

Generation of a patient-specific induced pluripotent stem cell line carrying the DES p.R406W mutation, an isogenic control and a DES p.R406W knock-in line

Michelle Geryk, Robin Canac, Virginie Forest, Pierre Lindenbaum, Aurore Girardeau, Manon Baudic, Estelle Baron, Anne Bibonne, Caroline Chariau,

Florence Kyndt, et al.

▶ To cite this version:

Michelle Geryk, Robin Canac, Virginie Forest, Pierre Lindenbaum, Aurore Girardeau, et al.. Generation of a patient-specific induced pluripotent stem cell line carrying the DES p.R406W mutation, an isogenic control and a DES p.R406W knock-in line. Stem Cell Research, 2024, 77, pp.103396. 10.1016/j.scr.2024.103396 . hal-04875988

HAL Id: hal-04875988 https://nantes-universite.hal.science/hal-04875988v1

Submitted on 9 Jan 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

ELSEVIER

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Generation of a patient-specific induced pluripotent stem cell line carrying the DES p.R406W mutation, an isogenic control and a DES p.R406W knock-in line

Michelle Geryk^a, Robin Canac^a, Virginie Forest^a, Pierre Lindenbaum^a, Aurore Girardeau^a, Manon Baudic^a, Estelle Baron^a, Anne Bibonne^a, Caroline Chariau^b, Florence Kyndt^a, Richard Redon^a, Jean-Jacques Schott^a, Jean-Baptiste Gourraud^a, Julien Barc^a, Flavien Charpentier^{a,*}

^a Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000 Nantes, France ^b Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, F-44000 Nantes, France

ABSTRACT

Mutations in the *DES* gene, which encodes the intermediate filament desmin, lead to desminopathy, a rare disease characterized by skeletal muscle weakness and different forms of cardiomyopathies associated with cardiac conduction defects and arrhythmias. We generated human induced pluripotent stem cells (hiPSC) from a patient carrying the DES p.R406W mutation, and employed CRISPR/Cas9 to rectify the mutation in the patient's hiPSC line and introduced the mutation in an hiPSC line from a control individual unrelated to the patient. These hiPSC lines represent useful models for delving into the mechanisms of desminopathy and developing new therapeutic approaches.

(continued)

1. Resource Table:

		Unique stem cell line identifier	1. ITXi013-A
Unique stem cell line identifier	1. ITXi013-A		ITXi013-B
*	ITXi013-B		ITXi006-A-1
	ITXi006-A-1	Fridance of the same commine	DT aDCD
		Evidence of the reprogramming	RI-qPCR
Alternative name(s) of stem cell	PT-R406W (ITXi013-A)	transgene loss (including	
line	IC-R406 (ITXi013-B)	genomic copy if applicable)	
	IM-R406W (ITXi006-A-1)	The cell culture system used	StemMACS TM iPS Brew XF Medium on
Institution	L'institut du thorax (INSERM UMR1087,		Matrigel [®] hESC-Qualified Matrix
	CNRS UMR6291, Nantes, France)	Type of the Genetic Modification	PT-R406W: spontaneous/naturally
Contact information of the	Flavien Charpentier, Flavien.		occurred mutation
reported cell line distributor	charpentier@univ-nantes.fr		IC-R406: mutation correction of PT-R406W
Type of cell line	Induced pluripotent stem cells (iPSCs)		hiPSCs by CRISPR/Cas9
Origin	Human		IM-R406W: induced mutation by CRISPR/
Additional origin info	Age: 22		Cas9 in control hiPSCs
(applicable for human ESC or	Sex: Female	Associated disease	Cardiomyopathy associated with desmin
iPSC)	Ethnicity: European		(DES) mutation OMIM: 601419 / 125660
Cell Source	Peripheral blood mononuclear cells	Gene/locus modified in the	PT-R406W and IM-R406W: DES (GRCh38
	(PBMCs)	reported transgenic line	2q35: 219418377–219426734) exon 6,
Method of reprogramming	Integration-free Sendai virus expressing		NM_001927.4(DES):c.1216C > T (p.
	human OCT4, SOX2, KLF4, and c-MYC		R406W)
Clonality	Clonal		
-			IC-R406: DES (GRCh38 2q35:
	(continued on next column)		219418377-219426734) exon 6,

(continued on next page)

* Corresponding author.

