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Abstract: Approximate Computing (AxC) has emerged as a promising paradigm to enhance per-
formance and energy efficiency by allowing a controlled trade-off between accuracy and resource
consumption. It is extensively adopted across various abstraction levels, from software to archi-
tecture and circuit levels, employing diverse methodologies. The primary objective of AxC is to
reduce energy consumption for executing error-resilient applications, accepting controlled and in-
herently acceptable output quality degradation. However, harnessing AxC poses several challenges,
including identifying segments within a design amenable to approximation and selecting suitable
AxC techniques to fulfill accuracy and performance criteria. This survey provides a comprehensive
review of recent methodologies proposed for performing Design Space Exploration (DSE) to find the
most suitable AxC techniques, focusing on both hardware and software implementations. DSE is
a crucial design process where system designs are modeled, evaluated, and optimized for various
extra-functional system behaviors such as performance, power consumption, energy efficiency, and
accuracy. A systematic literature review was conducted to identify papers that ascribe their DSE
algorithms, excluding those relying on exhaustive search methods. This survey aims to detail the
state-of-the-art DSE methodologies that efficiently select AxC techniques, offering insights into their
applicability across different hardware platforms and use-case domains. For this purpose, papers
were categorized based on the type of search algorithm used, with Machine Learning (ML) and
Evolutionary Algorithms (EAs) being the predominant approaches. Further categorization is based
on the target hardware, including Field-Programmable Gate Arrays (FPGAs), Application-Specific In-
tegrated Circuits (ASICs), general-purpose Central Processing Units (CPUs), and Graphics Processing
Units (GPUs). A notable observation was that most studies targeted image processing applications
due to their tolerance for accuracy loss. By providing an overview of techniques and methods
outlined in existing literature pertaining to the DSE of AxC designs, this survey elucidates the current
trends and challenges in optimizing approximate designs.

Keywords: approximatecomputing; design space exploration; circuit design; high-level synthesis;
multi-objective optimization

1. Introduction

As large-scale application domains like scientific computing, social media, and finan-
cial analytics continue to expand, the computational and storage requirements of modern
systems have surpassed the available resources. In the upcoming decade, it is anticipated
that the amount of data managed by global data centers will increase by fifty times, while
the number of processors will only grow by a factor of ten [1]. This indicates that the
demand for performance will soon outstrip resource allocations.
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Furthermore, Information and Communication Technology (ICT) devices and services
currently contribute significantly to the world’s overall energy consumption, with projec-
tions indicating that their energy demand will rise to nearly 21% by 2030 [2]. Consequently,
it becomes evident that relying solely on over-provisioning resources will not suffice to
address the impending challenges facing the computing industry. These constraints on
both computational resources and energy consumption create a growing urgency for new
approaches to improve efficiency while maintaining acceptable levels of performance.

In recent decades, significant technological advancements and increasing computa-
tional demands have driven a remarkable reduction in the size of integrated circuits and
computing systems. This downscaling of CMOS technology has resulted in several key
benefits, such as enhanced computational performance, improved energy efficiency, and the
ability to increase the number of cores per chip. Smaller transistors allow for faster switch-
ing speeds, enabling higher clock frequencies, which translates to quicker data processing
and more powerful computing systems. Additionally, as transistors shrink, the power
required to switch them can be reduced, leading to lower overall energy consumption,
which is crucial for mobile and battery-operated devices.

However, CMOS downscaling is not without its drawbacks. As transistors continue
to shrink, the benefits of reduced supply voltage become less significant, and the leakage
current (unwanted current that flows even when the transistor is off) becomes more pro-
nounced, leading to higher static power consumption. Moreover, the exponential increase
in power consumption due to higher clock frequencies has introduced thermal challenges,
as more energy is dissipated as heat, which can damage the chip and reduce its lifespan.
The combination of these factors means that the traditional benefits of CMOS scaling are di-
minishing, and the ability to further increase the number of cores per chip is constrained by
power and thermal limits. Consequently, as CMOS technology reaches its scaling limits, it
becomes imperative to explore alternative approaches, such as new materials, 3D stacking,
or novel architectures, to continue improving computing efficiency without exacerbating
these power and thermal issues [3].

In addition to the trends mentioned above, the nature of the tasks fueling the demand
for computing has evolved across the computing spectrum, spanning from mobile devices
to the cloud. Within data centers and the cloud, the impetus for computing stems from the
necessity to efficiently manage, organize, search, and derive conclusions from vast datasets.
In contrast, the predominant computing demand for mobile and embedded devices arises
from the desire for more immersive media experiences and more natural, intelligent inter-
actions with users and the surrounding environment. Although computational errors are
generally undesirable, a common thread runs through this spectrum: these applications are
not primarily concerned with computing precise numerical outputs. Instead, “correctness”
is defined as generating results that are sufficiently accurate to deliver an acceptable user
experience [4].

These applications inherently possess a resilience towards errors, meaning they can
produce satisfactory outputs even when some of their computations are carried out in an
approximate manner [5]. For instance, in search and recommendation systems, there is
not always a single definitive or “golden” result; instead, multiple answers falling within
a specific range are considered acceptable. Additionally, iterative applications process-
ing extensive data sets may terminate convergence prematurely or employ heuristics [6].
In many Machine Learning (ML) applications, even if a golden result exists, the most
advanced algorithms may not be able to achieve it. Consequently, users often have to
settle for reasonably inaccurate but still adequate results. Furthermore, applications such
as multimedia, wireless communication, speech recognition, and data mining exhibit a
degree of error tolerance. Human perceptual limitations signify that such errors may not
significantly affect image, audio, and video processing applications. Another example
pertains to applications dealing with noisy input data (e.g., image and sensor data process-
ing, and speech recognition). The noise in the input naturally leads to imprecise results,
and approximations have a similar impact. In simpler terms, applications that can handle
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noisy inputs also possess the capability to withstand approximations [7–9]. Finally, some
applications utilize computational patterns like aggregation or iterative refinement, which
can mitigate or compensate for the effects of approximations.

By intentionally introducing controlled approximations, Approximate Computing
(AxC) leverages the inherent resilience of these applications to improve energy efficiency
and performance while aligning well with the evolving demands of diverse application
domains. AxC is an encouraging approach to enhance computing efficiency.

The concept of AxC encompasses a wide array of techniques that capitalize on the
inherent error resilience of applications, ultimately leading to improved efficiency across all
computing stack layers, ranging from the fundamental transistor-level design to software
implementations. These techniques can have varying impacts on both the hardware and
the output quality. AxC capitalizes on the existence of data and algorithms that can tolerate
errors, as well as the limitations in the perception of end-users. It strategically balances
accuracy against the potential for performance improvements or energy savings. In essence,
it takes advantage of the gap between the level of accuracy that computer systems can
provide and the level of accuracy required by the specific application or the end-users. This
required accuracy is typically much lower than what the computer systems can deliver. The
selective relaxation of accuracy allows for considerable gains in key parameters like power
and performance, particularly within applications where exact correctness is secondary to
operational efficiency.

Leveraging AxC involves addressing a few aspects and challenges. The first challenge
is identifying the segments within the targeted software or hardware component that
can be candidates for approximation. Identifying segments of code or data that can be
approximated may necessitate a comprehensive understanding of the application on behalf
of the designer.

The second challenge is implementing the AxC technique to introduce approximations.
On the one hand, there is a limit to the accuracy degradation that can be introduced so
the output remains acceptable. On the other hand, the level of accuracy degradation and
the performance improvements or energy savings vary depending on the selected AxC
technique. Hence, available AxC techniques should be evaluated and compared with find
the most suitable AxC technique tailored for a target application or design.

