Subset-Sum. Our reduction is as follows: let 
𝐼 = (𝑋, 𝐶) be an instance of Subset-Sum and 𝑁 =

∑𝑛
𝑖=1 𝑥𝑖.

We define our MZSP instance  to be the multiset  = 𝑋 ∪ {−𝐶, −𝑁 + 𝐶}. We now show that  has a zero-sum partition of 
cardinality 2 iff 𝐼 is a Yes-instance for Subset-Sum. Note that the optimal value 𝑘 for MZSP of  cannot exceed 2, as 𝑚 = 2.

(⇒) Suppose there exists a zero-sum partition {𝑆1, 𝑆2} of  . Necessarily, 𝑆1 (resp. 𝑆2) contains exactly one negative integer. 
Assume wlog −𝐶 ∈ 𝑆1. Thus 𝑆1 = 𝑃 ∪ {−𝐶}, where 𝑃 is a subset of 𝑋. Since 𝑆1 sums to zero, we conclude that 𝑃 sums to 𝐶 . Hence 
𝐼 = (𝑋, 𝐶) is a Yes-instance for Subset-Sum.

(⇐) Suppose 𝐼 = (𝑋, 𝐶) is a Yes instance for Subset-Sum. Thus there exists 𝑃 ⊂𝑋 such that 𝑃 sums to 𝐶 . Thus 𝑆1 = {𝑃 ∪{−𝐶}}
is a zero-sum multiset from  , and consequently 𝑆2 = {𝑆∖𝑃 ∪ {−𝑁 + 𝐶}} is also a zero-sum multiset from  . Since 𝑆1 and 𝑆2
partition  , we conclude that 𝑘 = 2 is optimal, since 𝑚 = 2 and 𝑘 ≤𝑚.

The set 𝑋 in the instance 𝐼 = (𝑋, 𝐶) of Subset-Sum contains 𝑛 integers, while  , our instance of MZSP, contains 𝑛 + 2 integers. 
Hence ETH, based on 𝑛, also holds for MZSP. The number 𝛽 of bits to encode 𝐼 = (𝑋, 𝐶) is 𝛽 = (

∑𝑛
𝑖=1⌈log2 𝑥𝑖⌉) + ⌈log2𝐶⌉, while 

is encoded using 𝑏 = 𝛽 + ⌈log2 (𝑁 −𝐶)⌉ bits. Since 𝑁 −𝐶 does not exceed 
∑𝑛

𝑖=1 𝑥𝑖, we have 𝑏 =Θ(𝛽), which proves the result. □

We now show that the above ETH bound based on 𝑛 is essentially tight.

Theorem 5. MZSP is solvable in 𝑂∗(2𝑛).

Proof. We solve MZSP by dynamic programming. Given an instance  of MZSP, we create a dynamic programming 1-dimensional 
table 𝑇 indexed by the subsets of  . We set 𝑇 [∅] to 0. Then, for increasing 𝑖 ∈ �1, 𝑛�, and for every size-𝑖 subset 𝑃𝑖 of  , we fill 𝑇 [𝑃𝑖]
using the following rule:{

max𝑎∈𝑃 {𝑇 [𝑃𝑖∖{𝑎}]} if 𝑃𝑖 does not sum to 0
4

𝑇 [𝑃𝑖] = 𝑖

max𝑎∈𝑃𝑖{𝑇 [𝑃𝑖∖{𝑎}]} + 1 otherwise
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The optimal value 𝑘 for MZSP is then found in 𝑇 [], and an optimal zero-sum partition of  can be found, from that value, by 
traceback.

The space and time complexity of the above algorithm is 𝑂∗(2𝑛), since it takes polynomial time to fill any of the 2𝑛 elements in 𝑇 .
It remains to show correctness. For this, for any subset 𝑃 of  , we denote by 𝑘𝑃 the cardinality of a maximum zero-sum subpartition 

of 𝑃 , where the term subpartition describes a partition of a subset of 𝑃 . Our goal is to show that for any 𝑃 , 𝑇 [𝑃 ] = 𝑘𝑃 . This is done 
by induction on 𝑖 = |𝑃 |. When 𝑖 = 0, this trivially holds as 𝑇 [∅] is set to 0. Suppose now that for some 𝑖 ∈ �0, 𝑛 − 1�, any 𝑃 such that |𝑃 | = 𝑖 satisfies 𝑇 [𝑃 ] = 𝑘𝑃 . Let us now observe a set 𝑃 of cardinality 𝑖 + 1. If 𝑃 does not sum to zero, let us consider a maximum 
cardinality zero-sum subpartition of 𝑃 , say (𝐴1, … , 𝐴𝑘𝑃

). Since 𝑃 does not sum to zero, there exists 𝑎 ∈ 𝑃 such that 𝑎 ∉
⋃𝑘𝑃

𝑖=1𝐴𝑖. Thus 
(𝐴1, … , 𝐴𝑘𝑃

) is a maximum cardinality zero-sum subpartition of 𝑃∖{𝑎}, otherwise this would contradict the cardinality maximality 
of (𝐴1, … , 𝐴𝑘𝑃

). Thus 𝑘𝑃∖{𝑎} = 𝑘𝑃 . Since 𝑇 [𝑃∖{𝑎}] = 𝑘𝑃∖{𝑎}, we have 𝑇 [𝑃 ] ≥ 𝑘𝑃 by definition of 𝑇 [𝑃 ]. Conversely, if 𝑎 ∈ 𝑃 and 
(𝐴1, … , 𝐴𝑘𝑃∖{𝑎}

) is a zero-sum subpartition of 𝑃∖{𝑎}, then (𝐴1, … , 𝐴𝑘𝑃∖{𝑎}
) is a zero-sum subpartition of 𝑃 . Thus 𝑘𝑃∖{𝑎} ≤ 𝑘𝑃 , which 

means 𝑇 [𝑃∖{𝑎}] ≤ 𝑘𝑃 and thus implies 𝑇 [𝑃 ] ≤ 𝑘𝑃 . Altogether, we have 𝑇 [𝑃 ] = 𝑘𝑃 . Now if 𝑃 sums to zero, let (𝐴1, … , 𝐴𝑘𝑃
) be a 

maximum cardinality zero-sum partition of 𝑃 . We thus have 𝑃 =
⋃𝑘𝑃

𝑗=1𝐴𝑗 . Let 𝑎 ∈𝐴𝑘𝑃
(note that 𝑎 exists, since 𝐴𝑘𝑃

is non-empty). 
Thus (𝐴1, … , 𝐴𝑘𝑃 −1) is a maximum zero-sum subpartition of 𝑃∖{𝑎}, and hence 𝑘𝑃 = 𝑘𝑃∖{𝑎} +1, which implies 𝑇 [𝑃 ] ≥ 𝑘𝑃 . Conversely, 
if 𝑎 ∈ 𝑃 , then 𝑎 ∈ 𝐴𝑗 for a given 𝑗 ∈ �1, 𝑘𝑃 �. Using similar arguments as previously, we can prove that 𝑘𝑃 = 𝑘𝑃∖{𝑎} + 1, and thus 
𝑇 [𝑃 ] ≤ 𝑘𝑃 . Altogether, we have 𝑇 [𝑃 ] = 𝑘𝑃 . We conclude that 𝑇 [𝑃 ] = 𝑘𝑃 for any 𝑃 ⊆  . In particular, 𝑇 [] contains a maximum 
cardinality zero-sum partition of  . By operating a traceback in 𝑇 , the sought partition can be found in polynomial time, which solves 
MZSP. □