E-mail address: flavien.charpentier@univ-nantes.fr (F. Charpentier).

https://doi.org/10.1016/j.scr.2024.103396

Received 2 February 2024; Accepted 20 March 2024

Available online 21 March 2024 1873-5061/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

M. Geryk et al.

(continued)

Unique stem cell line identifier	1. ITXi013-A		
	ITXi013-B		
	ITXi006-A-1		
	NM_001927.4(DES):c.1216 T > C (p.		
	R406W)		
Method of modification / user-	HiFi-CRISPR/Cas9 endonuclease		
customisable nucleases (UCN)			
used, the resource used for			
design optimisation			
User-customisable nuclease (UCN)	Electroporation of Cas9-RNP		
All double stranded DNA genetic	Single stranded aliga DNA nucleatide		
material molecules introduced	(sodd)		
into the cells	CBISPB/Cas9		
Evidence of the absence of random	Whole genome sequencing (WGS)		
integration of any plasmids or DS	0 1 0		
DNA introduced into the cells.			
Analysis of the nuclease-targeted	WGS		
allele status			
Homozygous allele status	Sanger sequencing and WGS		
validation			
Method of the off-target nuclease	WGS		
activity prediction and			
Survemance	N/A		
Descriptive name of the transgene	N/A		
Eukaryotic selective agent	N/A		
resistance cassettes (including			
inducible, gene/cell type-			
specific)			
Inducible/constitutive expression	N/A		
system details	2000 (01 (02		
Date archived/stock creation date	2020/01/03		
Cell line repository/bank	PT_R406W: https://hpscreg.eu/cell-line/		
cen nie repository/ bank	ITXi013-AIC-R406		
	: https://hpscreg.eu/cell-line/ITXi013-B		
	IM-R406W: https://hpscreg.eu/cell-line/IT		
	Xi006-A-1		
Ethical/GMO work approvals	A signed informed consent has been		
	received. Authorization has been obtained		
	from competent ethics review board (CPP		
	Ouest II no 2010–33) and approval		
	authority (MESR noDC2011–1399) to		
Addrene /nublic access renesitory	generate these lines.		
recombinant DNA sources'	IN/ A		
disclaimers (if applicable)			

2. Resource utility

The patient generated hiPSC line harbouring the desmin gene (*DES*) p.R406W mutation, along with the isogenic control and isogenic mutant lines are a useful resource for investigating the function of the desmin protein in derived cardiomyocytes. Desmin mutations have previously been linked to cardiac and skeletal disorders.

3. Resource Details

Desmin is a type III intermediate filament that is encoded by *DES* and is found in smooth, skeletal and cardiac muscle cells. Desmin is important for interconnecting essential organelles to one another as well as to the cell membrane in order to provide support and maintain the structural integrity of the cells. Mutations in *DES* have been shown to cause skeletal and/or cardiac myopathies (Capetanaki et al., 2007). Histology experiments that have been performed on patient skeletal and cardiac muscle samples most often reveal dense cytoplasmic aggregates (Tsikitis et al., 2018). *In vitro* studies have shown that mutations in *DES* impact the formation of proper filaments (Bär et al., 2005).

A nine-year old female patient presented with sudden cardiac death (SCD) and a persistent ST-segment depression on her electrocardiogram

(ECG). Genetic testing revealed a *de novo* mutation in *DES* at c.1216C > T (p.R406W), while the patients parents were negative for the mutation (Fig. 1A). The mutation (c.1216C > T) is located in exon 6 that codes for the highly conserved segment 2B of the desmin filament (Fig. 1B) and has been previously reported in patient cases with cardiac disorders (Brodehl et al., 2018).

At the age of 22, the patient's peripheral blood mononuclear cells (PBMCs) were collected and hiPSC lines were generated using the Sendai virus method. We generated an isogenic control line (IC-R406) from the patients hiPSC line (PT-R406W) as well as an isogenic mutant line (IM-R406W) from the WT8288 (ITXi006-A) line that was published previously (Girardeau et al., 2022). Both isogenic lines were created using the CRISPR/Cas9 technology as previously published (Caillaud et al., 2022).