The next challenge is choosing the suitable error measurement criteria, often tailored
to the particular application, and executing the actual error assessment process to ensure
that the output adheres to the predefined quality standards [5]. The error assessment
usually involves simulating the precise and approximate versions of applications. However,
alternative methods like Bayesian inference [10,11] or ML-based approaches [12] have been
put forth in the scientific literature.

A Design Space Exploration (DSE) can be performed to address all the previously
mentioned challenges. The goal of performing a DSE is to determine the most optimal
approximate configurations from those generated by applying a given set of approximation
techniques to the design. Hence, the DSE approaches can help systematically evaluate dif-
ferent approximate designs to choose the most suitable AxC techniques and, consequently,
the best configurations for any given combination of AxC techniques. Early DSE approaches
either combine multiple design objectives into a single-objective optimization problem
or optimize a solitary parameter while keeping the remaining variables constant. More
recent research, as seen in published works, has tackled circuit design issues by considering
a Multi-objective Optimization Problem (MOP) to seek out Pareto-optimal approximate
circuit configurations [13]. Regrettably, these approaches predominantly concentrated on
simple systems, specifically arithmetic components like adders and multipliers, as they
form the foundational components for more intricate designs [14].

While several surveys have comprehensively explored DSE methods across domains
like embedded systems and general-purpose computing, they often overlook the distinct
challenges and considerations imposed by AxC. In contrast, approximate designs introduce
new dimensions in the DSE process, as they require balancing accuracy with efficiency
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gains in energy and performance tailored to the error resilience of specific applications.
This survey focuses on DSE methodologies uniquely suited to the AxC paradigm, where
selecting the optimal trade-offs involves performance and resource efficiency and assessing
acceptable error margins. By providing a dedicated review of DSE approaches applicable
to approximate designs, this work tries to fill a critical gap, offering insights that are not
addressed in existing surveys and thereby supporting the design of next-generation systems
that meet stringent energy and performance demands.

This paper aims to cover different DSE approaches leveraged in comparing approxi-
mate versions of a target application or design. The structure of this paper is as follows:
Firstly, Section 2 provides a background on AxC techniques and DSE approaches. Then, in
Section 3, the search methodology to find related studies and categorize them is explained.
In Section 4, DSE approaches to compare and choose suitable AxC techniques are reviewed
and compared. Finally, a conclusion is provided in Section 5.

2. Background

AxC represents an emerging paradigm enabling the development of significantly
energy-efficient computing systems, including diverse hardware accelerators designed for
tasks like image filtering, video processing, and data mining. This approach leverages the
inherent error resilience of many applications, allowing for a trade-off between accuracy
and energy efficiency [15]. This trade-off can be accomplished through various means,
spanning from transistor-level design to software implementations, each with distinct
effects on hardware integrity and output quality.

The following sections provide an overview of how different AxC techniques can be
classified, followed by a description of the DSE paradigm.

2.1. Classification of AxC Techniques

AxC techniques can be classified into three groups based on their implementation level:
software, architecture, and hardware, with specific techniques applicable at multiple levels,
as shown in Figure 1. For instance, memory read approximation can be achieved through
pure software approaches or within memory control units. While Figure 1 highlights
some commonly utilized approximation methods from the existing literature, it is essential
to note that there exist numerous ways to approximate an application, and the precise
definition of what constitutes an approximation is a subject of debate [9,16].

Approximate
Computing
Techniques

Software level

Architectural
level

Circuit &
Hardware

level

Use of Neural
Networks

Memory Access
Skipping

Voltage Over
Scaling

Approximate
Hardware

Components

Function Skipping

Data Precision
Reduction

Loop PerforationMemoization

Read/Write
Memory

Approximation

Functional
Approximation

Figure 1. A classification of the AxC techniques.

2.1.1. Software-Level AxC Techniques

The loop-perforation technique serves as a notable example of software approximation,
enabling the generation of valuable outcomes without executing every iteration of an
iterative code [17]. Similarly, function-skipping involves bypassing specific code blocks



Electronics 2024, 13, 4442 5 of 34

during runtime based on predefined conditions [18–20]. Another software approximation
method involves reducing the bit width used for data representation, primarily impacting
the memory footprint of the application. While reducing data precision can also affect
the execution time and performance of the software, its impact relies on the hardware
implementation of operations utilized by the application [21,22].

Memoization is a technique that optimizes performance and conserves energy by stor-
ing previously computed values for specific inputs. When the same input is re-encountered
later, the stored value is reused, eliminating the need for redundant computation. This
trade-off between computation and memory use enhances efficiency and reduces resource
consumption [23].

Read/write memory approximation targets data loaded from or written to memory,
as well as the memory access operations themselves. This method, commonly applied
in video and image processing applications, relaxes accuracy requirements to minimize
memory operations [24–26].

Functional approximation focuses on identifying components within algorithms that
have a minimal impact on final accuracy. Energy consumption can be reduced by ap-
proximating these less critical components, leading to improved execution time perfor-
mance [4,27].

2.1.2. Architectural-Level AxC Techniques

Neural Networks (NNs) can learn the behavior of a standard function implementation
by analyzing how it responds to various inputs. Through software-hardware co-design,
traditional code can be transformed into NNs with lower output accuracy but enhanced
execution time and performance [28].

Memory access skipping combines memoization and function skipping techniques
to omit uncritical memory accesses without significant accuracy loss. Approximate NNs
leverage this approach to skip reading entire weight matrix rows for non-critical neurons,
reducing energy consumption and improving performance [29].

2.1.3. Circuit and Hardware-Level AxC Techniques

Voltage-scaling techniques reduce energy consumption in digital circuits by adjusting
the supply voltage at the circuit level. This adjustment directly impacts computation
timing and power efficiency, exploiting the inherent error resilience of applications to
achieve significant energy savings while maintaining acceptable performance levels [30].
Dynamic Voltage Scaling (DVS) adjusts the supply voltage to decrease power dissipation
while maintaining computational accuracy within safe operational limits, balancing power
savings against performance degradation [31]. Dynamic Voltage and Frequency Scaling
(DVFS) extends this concept by simultaneously adjusting both the voltage and the operating
frequency, providing finer control over power and performance trade-offs [30]. In contrast,
Voltage Over Scaling (VOS) aggressively reduces the supply voltage beyond nominal levels,
intentionally allowing timing violations that can introduce errors in computations [32,33].
While DVS and DVFS ensure accurate results within controlled performance constraints,
VOS prioritizes further energy savings by permitting computational inaccuracies, making
it suitable for scenarios where approximate results are acceptable.

Hardware-based approximation techniques often employ alternative implementations
of arithmetic operators. For instance, variable approximation modes on operators represent
one such approach. Hardware approximation also finds application in the image processing
domain through approximate compressors [9,16].

Inexact hardware can provide approximation at the hardware level, with numerous
examples from the literature of approximate arithmetic circuits designed to balance perfor-
mance and accuracy. Adders, multipliers, and dividers significantly influence performance
and energy efficiency across various computing tasks since they are the most frequent
and vital arithmetic components within a processor. Pursuing enhanced speed, power
efficiency, and error resilience in numerous applications such as multimedia processing,
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recognition systems, and data analytics has propelled the advancement of approximate
arithmetic design [3].

The aforementioned AxC techniques are a few examples of the many approximation
techniques implemented at various abstraction levels. Due to this complexity, the challenges
mentioned in the previous section need to be addressed, and DSE emerges as the most
promising solution thus far.

2.2. Precision Metrics

Various precision metrics have been proposed to describe and evaluate the effective-
ness of AxC techniques and methodologies, as detailed in Table 1.

Table 1. Precision metrics in AxC [34].