The previous theorem is based on the fact that the number of distinct subsets in  is upper bounded by 𝑂(2𝑛). It is also possible 
to upper bound this number by a function of 𝑏, the number of bits needed to binary encode  .

Theorem 6. MZSP is solvable in 2𝑂
(

𝑏
log𝑏

)
.

Proof. Let us partition  into 𝑆𝑝 = {𝑎𝑖 ∈  𝑠.𝑡. |𝑎𝑖| ≤√
𝑏} and 𝑆𝑞 = {𝑎𝑖 ∈  𝑠.𝑡. |𝑎𝑖| >√

𝑏}. Let us also denote, for any multiset 𝐸, 
by (𝐸) the set of subsets of 𝐸 (e.g. ({2, 3, 3}) = {∅, {2}, {3}, {2, 3}, {3, 3}, {2, 3, 3}}). In that case, we have |(𝑆𝑝)| ≤ (𝑏 + 1)2

√
𝑏: 

indeed, by definition any element 𝑎 ∈ 𝑆𝑝 satisfies |𝑎| ≤√
𝑏. Moreover, 𝑎 appears at most 𝑏 times in 𝑆𝑝, since any 𝑎 needs at least one 

bit to be encoded, while 𝑏 bits are enough to encode  . Thus 𝑆𝑝 contains at most 2
√
𝑏 different numbers, each of them appearing at 

most 𝑏 times in 𝑆𝑝. Hence |(𝑆𝑝)| ≤ (𝑏 + 1)2
√
𝑏 ≤ 22

√
𝑏 log (𝑏+1) ≤ 22

𝑏
log𝑏 . On the other hand, 𝑆𝑞 contains elements of size at least 

√
𝑏. 

Then 𝑆𝑞 cannot be of cardinality greater than 2 𝑏

log 𝑏 , otherwise encoding 𝑆𝑞 would require more than 𝑏 bits; thus |(𝑆𝑞)| ≤ 22
𝑏

log𝑏 . 

Since 𝑆𝑝 and 𝑆𝑞 form a partition of  , we have that |()| = |(𝑆𝑝)| ⋅ |(𝑆𝑞)| ≤ 24
𝑏

log𝑏 . Since the dynamic programming algorithm 

from the proof of Theorem 5 solves MZSP and has running time in 𝑂∗(|()|), we conclude that MZSP can be solved in 2𝑂
(

𝑏
log𝑏

)
, 

which proves the theorem. □

We now end this section by turning our attention to the inapproximability of MZSP, in Theorem 7 below.

Theorem 7. Unless P=NP, MZSP cannot be approximated within ratio 𝑂(𝑛1−𝜖) for any 𝜖 > 0.

Proof. As for Theorem 2, we prove the result by reduction from Partition, which is known to be NP-complete [6]. Let 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝓁} be an instance of Partition, and let 

∑𝓁
𝑖=1 𝑥𝑖 = 2𝑁 with 𝑁 ≥ 1. We can indeed assume 

∑𝓁
𝑖=1 𝑥𝑖 to be non-zero and 

even, otherwise the problem is trivially answered. The reduction is as follows: let 𝑞 ≥ 1 be any integer, and let us recursively build a set 
{𝑝0, 𝑝1, … , 𝑝𝑞} of integers. More precisely, we set 𝑝0 = 1, and 𝑝𝑖 = (2𝑖𝑁 +1)𝑝𝑖−1 for any 𝑖 ∈ �1, 𝑞�. We note that for any 0 ≤ 𝑗 < 𝑖 ≤ 𝑞, 𝑝𝑗
divides 𝑝𝑖. Based on 𝑋 and on the values 𝑝0, 𝑝1, … , 𝑝𝑞 , we now construct the multiset  = (

⋃𝑞

𝑖=0{𝑝𝑖𝑋, −𝑁𝑝𝑖}) ∪{−𝑁
∑𝑞

𝑖=0 𝑝𝑖} where, 
for any 𝑖 ∈ �0, 𝑞�, 𝑝𝑖𝑋 denotes the values obtained by multiplying each element of 𝑋 by 𝑝𝑖. It can be seen that  sums to zero, and is 
thus a valid instance of MZSP. It can also be seen that the above reduction takes polynomial time as long as 𝑞 remains polynomial in 
the input size of Partition. Intuitively, the above reduction consists in “copying”, a certain amount of times, an (expanded) instance 
𝑋 of Partition, so that the solution size of MZSP on  increases, while maintaining the property that the different “expanded 
copies” of 𝑋 in  do not mutually interact.

Let us now prove correctness of our reduction, by showing the following: (i) 𝑋 is a Yes-instance for Partition iff (ii) MZSP for 
 yields a partition of cardinality 𝑞 + 2 iff (iii) MZSP for  yields a partition of cardinality 2.

((𝑖) ⇒ (𝑖𝑖)) Suppose 𝑋 is a Yes-instance for Partition. Then there exists 𝑃 ⊂𝑋 such that 
∑

𝑎∈𝑃 𝑎 =𝑁 . By construction, for every 
𝑖 ∈ �0, 𝑞�, 

∑
𝑎∈𝑃 𝑝𝑖𝑎 =𝑁𝑝𝑖. Hence, for every negative number −𝑠 in  (𝑠 being either −𝑁𝑝𝑖 for some 𝑖 ∈ �0, 𝑞�, or −𝑁

∑𝑞

𝑖=0 𝑝𝑖), it is 
possible to find a subset of  summing to 𝑁𝑝𝑖, and moreover any pair of such sets is mutually disjoint. Hence  can be partitioned 
into zero-sum subsets, and the cardinality of such a partition is 𝑞 + 2.