The four hiPSC lines were cultured on Matrigel® coated plates in StemMACSTM iPS-Brew XF media. Mycoplasma contamination assessment was performed by Eurofins genomics and no contamination has been identified in any of the lines (Supplementary Table 1). All hiPSC clones showed typical colony morphology that was assessed by brightfield microscopy (Fig. 1C, left panel). Expression of pluripotency markers OCT3/4 and TRA-1-60 was evaluated by immunofluorescence experiments (Fig. 1C). Pluripotency status of hiPSCs was likewise quantitatively assessed by RT-qPCR using SOX2, NANOG and POU5F1 markers (Fig. 1D). The absence of Sendai virus persistence following reprogramming of PT-R406W clone was shown (Fig. 1E). Each cell line was differentiated into endoderm, mesoderm, and ectoderm using the Miltenyi Biotec Trilineage differentiation kit. The ability of PT-R406W, IC-R406 and IM-R406W hiPSCs to be able to differentiate into derivatives of the three germ layers was validated by RT-qPCR with PAX6 as the ectoderm marker, FOXA2 as the endoderm marker, and HAND1 as the marker for the mesoderm layer (Fig. 1F). Furthermore, no major chromosomal aberrations were found between (1) the control (WT8288) and the CRISPR/Cas9 generated isogenic mutant as well as (2) the patient cells, the patient hiPSC line and the CRISPR/Cas9 generated isogenic control clone (Supplementary Fig. 1) Finally, relatedness between clones was validated from the WGS data using Somalier tool (Supplementary Table 2). Detailed information for all lines is provided in Tables 1 and 2.

4. Materials and methods

4.1. HiPSC Generation and Maintenance

After Sendai virus reprogramming and CRISPR/Cas9 based editing, all hiPSC lines were maintained at 37 °C, 5 % CO₂, 21 % O₂ in Stem-MACSTM iPS Brew XF Medium (Miltenyi Biotec) and on Matrigel® hESC-Qualified Matrix (0.05 mg/mL, Corning). At 80 % confluency, cells were passaged as clusters using Gentle Cell Dissociation Reagent (STEMCELL Technologies).

4.2. CRISPR/Cas9 Genome Editing

The gRNA, gRNA_KI_DES, was first duplexed with ATTOTM 488tagged transactivating RNA and then complexed to the Alt-R® Hifi Cas9 Nuclease according to IDT recommendations. The complex and a specific ssODN donor (either DES_Donor_Mut or DES_Donor_c.1216C-T) was delivered into hiPSCs using the P3 Primary Cell 4D-NucleofectorTMX Kit L with the Amaxa nucleofector (CA137, Lonza). hiPSCs double positive for ATTOTM488 and Alexa Fluor®660, and negative for DAPI, were single-cell FACS-sorted 48 h post-transfection (BD FACSMelodyTM cell sorter, BD). Cells were maintained in iPS Brew until they reached 80 % confluency and then used for cloning, amplification and duplication for banking and genotyping.

4.3. DNA Extraction, PCR, Sanger Sequencing and WGS

The genomic DNA was isolated using the NucleoSpin Tissue

Fig. 1.

Table 1

Characterization and validation.