Metric Description Application Domain

ER Error Rate—Erroneous results
per total results

General Computing

EP Error Probability—Probability
of error occurrence

MED/MRED Mean (Relative) Error
Distance

NMED/NMRED Normalized Mean (Relative)
Error Distance

Max ED/RED Maximum (Relative) Error
Distance

PED/PRED Probability of (Relative) Error
Distance > X

MSE Mean Squared Error
RMSE Root Mean Squared Error

HD Hamming Distance

BER Bit Error Ratio—Bit errors per
total received bits

Digital Systems, Telecom-
municationsPER

Packet Error Ratio—Incorrect
packets per total received

packets

PSNR
Peak Signal-to-Noise

Ratio—Quality measurement
between images Image Processing, Video

Processing, Computer Vi-
sionSSIM Structural Similarity—Quality

measurement between images
MPD Mean Pixel Difference

Classif. Accuracy Correct classifications per
total classifications

Pattern Recognition, In-
formation Retrieval, Ma-
chine Learning

Precision Relevant instances per total
retrieved instances

Recall Relevant instances per total
relevant instances

Error Distance (ED) and Error Probability (EP) are basic error metrics used for measur-
ing accuracy degradation while applying AxC techniques. ED is the distance between the
correct output and the approximate output of a circuit for each scenario, and EP is the prob-
ability of having a wrong answer, which is calculated by the number of wrong answers over
the number of all input scenarios. These metrics are formulated in Equations (1) and (2),
respectively.

ED = |O(i)
AxC − O(i)

Acc| (1)

EP =
∑N

i=1 1(O(i)
AxC ̸= O(i)

Acc)

N
(2)
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where N is the number of possible scenarios, O(i)
Acc and O(i)

AxC are the accurate and ap-
proximate outputs of ith scenario, respectively, and P(Si) is the probability of the ith
scenario happening.

Mean Error Distance (MED) is the average of all the error distances, which is calculated
as Equation (3).

MED =
N

∑
i=1

|O(i)
AxC − O(i)

Acc|
N

· P(Si) (3)

Mean Relative Error Distance (MRED) is the average of error distances relative to the
correct answers formulated as Equation (4).

MRED =
N

∑
i=1

|O(i)
AxC − O(i)

Acc|

|O(i)
Acc|

· P(Si) (4)

Absolute Worst-Case Error (AWCE), which is defined as the largest error distance that
can happen, is formulated in Equation (5).

AWCE = max
∀i

|O(i)
AxC − O(i)

Acc| (5)

Mean Squared Error (MSE) is the average of the squares of the errors between the
approximate values and the accurate values. MSE is formulated as Equation (6).

MSE =
N

∑
i=1

(O(i)
AxC − O(i)

Acc)
2

N
· P(Si) (6)

Hamming Distance (HD) is a metric used to measure the difference between two
strings of equal length. It is defined as the number of positions at which the corre-
sponding symbols are different. For example, consider the binary strings “1011101” and
“1001001”. The HD is 2 because there are two positions where the strings differ (second and
fourth positions).

Error Rate (ER) measures the number of erroneous results over the total number
of results. In Equation (7), Nerr represents the number of erroneous results, while Ntot
represents the total number of results.

ER =
Nerr

Ntot
(7)

Bit Error Ratio (BER) is the number of bit errors per unit of time, calculated by dividing
the number of bit errors by the total number of bits transferred during a given time interval.
BER is a unitless performance measure and is often expressed as a percentage. It is a critical
metric for evaluating the accuracy and reliability of data transmission in communication
systems. In Equation (8), Nbit_err represents the number of erroneous bits, while the Nbit_tot
represents the total number of bits.

BER =
Nbit_err
Nbit_tot

(8)

Peak Signal-to-Noise Ratio (PSNR) is a metric that evaluates the quality of recon-
structed images or videos by comparing them to their originals. It measures the ratio
between the maximum possible signal power and the power of corrupting noise, expressed
in decibels (dB). Higher PSNR values indicate better quality. PSNR is formulated as
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Equation (9) where R is the maximum possible pixel value (e.g., 255 for an 8-bit image),
and MSE corresponds to the MSE between the original and the distorted image.

PSNR = 10 log10

(
R2

MSE

)
(9)

Structural Similarity Index Measure (SSIM) measures image quality by comparing
structural information, luminance, and contrast between an image and a reference. Unlike
PSNR, SSIM focuses on perceptual similarity. SSIM values range from −1 to 1, with 1
indicating perfect similarity. SSIM is defined in Equation (10), where x and y are the two
images being compared. The parameters µx and µy represent the mean pixel values of
images x and y, respectively. σ2

x and σ2
y are the variances of x and y, while σxy denotes the

covariance between the two images. The constants C1 and C2 are included to stabilize the
division, particularly when the denominators approach zero, and are typically defined as
C1 = (K1L)2 and C2 = (K2L)2, where L is the dynamic range of pixel values (e.g., 255 for 8-
bit images), and K1 and K2 are small constants (commonly set to 0.01 and 0.03, respectively).

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(10)

Mean Pixel Difference (MPD) is a simpler metric that calculates the average absolute
difference in pixel values between two images. Lower MPD values indicate higher similarity.
MPD is formulated as Equation (11), where N is the number of pixels, Pi is the original
pixel value, and Qi is the compared pixel value.

MPD =
1
N

N

∑
i=1

|Pi − Qi| (11)

Binary classification is widely used in applied Machine Learning across fields like
medicine, biology, meteorology, and malware analysis. Performance metrics are crucial
in research to evaluate and report the effectiveness of classification models. In binary
classification, a two-by-two confusion matrix captures the model’s performance, consisting
of True Positives (TPs), True Negatives (TNs), False Positives (FPs), and False Negatives
(FNs). Key metrics such as classification accuracy, precision, and recall are derived from
these values [35].

Classification accuracy is the proportion of correct classifications out of all classifica-
tions, both positive and negative. Classification accuracy is formulated as Equation (12)
and reflects the overall correctness of the classifier. A perfect model has an accuracy of 1.0
(or 100%), meaning no FPs or FNs.

Classification Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Recall or TP rate is the proportion of actual positives that were correctly identified.
This metric is formulated in (13) and measures the model’s ability to detect all positive
instances. A perfect recall is 1.0, indicating a 100% detection rate with no FNs.

Recall =
TP

TP + FN
(13)

False Positive Rate (FPR), also known as the probability of false alarm, is the proportion
of actual negatives that were incorrectly classified as positives. This metric is formulated in
Equation (14) and indicates the likelihood of misclassifying a negative instance as positive.
A perfect model has a False Positive Rate (FPR) of 0.0 (or 0%), meaning no FPs.

FPR =
FP

FP + TN
(14)
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The precision metric is the proportion of correct positive classifications. This metric
is formulated in Equation (15). Precision assesses the accuracy of the positive predictions
made by the model. A perfect precision score is 1.0, achieved when there are no FPs. While
precision improves as FPs decrease, recall improves as FNs decrease.

Precision =
TP

TP + FP
(15)

2.3. DSE

DSE is a systematic process of analyzing and evaluating various design alternatives to
find optimal solutions that meet specific requirements and constraints. In the context of
embedded system design and AxC, DSE can be defined as systematically evaluating and
analyzing various design alternatives to find optimal solutions that balance performance,
power consumption, and accuracy trade-offs. The goal of DSE is to find the best approxi-
mate versions of an application or circuit that provide significant gains in efficiency (power,
speed, area) while maintaining acceptable output quality for the target application [36,37].

Designing modern embedded computer systems presents numerous formidable chal-
lenges, as these systems typically must adhere to various strict and sometimes conflicting
design criteria. Embedded systems aimed at mass production and battery-powered or
passive cooling devices require cost-effectiveness and energy efficiency. In safety-critical
applications like avionics and space technologies, dependability is paramount, especially
with the growing autonomy of systems. Furthermore, many of these systems are expected
to support multiple applications and standards simultaneously, necessitating real-time
performance. For instance, mobile devices must accommodate various communication
protocols and digital content coding standards [38].