((𝑖𝑖) ⇒ (𝑖𝑖𝑖)) If MZSP for  yields a partition of cardinality 𝑞 + 2, and since 𝑞 + 2 ≥ 2 then, by merging any 𝑞 + 1 sets in this 
5

partition, we obtain a size-2 zero-sum partition.
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((𝑖𝑖𝑖) ⇒ (𝑖)) Suppose there exists a zero-sum partition of MZSP for  , of cardinality 2. In that case, there exists a non-empty zero-
sum (multi)set 𝑃 ⊂  that does not contain the negative integer −𝑁

∑𝑞

𝑖=0 𝑝𝑖. Let us denote by 𝑖0 the smallest index 𝑖 ∈ �0, 𝑞� such 
that −𝑁𝑝𝑖 belongs to 𝑃 . Note that for all 𝑖 ∈ �0, 𝑖0 − 1�, we have 𝑝𝑖𝑋 ∩ 𝑃 = ∅: indeed, suppose by contradiction that this is not the 
case, and let 𝐴 be the sum of the elements of 

(⋃𝑖0−1
𝑖=0 𝑝𝑖𝑋

)
∩𝑃 . Then we have 𝐴 ≤ (1 + 𝑝1 +⋯ + 𝑝𝑖0−1) ⋅ 2𝑁 , hence 𝐴 ≤ 𝑖0 ⋅ 2𝑁 ⋅ 𝑝𝑖0−1, 

which yields 𝐴 < 𝑝𝑖0 . In particular, 𝑝𝑖0 does not divide 𝐴, since 𝐴 ≠ 0. As 𝑝𝑖0 divides every other element of 𝑃 , we conclude that 
𝐴 = 0, which is the sought contradiction.

Now, let us consider 𝑃 ′ = 𝑃 mod 𝑝𝑖0+1. From the above, the only elements from 𝑃 that induce non zero elements in 𝑃 ′ are the 
elements of 𝑝𝑖0𝑋 ∩𝑃 , together with −𝑁𝑝𝑖0 . We thus conclude there exists a (multi)set 𝐾 ⊂𝑋 such that 

∑
𝑎∈𝐾 𝑝𝑖0𝑎 ≡𝑁𝑝𝑖0 mod 𝑝𝑖0+1. 

Since 𝑝𝑖0+1 > 2𝑁𝑝𝑖0 , 
∑

𝑎∈𝐾 𝑝𝑖0𝑎 =𝑁𝑝𝑖0 , and thus 
∑

𝑎∈𝐾 𝑎 =𝑁 . In other words, we have a Yes-instance for Partition.
Now we have proved correctness of our reduction, let us turn to proving our inapproximability result. Let 𝜖 be any strictly 

positive value, and suppose that there exists an approximation algorithm  for MZSP, of ratio 𝜌 = 𝑂(𝑛1−𝜖) with 𝑛 = ||. Take now 
an instance 𝑋 of Partition, and recall that 𝓁 = |𝑋|. Let 𝐶 be a constant such that 𝜌 ≤ 𝐶𝑛1−𝜖 for sufficiently large 𝑛. We let 
𝑞 =max(𝐶1∕1−𝜖 −1, (𝐶1∕1−𝜖(𝓁+1) +1)1∕𝜖−1 −1), and we proceed with the above mentioned reduction by building the MZSP instance 
 based on 𝑋 and on parameter 𝑞. We have that 𝑛 = || = (𝓁 + 1)(𝑞 + 1) + 1.

Then, 𝑞+1

𝐶
1

1−𝜖
≥ 1 and (𝑞 + 1)

1
1−𝜖 −1 − 𝐶1∕1−𝜖(𝓁 + 1) ≥ 1 which yields 𝑞+1

𝐶
1

1−𝜖
⋅ ((𝑞 + 1)

1
1−𝜖 −1 − 𝐶

1
1−𝜖 (𝓁 + 1)) ≥ 1 and 𝐶((𝓁 + 1)(𝑞 +

1) + 1)1−𝜖 ≤ 𝑞 + 1. We thus conclude that 𝐶𝑛1−𝜖 ≤ 𝑞 + 1. We now apply  on  , and solve it polynomially within factor 𝜌 ≤ 𝐶𝑛1−𝜖 . 
Thus we obtain 𝜌 ≤ 𝑞 + 1, hence 𝜌 < 𝑞 + 2. However, we know from the above that if we have a Yes-instance for Partition, then 
there exists a zero-sum partition of  of cardinality 𝑞 + 2. In that case, the solution provided by the approximation algorithm  is 
a zero-sum partition of  of cardinality 𝑐 ≥ 𝑞+2

𝜌
> 1. Conversely, if  provides a zero-sum partition of cardinality 𝑐 > 1, then such 

zero-sum partition shows that 𝑋 is a Yes-instance for Partition.
Altogether, if there exists an approximation algorithm  for MZSP of ratio 𝜌 = 𝑂(𝑛1−𝜖), it is possible to polynomially solve

Partition: a contradiction, unless P=NP, to the fact that Partition is NP-complete [6]. □

3. Parameterized complexity of MZSP

The previous section was devoted to providing results on the computational complexity of MZSP. In this section, we discuss the 
parameterized complexity of MZSP, essentially focusing on parameters 𝑘, 𝑚, 𝑛∗ and 𝐵, which were defined in Section 1.

Parameters 𝑘 and 𝑚 We first consider fixed-parameterized complexity of MZSP with respect to the size 𝑘 of the solution. On the 
way, we will also discuss parameter 𝑚 =min{neg, pos}, as we always have 𝑚 ≥ 𝑘. By Theorem 2, we know that, unless P=NP, MZSP
is not FPT with respect to parameter 𝑘 (resp. 𝑚), since MZSP is NP-complete even in the case where both these values are constant. 
The following theorem and corollary show W[1]-hardness of Unary MZSP with respect to the same parameters.

Theorem 8. Unary MZSP parameterized by 𝑚 is W[1]-hard.

Theorem 8 implies the following corollary, as we always have 𝑚 ≥ 𝑘.

Corollary 1. Unary MZSP parameterized by 𝑘 is W[1]-hard.

Proof of Theorem 8. Let us assume that integers are encoded in unary. We reduce from Unary Bin-Packing, which is known to 
be W[1]-hard with respect to parameter “size of the solution” [9], to Unary MZSP. We first recall the definition of Bin-Packing
(presented here in its decision version):

Bin-Packing

Instance: a multiset of strictly positive integers 𝑃 = {𝑤1, … , 𝑤𝑛}, an integer 𝑊 , an integer 𝑡.
Question: Does there exist a partition {𝐽1, … , 𝐽𝑡} of 𝑃 such that 

∑
𝑤𝑗∈𝐽𝑖 𝑤𝑗 ≤𝑊 for every 𝑖 ∈ �1, 𝑡�?