Classification	Output type	Result	Data
Schematic of a transgene/genetic modification	Schematic representation	Visual representation of the desmin protein structure and the location of the mutation on segment 2B. The $c1216 \text{ C} > T \text{ or } c.1216 \text{ T} > C$ transition causes a change in amino acids p.R406 to R406W and vice versa.	Fig. 1B
Morphology	Photography	Normal	Brightfield images Fig. 1C Scale bar = $100 \ \mu m$
Pluripotency status evidence for the described cell line	Qualitative analysis (Immunofluorescence)	Positive expression of pluripotency markers: OCT3/4 and TRA-1-60	Fig. 1C Scale bar = 100 μm
	Quantitative analysis (RT-qPCR)	Stable expression of pluripotency markers throughout cell lines: SOX2, POU5F1, and NANOG	Fig. 1D
Karyotype	WGS, copy number variations (CNV)	No evidence for CNVs	Supplementary Fig. 1
Genotyping for the desired genomic alteration/allelic status of the gene	PCR, Sanger sequencing and WGS (BAM files)	Presence of desired genomic alteration in DES c.1216C $>$ T or c.1216 T $>$ C	Fig. 1G
of interest	PCR, Sanger sequencing and WGS (BAM files)	Successful knock-in of desired nucleotide in the desmin gene	Fig. 1G
	Transgene-specific PCR (when applicable)	N/A	N/A
Verification of the absence of random plasmid integration events	N/A	N/A	N/A
Parental and modified cell line genetic identity evidence	WGS (relatedness based on common variants along the genome)	Edited cell lines matched (100 %) their parental cell line	Supplementary Table 2
		N/A	N/A
Mutagenesis / genetic modification outcome analysis	PCR, Sanger sequencing	Sanger sequencing of alteration: <i>DES</i> (GRCh38 2q35: 219418377–219426734) exon 6, c.1216C > T (p.R406W) and <i>DES</i> (GRCh38 2q35: 219418377–219426734) exon 6, c.1216 T > C (p. R406)	Fig. 1G
	PCR-based analyses	N/A	N/A
	Southern Blot or WGS; western blotting (for knock-outs, KOs)	N/A	N/A
Off-target nuclease activity analysis	WGS	N/A	N/A
Specific pathogen-free status	Mycoplasma	No contamination was detected in any of the cell lines	Supplementary Table 1
Multilineage differentiation potential	Directed trilineage differentiation	Miltenyi Biotec Trilineage differentiation kit and RNA analysis by RT- qPCR. Cell lines were positive for: Mesoderm: <i>HAND1</i> Endoderm: <i>FOXA2</i> Ectoderm: <i>PAX6</i>	Fig. 1F
List of recommended germ layer markers	N/A	N/A	N/A
Outcomes of gene editing experiment (OPTIONAL)	N/A	N/A	N/A
Donor screening (OPTIONAL)	N/A	N/A	N/A
Genotype - additional	N/A	N/A	N/A
histocompatibility into (OPTIONAL)	N/A	N/A	N/A

Purification Kit (MACHEREY-NAGEL). The DNA fragment of *DES* containing the knock-in was amplified by PCR using 10 ng/ μ l of genomic DNA with specific forward and reverse primers (Table 2). The PCR products were visualized on 1.5 % agarose gel and sequenced by Eurofins Genomics.

To visualize any large CNVs that would have occurred in our cell lines, CRAM files were filtered for primary reads having a mapping quality greater than 30 and were reindexed. The resulting BAM files were processed with indexcov (https://pubmed.ncbi.nlm.nih.gov/ 29048539/). The relatedness between cell lines was validated using Somalier (https://pubmed.ncbi.nlm.nih.gov/32664994/). Analysis was processed using Nextflow (https://pubmed.ncbi.nlm.nih.gov/ 28398311/) and our local pipeline (https://github.com/lindenb/ga zoduc-nf/).

4.4. Trilineage Differentiation

HiPSC lines were differentiated into the 3 germ layers using the STEMdiffTM Trilineage Differentiation Kit (Miltenyi Biotech) according

to the manufacturer's instructions. RNA was extracted using NucleoSpin RNA kit (MACHEREYNAGEL). The three differentiation-markers-TaqmanTM probes that were used are listed in Table 2.

4.5. RT-qPCR

RNA was extracted from samples as described above and reverse transcribed using High-Capacity cDNA Reverse Transcription kit (Applied BiosystemsTM). PCR amplification was per formed using FAM-labeled TaqMan probes (Applied Biosystems) for pluripotency and trilineage differentiation (Table 2). Data was normalized to ACTB or GAPDH.

4.6. Immunofluorescence

Cells were washed three times using PBS and fixed with 4 % paraformaldehyde (Sigma-Aldrich) for 20 mins at room temperature (RT). Cells were washed another three times with PBS and permeabilized with 0.5 % Triton X-100 (Sigma-Aldrich) for 15 mins at RT and then blocked

Table 2

Reagents details.