Additionally, these systems must offer flexibility for future updates and extensions
while maintaining programmability despite the necessity of implementing significant
portions in dedicated hardware blocks due to performance, power consumption, and
cost constraints. Consequently, modern embedded systems often adopt a heterogeneous
multi-processor architecture comprising a mix of programmable cores and dedicated hard-
ware blocks for time-sensitive tasks. This trend has led to the development of integrated
heterogeneous Multi-Processor System-on-Chip (MPSoC) architectures [39].

To address the intricate design challenges inherent in such systems, a new design
methodology known as system-level design has emerged over the past 15 to 20 years [40].
Its primary objective is to elevate the level of abstraction in the design process, thereby
enhancing design productivity. Central to this approach are MPSoC platform architectures,
which facilitate the reuse of IP components, along with the concept of high-level system
modeling and simulation [41,42].

High-level system modeling and simulation enable the representation of platform
components and their interactions at a refined level of abstraction. These models streamline
the modeling effort, optimize execution speed, and are thus invaluable for early-stage DSE.
Various design alternatives can be examined during DSE, including the number and type
of processors utilized, the interconnection network employed, and the spatial and temporal
binding of application tasks to processor cores [43,44].

Initiating DSE at the early stages of the design process is crucial, as the choices made
can significantly impact the success or failure of the final product. However, the challenges
the large design space poses, particularly in its early stages, cannot be overlooked. For
instance, when considering different mappings of application tasks to processing resources
to optimize system performance or power consumption, the design space expands expo-
nentially with the number of tasks and processors, presenting an NP-hard problem [45].
Consequently, notable research has focused on developing efficient and effective DSE
methods in recent years, aiming to tackle the complexities of exploring such expansive
design spaces [45].

DSE approaches can be categorized and classified based on many aspects [46]. How-
ever, one of the possible classifications is categorizing a DSE as single-objective or multi-
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objective. Multi-objective DSE refers to simultaneously optimizing multiple conflicting
objectives or goals during the design phase. These objectives typically include perfor-
mance, power consumption, area utilization, reliability, and cost in circuit design. Unlike
single-objective optimization, where a single criterion is optimized at the expense of others,
multi-objective DSE aims to find a set of trade-off solutions, known as the Pareto-optimal
front, where improving one objective comes at the cost of degrading another. That is why
finding an optimal solution that optimizes all objectives is impossible. Such a solution does
not exist, and this happens when the objectives conflict with each other. Therefore, optimal
decisions need to be taken with a trade-off between design criteria [44].

When applying AxC techniques to the design, what makes choosing among different
AxC techniques difficult is that all of them can be employed together, requiring the eval-
uation of the impact of each combination of AxC techniques on the overall computation
accuracy. The two main approaches for evaluating this impact comprise executing different
approximated versions of the application several times with different configurations [47,48]
or devising modeling techniques to simulate different approximated versions of the ap-
plication in a time-optimized fashion [11,49]. The disadvantage of the first approach is
that the evaluation time increases when the exploration reaches an exhaustive search. Ap-
plying pruning techniques to the exploration space reduces the exploration time to the
application execution time, at best. Conversely, the second approach is more suitable for
estimating the impact of AxC techniques on the application computation accuracy because
it is faster than the first approach, even though it costs an error margin in the computation
accuracy evaluation.

3. Literature Search Methodology

The objective of this survey was to systematically identify and classify existing litera-
ture on DSE methodologies proposed for finding the most suitable AxC techniques to be
applied to a program or hardware design.

The keywords used for the search were carefully chosen based on common terminol-
ogy found in influential works in the field. These included terms such as “Approximate
Computing”, “Design Space Exploration”, “Multi-objective Optimization”, and “Approx-
imate Hardware/Software”. Boolean operators and advanced filtering techniques were
utilized to refine the search results in academic databases. This ensured a comprehen-
sive yet focused set of papers covering various abstraction levels in both hardware and
software implementations.

The selection criteria were established to maintain the relevance and quality of the
review. We prioritized papers that provided detailed descriptions of DSE methodologies
and excluded those that relied solely on exhaustive search methods. This approach aimed
to highlight more sophisticated and efficient DSE approaches.

Once the relevant papers were identified, they were categorized based on the type
of search algorithm employed for conducting the DSE. These categories included search
algorithms such as ML, Evolutionary Algorithms (EAs), and custom algorithms. Papers
were further sorted based on the target hardware for which the DSE was conducted, such
as Field-Programmable Gate Arrays (FPGAs), Application-Specific Integrated Circuits
(ASICs), Central Processing Units (CPUs), and Graphics Processing Units (GPUs). Addi-
tionally, we considered the application domains, including image processing, scientific
computing, and signal processing. The categorization process is shown in Figure 2 to better
visualize the process.

Search Algorithms Target Hardware Use Case DomainCategorization of
reviewed studies

Figure 2. Steps of categorizing the proposed DSE approaches of the reviewed studies.
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For instance, some studies focus on FPGAs and ASICs, particularly in the context
of designing accelerators using AxC techniques. Some other studies do not specify a
particular target hardware, indicating their proposed methods can be applied universally
across different platforms. Additionally, some papers address hardware- or software-level
approximations for GPUs.

This survey also considers the application domains of the programs targeted for
approximation. The application domains usually considered in most studies for selecting
benchmarks include image processing, signal processing, scientific computing, financial
analysis, Natural Language Processing (NLP), 3D gaming, and robotics.

Additionally, information about employed AxC techniques was extracted from each
study to better compare different studies based on the AxC techniques applied at software,
architectural, or hardware levels.

In a nutshell, this survey aimed to identify and evaluate the proposed DSE meth-
ods employed to explore the extensive design space of approximate versions of a design.
The focus was on understanding whether these methods were well-known search algo-
rithms or custom approaches. Following this structured and systematic methodology, the
survey provides a comprehensive overview of the current state-of-the-art proposed DSE
methodologies for finding the most suitable AxC techniques, highlighting the diversity of
approaches and their applicability to various hardware platforms and application domains.
Figure 3 shows the aforementioned process of categorizing different studies.

Design Space
Exploration Approaches

for Approximate
Computing Systems or

Componenets

Categorized
based on
Search

Algorithm
(ML, EA, ...)

Categorized based on
Target Hardware (FPGA,

ASIC, CPU, GPU, ...)

Figure 3. Categorizing the proposed DSE approaches of the reviewed studies based on employed
search algorithms and target hardware.

4. Comparison and Analysis

This section provides an overview and comparison of the proposed DSE approaches in
the literature for applying AxC techniques to programs or hardware designs. Though many
different search algorithms have been proposed in the literature to explore the vast design
space of approximate programs or hardware designs, two categories of algorithms are
commonly leveraged: ML algorithms and EAs. ML approaches often leverage data-driven
techniques to predict and explore optimal design configurations. At the same time, EAs
use bio-inspired strategies such as Genetic Algorithms (GAs) to navigate the design space.

Table 2 provides information about the research works that took an ML approach
to perform the DSE, while Table 3 includes information about the research works that
leveraged EAs to perform the DSE. All the remaining research works that perform the DSE
using other heuristic algorithms or combining different optimization algorithms are listed
in Table 4. While Tables 2–5 provide an overview to allow comparison among different
studies based on the employed search algorithm, target hardware, and use case domain,
Tables 6–9 provide an overview of the same sets of studies to allow comparison among
different studies based on AxC techniques applied in each study.
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Table 2. Research works using ML-based search algorithms to perform the DSE.