As mentioned above, Unary Bin-Packing is Bin-Packing in which all integers are assumed to be encoded in unary; besides,
Unary Bin-Packing, parameterized by the number 𝑡 of bins, is known to be W[1]-hard [9]. Let 𝐼 = (𝑃 , 𝑊 , 𝑡) be an instance of Unary 
Bin-Packing. Moreover, assume 

∑𝑛
𝑖=1𝑤𝑖 = 𝑡𝑊 , since Unary Bin-Packing remains W[1]-hard parameterized by the number 𝑡 of bins 

under this condition [9]. Let us now construct the following instance of MZSP:  = {𝑤1, … , 𝑤𝑛, −𝑊 ,… ,−𝑊
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑡

}. Note that we have 

𝑚 = 𝑡. We now show that MZSP admits a 𝑡-size zero-sum partition iff 𝐼 = (𝑃 , 𝑊 , 𝑡) is a Yes-instance for Unary Bin-Packing.
(⇒) Suppose (𝑃 , 𝑊 , 𝑡) is a Yes-instance for Unary Bin-Packing. Thus there exists a partition {𝐽1, … , 𝐽𝑡} of 𝑃 such that ∑

𝑤𝑗∈𝐽𝑖 𝑤𝑗 ≤ 𝑊 for every 𝑖 ∈ �1, 𝑡�. However, since we assume 
∑𝑛

𝑖=1𝑤𝑖 = 𝑡𝑊 , we conclude that every 𝐽𝑖, 𝑖 ∈ �1, 𝑡�, is such that ∑
𝑤𝑗∈𝐽𝑖 𝑤𝑗 =𝑊 . Hence, {𝐴1, 𝐴2, … , 𝐴𝑡}, where 𝐴𝑖 = 𝐽𝑖 ∪ {−𝑊 } for every 𝑖 ∈ �1, 𝑡�, is a 𝑡-size zero-sum partition of  .

(⇐) Conversely, suppose there exists a 𝑡-size zero-sum partition {𝐴1, 𝐴2, … , 𝐴𝑡} of  . Since  contains exactly 𝑡 negative numbers, 
6

this implies that every 𝐴𝑖, 𝑖 ∈ �1, 𝑡�, contains exactly one occurrence of −𝑊 . Thus {𝐽1, 𝐽2, … , 𝐽𝑡}, where 𝐽𝑖 = 𝐴𝑖∖{−𝑊 } for every 
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Algorithm 1 XP algorithm for solving MZSP, parameterized by 𝑘.
1: for every 𝑘-tuple 𝑢 = (𝑢1, … , 𝑢𝑘) of  do

2: for every 𝑣 ∈ �−𝑛𝐵, 𝑛𝐵�𝑘 do

3: 𝑇 [𝑣] ← False

4: end for

5: 𝑇 [𝑢] ← True

6: for every 𝑎 ∈ ∖𝑢 do

7: for every 𝑣 ∈ �−𝑛𝐵, 𝑛𝐵�𝑘 do

8: if 𝑇 [𝑣] = True then

9: for all 𝑖 ∈ �1, 𝑘� do

10: 𝑇 [𝑣 + 𝑎 ⋅ 𝑒𝑖] ← True

11: end for

12: end if

13: if 𝑇 [0, … , 0] = True then

14: return True

15: end if

16: end for

17: end for

18: end for

19: return False

𝑖 ∈ �1, 𝑡�, is a partition of 𝑃 . Moreover, since each 𝐴𝑖 sums to zero, we know that each 𝐽𝑖 sums to 𝑊 , which ensures that (𝑃 , 𝑊 , 𝑡) is 
a Yes-instance for Unary Bin-Packing.

The above reduction is a valid parameterized reduction, since parameter 𝑡 for Unary Bin-Packing is strictly equal to parameter 
𝑚 for Unary MZSP. Moreover, the instance  of Unary MZSP that we built satisfies 𝑘 = 𝑚. □

Theorem 8 suggests that, even encoded in unary, MZSP admits no FPT algorithm parameterized by 𝑘. What we can show, in the 
following theorem, is that MZSP encoded in unary is in XP when parameterized by 𝑘.

Theorem 9. Unary MZSP is in XP parameterized by 𝑘.

Proof. We show here that MZSP can be solved in 𝑂(𝑘𝑛𝑘+1(2𝑛𝐵)𝑘). Let  be an instance of MZSP. Recall that 𝑛 = ||, 𝐵 is the 
maximum taken over the absolute values of all elements of  , and 𝑘 is the size of the solution. We create a Boolean array 𝑇 indexed 
by �−𝑛𝐵, 𝑛𝐵�𝑘. We then apply Algorithm 1, which explicitly computes a size-𝑘 zero-sum partition of  , while forcing each set of this 
partition to be non-empty. More precisely, Algorithm 1 consists in iteratively computing the 𝑘-tuple (𝑣1, … , 𝑣𝑘) such that there is a 
subpartition 𝐴1, … , 𝐴𝑘 in which each 𝐴𝑖 sums to 𝑣𝑖. We start by initialising table 𝑇 Lines 2 −4. We want the 𝐴𝑖s to be non-empty, so 
we require that they contain at least one element. We choose a 𝑢𝑖 for each and initialise 𝑇 [𝑢] to True (see Line 5). Then, to increment 
table 𝑇 , we need to put every element 𝑎 of 𝑆 in one of the 𝐴𝑖s. Thus we try to assign 𝑎 to each of them, and see to which value 
𝐴𝑖 sums. This is done in Lines 6 − 12; note that 𝑒𝑖 = (0, 0, … , 0, 1, 0, … , 0) denotes the vector of length 𝑘 where the unique non-zero 
coordinate is 1 and appears at position 𝑖. We only need to check, Line 13, if we have been able to obtain (0, … , 0) this way. Finally, 
we need to iterate the process for each possible initial choice of 𝑢, as done in Line 1.