Antibodies and stains used for immunocytochemistry/flow-cytometry					
	Antibody	Dilution	Company Cat # and RRID		
Pluripotency Markers	Mouse anti-TRA-1-60	1:200	Thermo Fisher Scientific Cat# 14-8863-82, RRID: AB_891610		
	Rat anti-OCT3/4	1:200	Thermo Fisher Scientific Cat# 14–5841-82, RRID: AB_914301		
Nuclear Stain	Hoechst 33,342	1:500	Thermo Fisher Scientific Cat# 62,249		
Secondary antibodies	Goat anti-rat 488 nm	1:1000	Invitrogen Cat# A11006, RRID: AB_2534074		
	Donkey anti-mouse 568 nm	1:1000	Invitrogen Cat# A10037, RRID: AB_2534013		
Site-specific nuclease					
Nuclease information	Alt-R® S.p. HiFi Cas9 Nuclease V3	Integrated DNA Technologies (IDT) Cat# 1,081,061			
Delivery method	Nucleofection	P3 Primary Cell 4D-Nucleofector [™] X Kit L, Lonza, Cat# V4XP-3024			
Selection/enrichment strategy	FACS sorting using transactivator-	Transactivator: Alt-R® CRISPR-Cas9 tracrRNA ATTO™ 488, IDT			
	associated fluorescence	ssODN: Sing	gle-stranded DNA oligo Alexa Fluor® 660, IDT		
Primers and Oligonucleotides used in this study	7				
	Target	Forward/R	everse primer (5'-3')		
Differentiation markers (qPCR)	PAX6	Thermo Fis	her Scientific TaqMan®probe ID: Hs01088114_m1		
	FOXA2	Thermo Fis	her Scientific TaqMan®probe ID: Hs00232764_m1		
	HAND1	Thermo Fis	her Scientific TaqMan®probe ID: Hs02330376_s1		
Pluripotency Markers (qPCR)	SOX2	Thermo Fis	her Scientific TaqMan®probe ID: Hs01053049_s1		
	POU5F1	Thermo Fis	her Scientific TaqMan®probe ID: Hs04260367_gH		
	NANOG	Thermo Fis	her Scientific TaqMan®probe ID: Hs02387400_g1		
House-Keeping Genes (qPCR)	ACTB	Thermo Fisher Scientific TagMan®probe ID: Hs99999903 m1			
	GAPDH	Forward: 5	-AAT CCC ATC ACC ATC TTC CA-3'		
		Reverse: 5'1	IGG ACT CCA CGA CGT ACT CA-3'		
Primers for PCR and Sanger sequencing	Desmin	Forward 1:	5'-GAA ATC CGG CAC CTC AAG-3'		
		Reverse 1: 5	5'-CAG GTG GCC TTG GTT AAT TC-3'		
		Forward 2:	5'-CAG TGG CTA CCA GGA CAA CA-3'		
		Reverse 2: 5	5'-CCT GGG GAC AGA AAT GGA C-3'		
Potential random integration-detecting PCRs	N/A	N/A			
Sendai Virus Detection (primer)	SeV	Forward: 5	-GGA TCA CTA GGT GAT ATC GAG C-3'		
ч г ,		Reverse: 5'-	ACC AGA CAA GAG TTT AAG AGA TAT GTA TC-3'		
gRNA oligonucleotide	gRNA_KI DES	5'-ATG TGG	GAGA TTG CCA CCT AC-3'		
Genomic target sequence(s)	N/A	N/A			
Bioinformatic gRNA on- and -off-target binding		https://eu.i	dtdna.com/site/order/designtool/index/CRISPR CUSTOM		
prediction tool used, specific sequence/	IDT				
outputs link(s)					
Primers for top off-target mutagenesis predicted site sequencing (for all CRISPR/Cas9, ZFN and TALENs)	N/A	N/A			
ssODN guides for HDR-mediated mutagenesis	DES_Donor_Mut (induction of the mutation)	5'-AGGACC GCCACCTA -3'	TGCTCAACGTGAAGATGGCCCTGGATGTGGAGATT CTGGAAGCTGCTGGAGGGAGAGAGAGCCGGTGAGGGGCCAGGCAGG		
	DES_Donor_c.1216C-T (correction	5'- AGGACO	TGCTCAACGTGAAGATGGCCCTGGATGTGGAGATTG		
	of the mutation)	CCACCTAC -3'	CGGAAGCTGCTGGAGGGAGAGGAGAGCCGGTGAGGGGCCAGGCAGG		

with 3 % BSA at RT for 30 mins. Primary antibodies in 1 % BSA were applied to cells and incubated for 2 h at RT. Following three washing steps with PBS, cells were incubated for 1 h at RT with secondary antibodies and then washed again three times with PBS and kept in 0.5 % paraformaldehyde at 4 °C. The next day, cells were imaged using Eclipse Ti2 fluorescence microscope (Nikon) using the Nikon Standard software. Antibody information is listed in Table 2.