Year Ref. Target Hardware Use Case Domains Benchmarks Search Algorithm

2018 [50] FPGA Image processing Iris scanning RL

2021 [51] FPGA Image processing Kernel-based Gaussian
blur filter MBO

2019 [12] Accelerator (ASIC) Image processing

Sobel and Gaussian blur
filters (one with fixed

coefficients, and one with
a 3 × 3 kernel)

ML-based heuristic

2023 [52] Accelerator (ASIC)
Signal and image

processing and general
arithmetic

Adder Tree, RGB2gray,
FIR, and Gaussian blur

filters

AI-based heuristic:
modified MCTS

2021 [53]
FPGA, ASIC,

general-purpose
computing system

Image processing
RGB2GRAY, Ternary sum.

FIR, image sharpening,
and Gaussian blur filters

ML

2015 [54]

General-purpose
hardware (heterogeneous
mobile, tablet, and server

processors)

Video encoder, financial
analysis, image

processing, search engine,
digital signal processing,
netlist place-and-route,
image similarity search,

and clustering algorithm

x264, Swaptions,
Bodytrack, Swish++,

Radar, Canneal, Ferret,
and Streamcluster

RL

2020 [55] General-purpose CPU and
DNN accelerator

DNNs for Image and Digit
Classification

AlexNet, SimpleNet,
LeNet, MobileNet,

ResNet-20, 10-Layers, and
VGG-11/16

RL

2023 [37] General-purpose CPU
ML, digital signal

processing, and image
processing

Matrix multiplication and
FIR filter RL

Table 3. Research works using EAs as a search algorithm to perform the DSE.

Year Ref. Target Hardware Use Case Domains Benchmarks Search Algorithm

2021 [56,57] FPGA Image Processing Pixel-streaming pipeline GA

2023 [58] FPGA-based approximate
accelerator HEVC Multiplierless MCM ES algorithm and

NSGA-II

2022 [59] Accelerator (FPGA and
ASIC)

Image processing (JPEG
compression) DCT NSGA-II

2014 [60] General-purpose CPU
(implied)

Scientific computing, 3D
gaming, 3D image

rendering, signal, and
image processing

FFT, SOR, MC, SMM, LU,
Zxing, JMEint, Imagefill,

and raytracer
GA

2023 [61] GPU Image classification using
CNNs

MobileNetV2 and
ResNet50V2

NAS algorithms:
EvoApproxNAS (based

on NSGA-II)

Table 4. Research works using custom search algorithms to perform the DSE.

Year Ref. Target Hardware Use Case Domains Benchmarks Search Algorithm

2016 [62] ASIC, and FPGA HEVC SAD Custom

2020 [63] ASIC, and FPGA Image classification
using DNNs

ResNet-18/34/38/74, MobileNetV2,
and Transformer-base/WikiText-103 Custom
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Table 4. Cont.

Year Ref. Target Hardware Use Case Domains Benchmarks Search Algorithm

2016 [64] ASIC (implied)

Handwriting
recognition, general

arithmetic,
multimedia, signal,

and image processing

Array Multiplier, Carry Lookahead
Adder, Kogge Stone Adder, Multiple

and Accumulate, SAD, Euclidean
distance, DCT, FFT, and FIR. All used

in a DNN vector accelerator

Heuristic.

2019 [65] ASIC (implied) HEVC SAD Custom

2021 [66] ASIC (implied) Image processing
Sobel, FIR, and Gaussian blur filters,

a ReLu Neuron, and Euclidean
distance

Custom

2017 [67]
VLSI systems and
HLS, aligning with

ASIC design
Image processing

Average number calculator, inverse
DCT calculator, Sobel, FIR,

interpolation, and decimation filters
Custom

2020 [68] HLS tools for
accelerator design Image processing Sobel and Sharpen filters TS with potential

integration of GAs

2018 [69]
hardware

accelerator (ASIC
implied)

ML, digital signal
processing, and image

processing

Matrix multiplication, Sobel filter,
and DCT Custom

2016 [70] ML accelerator
(ASIC)

Image processing and
NLP/text classification

Eye and face detection, optical digit,
digit, webpage, and text classification GD

2021 [71,72] ASIC (AI
Accelerator)

Image processing,
NLP, and speech

recognition

VGG16, ResNet50, InceptionV3,
InceptionV4, MobileNetV1, SSD300,

YoloV3, YoloV3-Tiny, BERT, a
two-layer LSTM, and a four-layer

bidirectional LSTM

Custom

2016 [73] NPU (ASIC)

Financial analysis,
robotics, 3D gaming,
image compression,
signal, and image

processing

Blackscholes, FFT, Inversek2j, Jmeint,
JPEG, Sobel filter Custom

2019 [74]
Not specified

(implied
general-purpose)

Image processing Matrix multiplication and FIR filter Custom

2016 [75] GPU

For GPU: ML, signal
processing (pattern
recognition), image
processing, medical
imaging, scientific

computing, and web
mining. For CPU:

scientific computing
and optimization.

For GPU: Backprop, Fastwalsh,
Gaussian, Heartwall, Matrixmul,

Particle filter, Similarity score,
S.reduce, S.srad2, and String match.

For CPU: Bwaves, CactusADM,
FMA3D, GemsFDTD, Soplex, and

Swim.

Custom

Table 5. Research works that perform the DSE for approximate functions design space instead of a
complete system.

Year Ref. Target Hardware Use Case Domains Benchmarks Search Algorithm

2021 [76] FPGA (also ASIC implied) NA
apex2, b12, clip, duke2, and vg2

benchmarks from IWLS’93
Benchmark Set

NSGA-II

2014 [77] FPGA and ASIC (implied) NA
Ripple Carry, Carry Lookahead,

and Kogge Stone Adders. Wallace,
and Dadda Multipliers

Custom
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Table 5. Cont.

Year Ref. Target Hardware Use Case Domains Benchmarks Search Algorithm

2021 [78] FPGA and ASIC (designing
fault-tolerant architectures)

Safety-critical applications:
Quadruple Approximate Modular

Redundancy (QAMR)
Generic combinational circuits NSGA-II

2021 [79] FPGA and ASIC (implied) NA
Approximate adders, multipliers,
divisor, barrel shifter, Sine, and

Square
Heuristic

2022 [80] FPGA NA Approximate adders, multipliers,
decoders, and ALUs NSGA-II

Table 6. AxC techniques in research works using ML-based search algorithms to perform the DSE.

Year Ref. Target Hardware Benchmarks
AxC Techniques

Software Architectural Hardware

2018 [50] FPGA Iris scanning

Reducing search
window size and the
region of interest in

iris images, reducing
the parameters of iris

segmentation

NA Reducing the filter
kernel size

2021 [51] FPGA Kernel-based
Gaussian blur filter

Approximation of the
window size, mode,
and stride length for
convolution kernels

NA
Approximate

multipliers and
adders

2019 [12] Accelerator (ASIC)

Sobel, and Gaussian
blur filters (one with

fixed coefficients, and
one with a 3 × 3

kernel)

NA NA Approximate adders
and multipliers

2023 [52] Accelerator (ASIC)
Adder Tree,

RGB2gray, FIR, and
Gaussian blur filters

NA NA Approximate adders
and multipliers

2021 [53]
FPGA, ASIC,

general-purpose
computing system

RGB2GRAY, Ternary
sum. FIR, image
sharpening, and

Gaussian blur filters

NA NA Approximate adders
and multipliers

2015 [54]

General-purpose
hardware

(heterogeneous
mobile, tablet, and
server processors)

x264, Swaptions,
Bodytrack, Swish++,

Radar, Canneal,
Ferret, and

Streamcluster

PowerDial (changes
program inputs data
structure) and Loop

Perforation

NA NA

2020 [55] General-purpose CPU
and DNN accelerator

AlexNet, SimpleNet,
LeNet, MobileNet,

ResNet-20, 10-Layers,
and VGG-11/16

DNN layer
Quantization NA NA

2023 [37] General-purpose CPU Matrix multiplication
and FIR filter NA NA Approximate adders

and multipliers
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Table 7. AxC techniques in research works using EAs as a search algorithm to perform the DSE.