The time complexity of Algorithm 1 is 𝑂(𝑘𝑛𝑘+1(2𝑛𝐵)𝑘 log𝐵), and its space complexity is 𝑂((2𝑛𝐵)𝑘).
Let us now show its correctness, by showing that a size-𝑘 zero-sum partition of  exists iff Algorithm 1 returns True. We will use 

the following property: 𝑇 [𝑣] = True iff there is a size-𝑘 subpartition (𝐴1, … , 𝐴𝑘) of  such that each 𝐴𝑖 sums to 𝑣𝑖. We prove this 
property by induction on 𝑡 ∶= |𝐴1| + |𝐴2| +⋯ + |𝐴𝑘|. Then, by definition, the property is satisfied for 𝑡 ⩽ 𝑘. Let us now assume that 
𝑡 > 𝑘. If 𝑇 [𝑣] = True, then there exists 𝑎 ∈  and 𝑖 ∈ �1, 𝑘� such that 𝑇 [𝑣 − 𝑎 ⋅ 𝑒𝑖] = True. By induction, there exists (𝐴1, … , 𝐴𝑘) a 
subpartition of  such that each 𝐴𝑗 sums to 𝑣𝑗 for 𝑗 ≠ 𝑖 and 𝐴𝑖 sums to 𝑣𝑖 −𝑎. Then (𝐴1, … , 𝐴𝑖 ∪{𝑎}, … , 𝐴𝑘) satisfies the property for 
𝑣. Conversely, suppose that (𝐴1, … , 𝐴𝑘) is a subpartition of 𝑆 such that each 𝐴𝑖 sums to 𝑣𝑖 and 𝑡 > 𝑘. Then there is an index 𝑖 ∈ �1, 𝑘�

such that 𝐴𝑖 contains at least two numbers. Let 𝑎 be one of them. Then (𝐴1, … , 𝐴𝑖∖{𝑎}, … , 𝐴𝑘) is a subpartition of 𝑆 summing to 
𝑣 − 𝑎 ⋅ 𝑒𝑖. Then 𝑇 (𝑣 − 𝑎 ⋅ 𝑒𝑖) = True by induction. Then 𝑇 [𝑣] = True.

From the above property, we have that 𝑇 [0] = True (and thus Algorithm 1 returns True) iff there is a size-𝑘 zero-sum subpartition 
of  , which is equivalent to the existence a size-𝑘 zero-sum partition of  . □

Since we always have 𝑚 ≥ 𝑘, Theorem 9 implies the following corollary.

Corollary 2. Unary MZSP is in XP when parameterized by 𝑚.

Parameter number of distinct values 𝑛∗ We now discuss parameter 𝑛∗, for which we first provide a complexity lower bound based on
ETH. Recall that 𝑏 is the (binary encoded) size of the input instance  .
7

Theorem 10. Unless ETH fails, MZSP cannot be solved in 2𝑜(𝑛∗)𝑏𝑂(1).
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Proof. The proof is based on a combination of (i) a reduction from 3-SAT to Subset-Sum presented in [8] and inspired from [10]
and (ii) the reduction from Subset-Sum to MZSP from proof of Theorem 4. More precisely, starting from any instance of 3-SAT with 
𝑛 variables and 𝑚 clauses, an instance of Subset-Sum containing 𝑛′ = 2𝑛 + 2𝑚 integers, among which 2𝑛 + 𝑚 are pairwise distinct, 
is constructed. Moreover, in proof of Theorem 4, the instance  of MZSP built from Subset-Sum contains 𝑛′′ = 𝑛′ + 2 = 2𝑛 + 2𝑚 + 2
integers, among which 𝑛∗ = 2𝑛 +𝑚 +2 are pairwise distinct. Under ETH, 3-SAT cannot be solved in 2𝑜(𝑛). If we combine this information 
with the sparsification method [11] (which allows to consider only 3-SAT instances for which 𝑚 = 𝑂(𝑛)) and the above argument, 
we conclude that, under ETH, MZSP cannot be solved in 2𝑜(𝑛∗)𝑏𝑂(1). □

Concerning parameterized complexity with respect to 𝑛∗, we suspect MZSP to be W[1]-hard parameterized by 𝑛∗, but the question 
remains open. Meanwhile, we are able to prove (see Theorem 11) that the problem is in XP with respect to 𝑛∗. The rationale for this 
result is that the multisets that constitute any maximum zero-sum partition of  are few, and that we can efficiently compute them. 
In order to prove Theorem 11, we need to introduce several definitions, and first prove two propositions (Propositions 1 and 2).

Let us suppose that  is a multiset containing 𝑛∗ distinct values, denoted 𝑎1, … , 𝑎𝑛∗ . We introduce several notions: given any 
multiset  built from 𝑎1, … , 𝑎𝑛∗ , we call multiplicity multiset of  the multiset {𝑢1, 𝑢2, … , 𝑢𝑛∗ } representing the mutiplicities of each 
𝑎𝑖 in : more precisely, for any 𝑖 ∈ �1, 𝑛∗�, 𝑢𝑖 ∈ ℕ is the number of times 𝑎𝑖 appears in . With this notation, we can define a partial 
order ≤ on multiplicity multisets as follows: let 𝑢 = {𝑢1, 𝑢2, … , 𝑢𝑛∗ } and 𝑣 = {𝑣1, 𝑣2, … , 𝑣𝑛∗} be two multiplicity multisets; we write 
𝑢 ≤ 𝑣 whenever 𝑢𝑖 ≤ 𝑣𝑖 for every 𝑖 ∈ �1, 𝑛∗�. Now let 𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑛∗} be the multiplicity multiset of  . We first define two sets, 
respectively named 𝐾 and 𝐷: 𝐾 is the set of irreducible multiplicity multisets of  leading to zero-sum subsets of  , and 𝐷 is the set 
of all zero-sum subsets of  . In the following, for simplicity we write 𝑢 = 0 for any vector 𝑢 whenever all its coordinates are equal to 
0. Formally, 𝐾 and 𝐷 are defined as follows:

𝐾 =

{
𝑢 ∈ℕ𝑛∗

||||||
𝑛∗∑
𝑖=1

𝑢𝑖𝑎𝑖 = 0, 𝑢 ≠ 0 and ∀𝑣 ∈ ℕ𝑛∗ , 𝑣 ≤ 𝑢 and
𝑛∗∑
𝑖=1

𝑣𝑖𝑎𝑖 = 0⇒ 𝑣 = 0 or 𝑣 = 𝑢

}
and

𝐷 =

{
𝑢 ∈ℕ𝑛∗

||||||𝑢 ≤ 𝑠, 𝑢 ≠ 0 and
𝑛∗∑
𝑖=1

𝑢𝑖𝑎𝑖 = 0

}
.