4.7. Mycoplasma Detection

Mycoplasma contamination assessment was performed by Eurofins genomics (Supplementary Table 1).

CRediT authorship contribution statement

Michelle Geryk: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Writing – original draft. Robin Canac: Data curation, Investigation, Methodology, Writing – review & editing. Virginie Forest: Investigation, Methodology, Writing – review & editing. Pierre Lindenbaum: Data curation, Investigation, Methodology, Writing – review & editing. Aurore Girardeau: Investigation, Methodology, Writing – review & editing. Manon Baudic: Investigation, Methodology, Writing – review & editing. Estelle Baron: Investigation, Methodology, Writing – review & editing. Anne Bibonne: Investigation, Methodology. **Caroline Chariau:** Investigation, Methodology. **Florence Kyndt:** Data curation, Investigation. **Richard Redon:** Funding acquisition, Validation, Writing – review & editing. **Jean-Jacques Schott:** Supervision, Writing – review & editing. **Jean-Baptiste Gourraud:** Conceptualization, Data curation, Funding acquisition, Supervision, Writing – review & editing. **Julien Barc:** Supervision, Writing – review & editing. **Flavien Charpentier:** Conceptualization, Funding acquisition, Project administration, Validation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank the iPSC core facility of Nantes (funded by Biogenouest, IBiSA). We are most grateful to the Genomics Core Facility GenoA, member of Biogenouest and France Genomique and to the Bioinformatics Core Facility BiRD, member of Biogenouest and Institut Français de Bioinformatique (IFB; ANR-11-INBS-0013) for the use of their resources and their technical support. We thank Lise Bray and Bastien Cimarosti (l'institut du thorax) for their help and support. This work was funded by grants for the INSERM cross-cutting program GOLD (Genomic variability in health and disease to R.R.), the Fondation Genavie (JB.G.), and the French National Research Agency (ANR-19-CE14-0031-02 to F. C.).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2024.103396.

References

Bär, H., Mucke, N., Kostareva, A., Sjoberg, G., Aebi, U., Herrmann, H., 2005. Severe muscle disease-causing desmin mutations interfere with in vitro filament assembly at distinct stages. Proceedings of the National Academy of Sciences 102 (42), 15099–15104. https://doi.org/10.1073/pnas.0504568102.

- Brodehl, A., Gaertner-Rommel, A., Milting, H., 2018. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophysical Reviews 10 (4), 983–1006. https://doi.org/10.1007/s12551-018-0429-0.
- Caillaud, A., Lévêque, A., Thédrez, A., Girardeau, A., Canac, R., Bray, L., Baudic, M., Barc, J., Gaborit, N., Lamirault, G., Gardie, B., Idriss, S., Rimbert, A., Le May, C., Cariou, B., Si-Tayeb, K., 2022. FACS-assisted CRISPR-Cas9 genome editing of human induced pluripotent stem cells. STAR Protocols 3 (4), 101680. https://doi.org/ 10.1016/j.xpro.2022.101680.
- Capetanaki, Y., Bloch, R.J., Kouloumenta, A., Mavroidis, M., Psarras, S., 2007. Muscle intermediate filaments and their links to membranes and membranous organelles. Experimental Cell Research 313 (10), 2063–2076. https://doi.org/10.1016/j. yexcr.2007.03.033.
- Girardeau, A., Atticus, D., Canac, R., Cimarosti, B., Caillaud, A., Chariau, C., Simonet, F., Cariou, B., Charpentier, F., Gourraud, J.-B., Probst, V., Belbachir, N., Jesel, L., Lemarchand, P., Barc, J., Redon, R., Gaborit, N., Lamirault, G., 2022. Generation of human induced pluripotent stem cell lines from four unrelated healthy control donors carrying european genetic background. Stem Cell Research 59, 102647. https://doi.org/10.1016/j.scr.2021.102647.
- Tsikitis, M., Galata, Z., Mavroidis, M., Psarras, S., Capetanaki, Y., 2018. Intermediate filaments in cardiomyopathy. Biophysical Reviews 10 (4), 1007–1031. https://doi. org/10.1007/s12551-018-0443-2.