Year Ref. Target Hardware Benchmarks
AxC Techniques

Software Architectural Hardware

2021 [56,57] FPGA Pixel-streaming
pipeline NA NA

Sparse LUTs, precision
scaling, approximate

adders

2023 [58]
FPGA-based
approximate
accelerator

Multiplierless MCM NA NA Approximate adders
and multipliers

2022 [59] Accelerator (FPGA
and ASIC) DCT NA NA Approximate adders

2014 [60] General-purpose CPU
(implied)

FFT, SOR, MC, SMM,
LU, Zxing, JMEint,

Imagefill, and
raytracer

Program static
instructions NA NA

2023 [61] GPU MobileNetV2, and
ResNet50V2

Approximate 8xN bit
multipliers emulated

using LUTs,
approximate
depthwise

convolution, and
quantization-aware

training

NA NA

Table 8. AxC techniques in research works using custom search algorithms to perform the DSE.

Year Ref. Target Hardware Benchmarks
AxC Techniques

Software Architectural Hardware

2016 [62] ASIC and FPGA SAD NA NA Approximate adders
and logic blocks

2020 [63] ASIC and FPGA

ResNet-18/34/38/74,
MobileNetV2, and

Transformer-
base/WikiText-103

Progressive Fractional
Quantization (PFQ),
Dynamic Fractional
Quantization (DFQ)

NA NA

2016 [64] ASIC (implied)

Array Multiplier, Carry
Lookahead Adder,

Kogge Stone Adder,
Multiple and

Accumulate, SAD,
Euclidean distance,

DCT, FFT, and FIR. All
used in a DNN vector

accelerator

NA NA

Logic isolation using
latches or AND/OR
gates at the inputs,

MUXes at the output,
and power gating

2019 [65] ASIC (implied) SAD NA NA Approximate adders

2021 [66] ASIC (implied)

Sobel, FIR, and
Gaussian blur filters, a

ReLu Neuron,
Euclidean distance

NA NA

Clock gating and
precision reduction of
primary inputs at the

RTL level

2017 [67]
VLSI systems and HLS,

aligning with ASIC
design

Average number
calculator, inverse DCT
calculator, Sobel, FIR,

interpolation and
decimation filters

Source-Code Pruning
Based on Profiling

Functional Unit
Substitution (additions
and multiplications) at

the HLS level

Internal signal
substitution and

Bit-Level Optimization
at the RTL level

2020 [68] HLS tools for
accelerator design

Sobel and Sharpen
filters NA NA Approximate adders

and multipliers
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Table 8. Cont.

Year Ref. Target Hardware Benchmarks
AxC Techniques

Software Architectural Hardware

2018 [69] Hardware accelerator
(ASIC implied)

Matrix multiplication,
Sobel filter, and DCT

Partial product
perforation in
approximate

multipliers, and
truncation in
approximate

adders/subtractors

NA

Inexact compressor in
approximate
multipliers,

approximate full
adder, and VOS

2016 [70] ML accelerator (ASIC)

Eye and face detection,
optical digit, digit,
webpage, and text

classification

NA NA Clock overgating

2021 [71,72] ASIC (AI Accelerator)

VGG16, ResNet50,
InceptionV3,
InceptionV4,

MobileNetV1, SSD300,
YoloV3, YoloV3-Tiny,

BERT, a two-layer
LSTM, and a four-layer

bidirectional LSTM

NA Precision reduction

Approximated
activation functions,

pooling, normalization,
and data shuffling

2016 [73] NPU (ASIC)
Blackscholes, FFT,
Inversek2j, Jmeint,
JPEG, Sobel filter

NA Use of NNs (NPU
accelerator) NA

2019 [74] Not specified (implied
general-purpose)

Matrix multiplication
and FIR filter NA NA Approximate adders

and multipliers

2016 [75] GPU

For GPU: Backprop,
Fastwalsh, Gaussian,

Heartwall, Matrixmul,
Particle filter,

Similarity score,
S.reduce, S.srad2, and
String match. For CPU:
Bwaves, CactusADM,
FMA3D, GemsFDTD,

Soplex, and Swim.

NA NA RFVP

Table 9. AxC techniques in research works that perform the DSE for approximate functions design
space instead of a complete system.

Year Ref. Target Hardware Benchmarks
AxC Techniques

Software Architectural Hardware

2021 [76] FPGA (also ASIC
implied)

apex2, b12, clip, duke2,
and vg2 benchmarks

from IWLS’93
Benchmark Set

NA NA Logic falsification

2014 [77] FPGA and ASIC
(implied)

Ripple Carry, Carry
Lookahead, and Kogge
Stone Adders, Wallace,
and Dadda multipliers

NA NA
Boolean network

simplifications allowed
by EXDCs

2021 [78]

FPGA and ASIC
(designing

fault-tolerant
architectures)

Generic combinational
circuits NA NA Logic falsification

2021 [79] FPGA and ASIC
(implied)

Approximate adders,
multipliers, divisor,

barrel shifter, Sine, and
Square

NA NA Approximation based
on BMF for truth tables

2022 [80] FPGA
Approximate adders,
multipliers, decoders,

and ALUs
NA NA

Customized
approximation of
Boolean networks
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4.1. DSE Using ML Algorithms

As reported in Table 2, the most popular ML algorithm is RL [37,50,54,55]. While
authors in [51,52] use MBO and modified MCTS, respectively; authors in [12,53] men-
tion using ML-based search algorithm. Among these research works, though the target
hardware varies from FPGAs and ASICs to general-purpose CPUs, the use-case domain
always includes image and signal processing benchmarks, ranging from traditional image
processing to image classification using NNs. Moving the comparison to the AxC tech-
niques applied at different levels, as reported in Table 6, replacing the exact adders and
multipliers with approximate counterparts is the most common hardware-level approxima-
tion investigated [12,37,51–53]. However, the investigated software-level AxC techniques
are noticeably application-specific: In [50,51], algorithm parameters—that indicate the
iterations of executing a code basic block or the size of the inputs processed at each iter-
ation—are decreased to reduce the execution time or program memory while sacrificing
output accuracy. A similar approach of loop perforation is applied in [54] alongside chang-
ing the input data structure. Interestingly, in [55], an ML algorithm is employed to search
the design space of an ML application, proposing a DSE framework to find the optimal
quantization level for each layer of a DNN.

4.2. DSE Using EAs

Table 3 lists the research works that leveraged EAs to perform the DSE. Between the
prominently used subsets of EAs, an ES algorithm is only used in [58]. All approaches
enlisted here either use GA or its subset NSGA-II to explore the design space. More
precisely, authors in [56,57,60] employ GA, authors in [58,59] use NSGA-II, and authors
in [61] developed a NAS algorithm based on NSGA-II. Comparing the target hardware of
the reviewed research works, most works consider optimizing an accelerator design for
FPGA and ASIC implementation as expected. At the same time, the research in [61] targets
GPUs for optimizing CNN designs.