Any maximum zero-sum partition of  is induced by elements of 𝐾 ∩ 𝐷 only. We define a third set 𝑍 as follows: 𝑍 ={
𝑢 ∈ℕ𝑛∗ |||𝑢 ≠ 0 and

∑𝑛∗

𝑖=1 𝑢𝑖𝑎𝑖 = 0
}

. Note that both 𝐾 and 𝐷 are included in 𝑍 . We are now interested in two properties, related 
to the above definitions. We begin with Proposition 1.

Proposition 1. Let 𝑈 be a subset of 𝑍 such that 𝐾 ∩𝐷 ⊆𝑈 . There exists a size-𝑝 zero-sum partition of  iff there exist 𝓁 ≥ 𝑝 elements of 
𝑈 , say 𝑢1, 𝑢2, … , 𝑢𝓁 such that 

∑𝓁
𝑖=1 𝑢

𝑖 = 𝑠.

Proof. Let 𝑈 ⊆ 𝑍 such that 𝐾 ∩𝐷 ⊆ 𝑈 . Suppose there exists a size-𝑝 zero-sum partition of  , and let 𝐴1, … , 𝐴𝑘 be a maximum 
zero-sum partition of  , thus with 𝑘 ≥ 𝑝. Let us denote by 𝑢1, 𝑢2, … , 𝑢𝑘 the multiplicity multisets of resp. 𝐴1, … , 𝐴𝑘. By definition, 
𝐴𝑖 ⊆  for any 𝑖 ∈ �1, 𝑘�, and thus 𝑢𝑖 ∈ 𝐷. Moreover, suppose 𝑢𝑖 is not irreducible, i.e. 𝑢𝑖 ∉ 𝐾 . Then there exists 𝐶 ≠ ∅, 𝐶 ⊂ 𝐴𝑖

such that 𝐶 sums to zero. In particular, it is possible to replace 𝐴𝑖 by both 𝐶 and 𝐴𝑖∖𝐶 in the maximum zero-sum partition of  , 
which contradicts maximality. We thus conclude that 𝑢𝑖 ∈𝐾 , and thus that 𝑢𝑖 ∈𝐾 ∩𝐷. Consequently, we have that 𝑢𝑖 ∈ 𝑈 . Hence, 
𝑢1, 𝑢2, … , 𝑢𝑘 are 𝑘 ≥ 𝑝 elements of 𝑈 such that 

∑𝑘
𝑖=1 𝑢

𝑖 = 𝑠.

Conversely, suppose there exists 𝓁 ≥ 𝑝 elements 𝑢1, 𝑢2, … , 𝑢𝓁 of 𝑈 such that 
∑𝓁

𝑖=1 𝑢
𝑖 = 𝑠. For any 𝑖 ∈ �1, 𝑘�, let us denote by 𝐴𝑖

the multiset associated to 𝑢𝑖, and for every 𝑗 ∈ �1, 𝑛∗�, let 𝑢𝑖
𝑗

denote the 𝑗-th coordinate of vector 𝑢𝑖. Then 𝐴𝑖 sums to zero, since ∑𝑝

𝑗=1 𝑢
𝑖
𝑗
𝑎𝑗 = 0. Moreover, the 𝐴𝑖s form a partition of  since for every 𝑗 ∈ �1, 𝑝�, 

∑𝓁
𝑖=1 𝑢

𝑖
𝑗
= 𝑠𝑗 . Thus 𝐴1, … , 𝐴𝓁 is a size-𝓁 zero-sum 

partition of  . Since it is always possible to merge several zero-sum sets to create another zero-sum set, we conclude there exists a 
zero-sum partition of  , whose cardinality is 𝑝 ≤ 𝓁. □

For solving 𝑝-MZSP, it thus suffices to compute 𝐾 ∩𝐷, and to test whether it is possible to reach 𝑠, using 𝑝 or more elements of 
𝐾 ∩𝐷. Before that, we discuss the maximum cardinalities of 𝐾 and 𝐷 (see Proposition 2), which will be useful to evaluate the time 
complexity to generate these sets.

Proposition 2. 𝐷⊆ �0, 𝑛�𝑛∗ and 𝐾 ⊆ �0, 𝑛∗𝐵 − 1�𝑛∗ .

Proof. The first result is straightforward: since for any 𝑗 ∈ �1, 𝑛∗�, we have 𝑠𝑗 ≤ 𝑛, then for any 𝑢 = {𝑢1, 𝑢2, … , 𝑢𝑛∗ } ∈ 𝐷 and for 
any 𝑗 ∈ �1, 𝑛∗�, we have 𝑢𝑗 ≤ 𝑛. The second result is by contradiction. Let 𝑢 ∈ 𝑍 with 𝑢 = {𝑢1, 𝑢2, … , 𝑢𝑛∗ }, and let us suppose that 
there exists an 𝑖 ∈ �1, 𝑛∗� such that 𝑢𝑖 ≥ 𝑛∗𝐵. We will show that, in that case, 𝑢 ∉ 𝐾 . Recall that the 𝑛∗ distinct values in  are 
denoted 𝑎1, 𝑎2, … , 𝑎𝑛∗ , and let us denote by 𝐼 the set of indices 𝑗 ∈ �1, 𝑛∗� for which 𝑎𝑗 and 𝑎𝑖 have same sign. Then we have ∑

𝑗∈𝐼 𝑢𝑗 |𝑎𝑗 | =∑
𝑗∉𝐼 𝑢𝑗 |𝑎𝑗 |.

Consequently, 𝑛∗𝐵|𝑎𝑖| ≤ 𝑢𝑖|𝑎𝑖| ≤∑
𝑗∉𝐼 𝑢𝑗 |𝑎𝑗 |. In particular, there exists 𝑗 ∉ 𝐼 such that 𝑢𝑗 |𝑎𝑗 | ≥𝐵|𝑎𝑖|. Thus there exists two indices 

𝐵|𝑎 |

8

𝑖 and 𝑗, whose corresponding values 𝑎𝑖 and 𝑎𝑗 have opposite signs, and such that 𝑢𝑖 ≥ 𝐵 ≥ |𝑎𝑗 | and 𝑢𝑗 ≥ 𝑖|𝑎𝑗 | ≥ |𝑎𝑖|. Since 𝑎𝑖𝑎𝑗 −𝑎𝑗𝑎𝑖 =
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Algorithm 2 XP algorithm for solving MZSP, parameterized by 𝑛∗.
1: Compute 𝐷
2: Initialize 𝑇
3: for every 𝑖 ∈ �1, 𝑛� do

4: for every 𝑢 ∈𝐷 do

5: for every 𝑣 ∈𝐷 do

6: if 𝑣 + 𝑢 ∈𝐷 then

7: 𝑇 [𝑣 + 𝑢] =max(𝑇 [𝑣] + 1, 𝑇 [𝑣 + 𝑢])
8: end if

9: end for

10: end for

11: end for

12: return 𝑇 [𝑠]