Comparing the benchmarks in Table 3 to those listed in Table 2, most of the bench-
marks fall under the image processing category, though the types of benchmarks are slightly
different. Comparing the applied AxC techniques, as reported in Table 7, in [56,57] au-
thors investigate employing sparse LUTs, precision scaling, and approximate adders for a
pixel-streaming pipeline application accelerated with an FPGA. Similarly, in [58,59] authors
explore using approximate adders and multipliers for optimizing video and image com-
pression accelerators. In [60], authors try to optimize benchmarks from different domains
such as scientific computing, 3D gaming, 3D image rendering, signal processing, and image
processing when the approximation is applied at a software level, altering the program’s
static instructions. Distinctively, in [61], authors propose approximating multipliers using
LUTs and a customized approximate convolutional layer to support quantization-aware
training of CNNs and dynamically explore the design space. It is noteworthy that the
aim is to optimize a CNN design usually trained on a GPU. Hence, approximation at the
hardware level is not an option, while such an AxC technique can be emulated at the
software level.

4.3. DSE Using Custom Algorithms

Table 4 reports a list of reviewed papers that neither rely on ML nor EAs to explore the
design space. In [68], authors mention using a TS algorithm, with potential integration of
GAs into the DSE framework. Notably, TS focuses on iteratively improving a single solution,
whereas GAs work with a population of solutions and evolve them over generations using
crossover, mutation, or other genetic operators. Hence, taking a TS approach might not
seem the best choice when the MOP does not have a single optimum solution, and a Pareto
front of non-dominated solutions may represent the optima better. In [70], authors select
a GD approach to search the design space. Contrary to the fact that GD is a widely used
optimization technique in ML, GD is not employed as a part of an ML search algorithm in
the aforementioned work. All the remaining works in Table 4 employ custom algorithms.
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In some cases, the DSE includes multiple stages of exploration, where pruning techniques
are used before applying the search algorithm to reduce the design space size or after
applying the search algorithm to refine the obtained solution sets.

Table 4 categorizes studies by target hardware, starting with those focused on FPGAs
and ASICs, and continues with studies on optimized accelerator design. Table 8 reports
the AxC techniques applied in each study enlisted in Table 4. Similar to the other sets of
studies presented in Tables 2 and 3, only a few works reported in Table 4 are hardware-
independent or target general-purpose CPUs and GPUs. The target hardware in [62]
includes both FPGAs and ASICs. In [62], the DSE is performed to optimize a hardware
accelerator design for a video processing application using approximate adders and logic
blocks. Similarly, in [63], the target hardware includes both FPGAs and ASICs. In this study,
the DSE is performed to optimize the design of DNNs accelerated using FPGAs and ASICs,
while the AxC techniques applied are quantization techniques aimed at approximating
the DNN design at the software level. In [64], authors perform the DSE with a heuristic
search algorithm to optimize the hardware implementation of different functions used in a
DNN vector accelerator. To apply approximation through logic isolation, the portions of
logic in the circuit that consume significant power but contribute only minimally to output
accuracy are identified. Then the DSE is performed to find the best trade-off between DNN
classification accuracy and energy savings. It can be implied that the target hardware can
be categorized as ASIC. In [65,66], the DSE is performed with custom algorithms, applying
hardware approximations to hardware implementations of video and image processing
benchmarks. The target hardware in these studies can be categorized as ASIC. In [67,68],
the authors propose to modify the HLS tools to study the approximation effects.

Continuing through Table 4, in [69] the DSE is performed to optimize hardware
accelerator design, investigating both hardware-level and software-level approximation
techniques. The other three works also perform the DSE to optimize the accelerator
design, specifically for ML applications [70–72]. In [73], authors target a very different
type of acceleration using NPUs. While using NPUs for acceleration purposes can be
categorized as applying approximation at the architectural level, the target hardware can
be classified in the ASIC category. In [74], the target hardware is not explicitly mentioned;
the proposed methodology applies to any DSE performed on general-purpose CPUs as
target hardware. In [75], authors perform the DSE to find the best configuration when
applying their proposed hardware-level approximation technique, which is specific to
GPUs. However, the approximation technique is also applied to some benchmarks executed
on general-purpose CPUs to provide a fair comparison between the results obtained by
performing the DSE for both hardware targets.

Comparing the use case domains across Table 4, image and signal processing are
the prevalent categories of applications. Moreover, ML applications for image and text
classification, pattern and speech recognition, and NLP tasks are considered in many
works. Some works also target image compression tasks. Many works include matrix
multiplication, DCT, FIR, and Sobel filters in their studies, as these functions are crucial
for many image-processing tasks. Some works also consider benchmarks from financial
analysis, robotics, 3D gaming, and scientific computing domains.

Considering the AxC techniques mentioned in Table 8, studies in [62,65,68,69,74] in-
vestigate using approximate adders and multipliers. In [64], authors propose applying a
hardware-level AxC technique called logic isolation using latches or AND/OR gates at the
inputs, MUXes at the output, and power gating. In [66], authors propose applying another
hardware-level AxC technique called clock gating alongside the precision reduction of pri-
mary inputs at the RTL level. Similarly, authors in [70] propose to apply a clock overgating
technique. In [69], authors propose to use VOS alongside approximate adders and multipli-
ers at the hardware level while approximating the additions and multiplications also on
the software level. In [67], authors propose very different AxC techniques: Internal Signal
Substitution and Bit-Level Optimization at the RTL level, Functional Unit Substitution (ad-
ditions and multiplications) at the HLS level, and Source-Code Pruning Based on Profiling
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at the software level. Also, in [71,72], authors propose applying AxC techniques at multiple
levels while designing an AI accelerator. They propose applying precision reduction to
DNN data as well as using approximated versions of fundamental DNN functions such as
activation functions, pooling, normalization, and data shuffling in the network accelerator
design. Though also aiming at optimizing DNN designs, authors in [63] propose to apply
AxC techniques at the software level to enable dynamic quantization of the DNN during
the training phase. Interestingly, in [73], authors propose to use a very different AxC
technique compared with all of these reviewed studies. The proposed approach includes
approximating the entire program using an NPU as an accelerator. Another interesting AxC
technique is proposed in [75] to tackle memory bottlenecks while executing the program
on a GPU and transferring the data from CPUs to GPUs and vice versa.

4.4. DSE of Approximate Functions Design

Some studies in the literature propose approaches to efficiently explore the design
space for approximate logic synthesis and consider approximate versions of circuits gener-
ated by approximating selected portions (or sub-functions) of Boolean networks. These
studies are reported separately in Table 5, while the applied AxC techniques in these studies
are reported in Table 9. The approximation is applied at the hardware level and involves
logic falsification in [76,78]. The approximation technique in [77] is based on Boolean
network simplifications allowed by EXDCs. The approximation in [79] is based on BMF for
truth tables. And, in [80], a customized approximation of Boolean networks is applied. The
search algorithm to explore the design space is an NSGA-II in [76,78,80] while in [77,79]
authors employ customized and heuristic algorithms. While the benchmarks for all of these
studies include well-known approximate adders and multipliers in the literature, other
circuits such as ALUs, decoders, shifters, and multiple combinational circuits have been
employed as benchmarks. Interestingly, in [78], the study targets safety-critical applications.
The Quadruple Approximate Modular Redundancy (QAMR) approach is opposed to Triple
Modular Redundancy (TMR), where all modules are exact circuits.

4.5. Evaluated Parameters in DSE

While Tables 2–5 provide an overview to allow comparison among different studies
based on employed search algorithm, target hardware, and use case domain, Tables 10–13
provide an overview of the same sets of studies to allow comparison among different studies
based on evaluated parameters involved in the trade-off imposed by approximation.

Table 10. Evaluated metrics in research works using ML-based search algorithms to perform the DSE.