0, the 𝑛∗-tuple 𝑣 = {𝑣1, 𝑣2, … , 𝑣𝑛∗ } is such that 𝑣𝑖 = |𝑎𝑗 |, 𝑣𝑗 = |𝑎𝑖| and 𝑣𝓁 = 0 for all 𝓁 ≠ 𝑖, 𝑗 satisfies 
∑𝑛∗

𝓁=1 𝑣𝓁𝑎𝓁 = 0. Moreover, 𝑣 ≤ 𝑢, 
𝑢 ≠ 0 and 𝑣 ≠ 0 since 𝑛∗𝐵 > |𝑎𝑗 |. Thus we conclude that 𝑢 is not irreducible, i.e. 𝑢 ∉𝐾 , which proves the proposition. □

In order to compute 𝐷 (resp. 𝐾), it thus suffices to generate each element of �0, 𝑛�𝑛∗ (resp. �0, 𝑛∗𝐵 − 1�𝑛∗ ), and check for each of 
them whether it belongs to 𝐷 (resp. 𝐾). For each element of �0, 𝑛�𝑛∗ , checking its membership to 𝐷 can be achieved in 𝑂(𝑛2 log𝐵), 
thus 𝐷 can be computed in 𝑂(𝑛𝑛∗+2 log(𝐵)). Concerning 𝐾 , testing if an element of �0, 𝑛∗𝐵 − 1�𝑛∗ sums to zero can be done in 
𝑂(𝑛∗ log(𝑛∗𝐵)), and by dynamic programming, we can check if it is irreducible in 𝑂((𝑛∗𝐵)𝑛∗ ); thus 𝐾 can be computed in 𝑂((𝑛∗𝐵)2𝑛∗ ).

The set 𝐾 (and its computation) will be useful later for proving Theorem 13. In the following, we first focus on set 𝐷, whose 
cardinality is denoted 𝑐𝐷 . Indeed, starting from 𝐷, Algorithm 2 shows that MZSP can be solved in 𝑂(𝑛𝑐2

𝐷
𝑛∗ log𝑛 + 𝑛𝑛

∗+2 log𝐵). Since, 
by Proposition 2 above, 𝑐𝐷 is in 𝑂(𝑛𝑛∗ ), this shows that MZSP is XP relatively to parameter 𝑛∗, as stated by the following theorem.

Theorem 11. MZSP is in XP when parameterized by 𝑛∗.

Proof. We provide an algorithm that runs in time 𝑂(𝑛𝑐2
𝐷
𝑛∗ log𝑛 + 𝑛𝑛

∗+2 log𝐵). The proof derives from Algorithm 2, in which 𝑇 is 
an array indexed by the elements of 𝐷 and which is initialized as follows: 𝑇 [0] = 0, and for every other vector 𝑣 ∈ 𝐷, 𝑇 [𝑣] = −∞. 
We also recall that 𝑠 is the multiplicity multiset of  .

The idea behind Algorithm 2 is to understand every multiset as its multiplicity multiset. As seen before, we can efficiently compute 
𝐷. Then, we iteratively compute the largest number of elements of 𝐷 that we can sum to obtain 𝑣. To do so, for each 𝑢 in 𝐷, we say 
that the largest number of elements of 𝐷 that we can sum to obtain 𝑣 + 𝑢 is at most the same number as for 𝑣 plus one for each 𝑣 in 
𝐷. This is what is done Lines 4 −10 of Algorithm 2. We know that we will need at most 𝑛 elements of 𝐷 to sum to 𝑠, so we only need 
to do this operation 𝑛 times, which explains Line 3.

Clearly, Algorithm 2 runs in 𝑂(𝑛𝑐2
𝐷
𝑛∗ log𝑛) where 𝑐𝐷 = |𝐷|, since 𝑛𝑐2

𝐷
additions on vectors are realized, each taking 𝑂(𝑛∗ log𝑛)

time. To this complexity, 𝑂(𝑛𝑛∗+2 log𝐵) should be added for the precomputation of 𝐷. We now show that Algorithm 2 is correct. At 
the end of the algorithm, for any 𝑣 ∈𝐷, 𝑇 [𝑣] represents the largest number of elements of 𝐷 that we can sum to obtain 𝑣. Let us denote 
by 𝑤𝑣 this value (thus 𝑇 [𝑣] = 𝑤𝑣). For any 𝑖 ∈ �1, 𝑛�, let (𝑖) be the following property: for every 𝑣 ∈ 𝐷, 𝑇 [𝑣] = 𝑤𝑣 if 𝑤𝑣 ∈ �0, 𝑖�. 
Our goal is to prove, by induction on 𝑖, that (𝑖) holds for any 𝑖 ∈ �1, 𝑛�. First, (0) is true since 𝑤𝑣 = 0 implies 𝑣 = 0. Now let 𝑖 ≥ 0, 
and let us assume (𝑖) holds. Let 𝑣 ∈𝐷. If 𝑤𝑣 ≤ 𝑖, then by induction hypothesis, we have 𝑇 [𝑣] = 𝑤𝑣. If not, then there exist 𝑢 ∈ 𝐷

such that 𝑤𝑣−𝑢 = 𝑖, and hence 𝑇 [𝑣 − 𝑢] = 𝑖. Hence, by construction of 𝑇 , 𝑇 [𝑣] = 𝑖 + 1 =𝑤𝑣, which consequently proves that (𝑖 + 1)
holds. By induction, (𝑖) holds for any 𝑖 ∈ �1, 𝑛�. In particular, 𝑇 [𝑠] represents the largest number of elements from 𝐷 that can be 
summed in order to obtain 𝑠. By Proposition 1, there exists 𝓁 elements of 𝐷 whose sum is 𝑠 iff there exists a zero-sum partition of  , 
of cardinality 𝓁. Thus the cardinality of a maximum zero-sum partition of  is 𝑇 [𝑠], which shows correctness of Algorithm 2. □

As mentioned before, we conjecture MZSP to be W[1]-hard parameterized by 𝑛∗. In contrast, we have the following result.

Theorem 12. MZSP is FPT when parameterized by 𝑛∗ + 𝑘.

Proof. In order to prove the result, we model the MZSP problem as an Integer Linear Program (ILP). Since ILP is FPT parameterized 
by the number of its variables (see e.g. [12,13]), it suffices that our ILP formulation uses a number of variables that is only a function 
of 𝑛∗ and 𝑘 to prove the result.

Let  be an instance of MZSP, let us call the 𝑛∗ distinct values of  𝑎1, … , 𝑎𝑛∗ , and let us assume that 𝑠1, … , 𝑠𝑛∗ are their respective 
multiplicities in  .

The ILP instance we construct uses 𝑘𝑛∗ variables, namely 𝑥𝑖,𝑗 with 𝑖 ∈ �1, 𝑛∗� and 𝑗 ∈ �1, 𝑘�. Each such variable 𝑥𝑖,𝑗 indicates the 
9

number of times value 𝑎𝑖 is present in a zero-sum subset 𝑆𝑗 of a partition of  .
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MZSP (ILP model):

C.1 𝑥𝑖,𝑗 ≥ 0 ∀1 ≤ 𝑖 ≤ 𝑛∗, ∀1 ≤ 𝑗 ≤ 𝑘

C.2
∑𝑘

𝑗=1 𝑥𝑖,𝑗 = 𝑠𝑖 ∀1 ≤ 𝑖 ≤ 𝑛∗

C.3
∑𝑛∗

𝑖=1 𝑎𝑖𝑥𝑖,𝑗 = 0 ∀1 ≤ 𝑗 ≤ 𝑘

C.4
∑𝑛∗

𝑖=1 𝑥𝑖,𝑗 > 0 ∀1 ≤ 𝑗 ≤ 𝑘

Constraints C.1 trivially impose that each variable (representing the number of occurrences of value 𝑎𝑖 in 𝑆𝑗 ) belongs to ℕ. 
Constraints C.2 impose that each value 𝑎𝑖 appears exactly 𝑠𝑖 times in the partition of  . Constraints C.3 impose that each 𝑆𝑗 in the 
partition of  sums to zero. Finally, constraints C.4 impose that each 𝑆𝑗 is non-empty.

Since solving any ILP is FPT parameterized by the number of its variables [12,13], and since we have 𝑘𝑛∗ variables in our model, 
we conclude MZSP is FPT parameterized by 𝑛∗ + 𝑘. More precisely, any ILP on 𝑥 variables can be solved in 𝑂∗(𝑥2.5𝑥+𝑜(𝑥)) [12]. Thus
MZSP can be solved in 𝑂∗((𝑘𝑛∗)2.5𝑘𝑛∗+𝑜(𝑘𝑛∗)). □

Parameter maximum absolute value 𝐵 Recall that 𝐵 is the greatest integer (in absolute value) in an instance  of MZSP.

Theorem 13. MZSP is FPT when parameterized by 𝐵.

Proof. In order to prove the result, we provide an ILP model for our problem. We will then show that the number of variables of our
ILP is a function of 𝑛∗ and 𝐵 only, which, combined with the fact that ILP is FPT parameterized by its number of variables [12,13]
and the fact that 𝑛∗ ≤ 2𝐵, allows us to conclude. Given an integer 𝑘, we are interested in solving 𝑘-MZSP, which asks whether a 
size-𝑘 zero-sum partition of  exists. Let ( , 𝑘) be an instance of 𝑘-MZSP. Let us number the 𝑛∗ distinct values in  𝑎1, … , 𝑎𝑛∗ and let 
𝑠1, … , 𝑠𝑛∗ be their respective multiplicities in  . Let 𝑐𝐾 = |𝐾|, where 𝐾 is the set defined previously, and let us compute 𝐾 – recall 
that 𝑐𝐾 , by Proposition 2 and the discussion that follows, satisfies 𝑐𝐾 = 𝑂((𝑛∗𝐵)𝑛∗ ) –, and that 𝐾 can be computed in 𝑂((𝑛∗𝐵)2𝑛∗ ). 
Our ILP is based on the following 𝑐𝐾 variables 𝑥𝑢, 𝑢 ∈𝐾 , where 𝑥𝑢 represents the number of times element 𝑢 appears in a zero-sum 
partition of  of cardinality at least 𝑘. The ILP formulation of the problem is as follows.

𝑘-MZSP (ILP model):

C.1 ∀𝑢 ∈𝐾 𝑥𝑢 ≥ 0
C.2 ∀𝑖 ∈ �1, 𝑛∗�

∑
𝑢∈𝐾 𝑢𝑖𝑥𝑢 = 𝑠𝑖

C.3
∑

𝑢∈𝐾 𝑥𝑢 ≥ 𝑘

We now show correctness of our ILP model, by proving that there exists a zero-sum partition of MZSP of cardinality 𝑘 iff the 
above ILP formulation admits a solution.

(⇒) Suppose  admits a size-𝑘 zero-sum partition. Then, by Proposition 1, we know there exist 𝓁 ≤ 𝑘 elements of 𝐾 which sum to 
𝑠, that we will call 𝑢1, … , 𝑢𝓁 . For 𝑢 ∈𝐾 , let 𝑥𝑢 denote the number of times 𝑢 appears in (𝑢1, … , 𝑢𝓁). Then, by definition, ∀𝑢 ∈𝐾, 𝑥𝑢 ≥ 0, ∑

𝑢∈𝐾 𝑥𝑢𝑢 = 𝑠 and 
∑

𝑢∈𝐾 𝑥𝑢 = 𝓁 ≥ 𝑘. Thus our ILP formulation admits a solution.
(⇐) Conversely, suppose there exists 𝑥𝑢 for 𝑢 ∈𝐾 , which is a solution to the above ILP formulation. Let us build (𝑢𝑖)𝑖∈�1,𝓁�, where 

element 𝑢 appears exactly 𝑥𝑢 times. Then, from C.2, 
∑𝓁

𝑖=1 𝑢
𝑖 = 𝑠. Moreover, from C.3, 𝓁 ≥ 𝑘. Thus, from Proposition 1, there exists 

a size-𝑘 zero-sum partition of  .
Since 𝑛∗ ≤ 2𝐵, and since ILP, parameterized by the number 𝑥 of variables, is FPT and can be solved in 𝑂∗ (𝑥2.5𝑥+𝑜(𝑥)) [12,13], 

and since here 𝑥 = 𝑐𝐾 =𝑂((𝑛∗𝐵)𝑛∗ ), the result follows. □

4. Conclusion

We provided diverse algorithmic results concerning the MZSP problem, including hardness, (in)approximability and fixed-
parameterized complexity considerations with respect to parameters 𝑛, 𝑚, 𝑘, 𝑛∗ and 𝐵. Some questions about MZSP remain unan-
swered. In particular, we conjecture MZSP to be W[1]-hard parameterized by the number 𝑛∗ of distinct values in  ; (dis)proving it 
remains open.
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