Year Ref. Accuracy Error
Metric(s)

Power or
Energy Time Performance Memory Area Pareto Front

2018 [50]

Industry-
level

threshold
for iris

encoding

HD of any
two images Energy Execution

time NA Memory
utilization

Total logic
utilization

Speedup and
Average

Error

2021 [51] Application-
level error MAE NA NA NA NA LUT count

LUT count
and

Application-
level error

2019 [12] QORs SSIM Energy NA NA NA Area
SSIM and
area. SSIM
and energy

2023 [52] Output
accuracy

MRED and
PSNR NA NA NA NA Area Area savings

and error

2021 [53] Output
accuracy

MRED and
PSNR Power NA NA NA Area NA
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Table 10. Cont.

Year Ref. Accuracy Error
Metric(s)

Power or
Energy Time Performance Memory Area Pareto Front

2015 [54] Application
accuracy

Precision
and recall,

PSNR,
Swaption

price, track
quality,

wire length,
similarity,
quality of
clustering

Energy
efficiency NA Speedup NA NA

Energy
savings and

accuracy

2020 [55]

Relative
DNN

accuracy
and quanti-
zation level

State of
relative

accuracy
and state of

quantiza-
tion

Energy NA Speedup NA NA

State of
relative

accuracy and
State of

quantization

2023 [37] Output
accuracy MAE Power Computation

time NA NA NA NA

Table 11. Evaluated metrics in research works using EAs as a search algorithm to perform the DSE.

Year Ref. Accuracy Error Metric(s) Power or
Energy Time Performance Memory Area Pareto Front

2021 [56,57]
Output
image
quality

Color
differences in
perceptually

uniform color
space (CIELAB

∆E)

Power NA NA NA NA

Power
consumption

and maximum
∆E

2023 [58]
Output
quality,
QORs

PSNR Power NA NA NA LUT
count

Power and
PSNR. LUT
count and

PSNR.

2022 [59]
Output
image
quality

Mean
Structural
SIMilarity

(MSSIM) and
Structural

DISSIMilarity
(DSSIM)

Power NA NA NA Area

Area and
DSSIM (for
ASIC). LUT
count and

DSSIM (for
FPGA). Power

and DSSIM (for
both).

2014 [60] QORs

ER, average
entry

difference,
MPD, (average)

normalized
difference

Energy NA NA NA NA NA

2023 [61] CNN Top-1
Accuracy

Classification
accuracy (%)

Energy of
multiplication

in
convolutional

layers

CNN
training and

inference
time

overhead

NA NA NA Energy and
CNN accuracy

Table 12. Evaluated metrics in research works using custom search algorithms to perform the DSE.

Year Ref. Accuracy Error
Metric(s)

Power or
Energy Time Performance Memory Area Pareto Front

2016 [62] Output
quality BER (%) Power NA Performance

(Bit Rate) NA Area NA
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Table 12. Cont.

Year Ref. Accuracy Error
Metric(s)

Power or
Energy Time Performance Memory Area Pareto Front

2020 [63] DNN
accuracy

Classification
accuracy (%)

Training
energy

Training
latency NA NA NA NA

2016 [64]
DNN

classification
accuracy

Classification
accuracy

Energy
savings NA NA NA NA NA

2019 [65]

Output
accuracy and

coding
efficiency

MAE, and
Bjontegaard
delta PSNR
(BD-PSNR)

Power
dissipation

savings
NA NA NA Circuit area

savings

MAE and
total power.
MAE and

Circuit Area.
Power

dissipation
and

BD-PSNR.
Area and
BD-PSNR.

2021 [66] Output
accuracy MRED Energy

reduction NA Performance NA Area
overhead

Power and
output

accuracy

2017 [67] Computation
accuracy MAE Power NA Performance NA Circuit Area Circuit Area

and MAE

2020 [68] Output
accuracy

MED and
PSNR PDP NA NA NA Area

Area and
MED. PDP
and MED.

2018 [69] Output
accuracy MRED Power NA NA NA NA Power and

Error

2016 [70] Output
quality

Classification
accuracy Energy NA NA NA NA NA

2021 [71,72] DNN
accuracy

Classification
accuracy (%) NA Inference

Latency

Inference
compute
efficiency

and training
throughput

NA NA NA

2016 [73] Output
quality

MRED, miss
rate, image
difference

Energy
reduction NA Speedup NA NA NA

2019 [74] Output
accuracy

Normalized
weighted

error
NA NA NA NA NA NA

2016 [75] Output
quality

For GPU:
MRED,
average

Euclidean
distance,

image
difference,

total
mismatch
rate, and

normalized
RMSE (also

for CPU)

Energy Execution
time Speedup Memory

bandwidth NA

Product of
energy

dissipation,
execution
time, and

error traded
off with

predictor
size
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Table 13. Evaluated metrics in research works that perform the DSE for approximate functions design
space instead of a complete system.

Year Ref. Accuracy Error
Metric(s)

Power or
Energy Time Performance Memory Area Pareto

Front

2021 [76]
Circuit
output

accuracy
BER NA NA NA NA NA

Resources
(in terms of
Cubes and

Literals)
and BER

2014 [77]
Circuit
output

accuracy

Error
magnitude,

error
frequency
constraints

NA NA NA NA NA

Normalized
gate count
and error
frequency

2021 [78] NA NA NA Critical
path delay NA NA Circuit

Area

Delay gain
and area

gain

2021 [79]
Circuit
output

accuracy

Normalized
HD, and

MAE
Power NA NA NA Area

Power and
MAE. Area
utilization
and MAE.

2022 [80]

Accuracy
degrada-

tion
observable
at primary

outputs
(POs)

ER NA NA NA NA LUT count ER and
LUT count

Since AxC trades off accuracy for performance and energy efficiency, the first important
parameter to evaluate during DSE is accuracy. Depending on the approximation goals,
parameters measured during DSE in different studies may vary.

Predictably, power consumption is a key parameter frequently targeted in the reviewed
studies, as it directly impacts energy efficiency. However, many studies choose to target
energy consumption instead of power consumption. This approach is entirely valid because
energy savings inherently indicate power savings, considering that energy is the product
of power and time. By measuring energy directly, these studies effectively capture the
combined impact of power reduction and execution time, providing a comprehensive view
of the gains in efficiency achieved through AxC techniques.

The second most in-demand parameter, especially when designing accelerators, is
the circuit area. Understandably, when approximations are applied to optimize a design,
specifically in the case of employing the design on FPGAs, reducing the area utilization, or
LUT count, is one of the approximation goals.

After area, performance and execution time are the most commonly measured pa-
rameters. In applications such as Artificial Neural Networks (ANNs), where execution
time is inherently high, one of the primary goals of applying approximation is to reduce
this execution time, particularly for inference and, when feasible, training. The lengthy
execution times of these applications also directly impact the DSE time, as evaluating even
a few approximate instances can become highly time-consuming. While typical application
execution times may range from seconds to minutes, the DSE time needed to explore and
evaluate possible approximations often extends to hours or days. In the case of ANNs,
the execution time for inference alone can take hours, and the DSE time required to assess
even a limited number of approximate instances can span several days. Therefore, in
applications where the execution time is already considerable and hence a primary target
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to trade-off with accuracy, proposing DSE methodologies that can assess more approximate
instances in a reasonable time becomes crucial.

Memory utilization is often the least frequently evaluated parameter in the reviewed
studies. Many AxC techniques are primarily applied to optimize execution time, energy,
or performance rather than specifically targeting memory utilization. However, these
techniques can still impact memory utilization. For instance, some techniques aimed at
reducing execution time, energy consumption, or improving performance may also affect
memory usage as a secondary outcome. This indirect influence on memory is an important
consideration, even though it is not the primary focus of these techniques. For example,
in [50], authors propose to explore the design space comprised of approximate versions
of an iris scanning pipeline. The approximation includes reducing the search window
size and the region of interest in iris images, reducing the parameters of iris segmentation,
and reducing the kernel size of the filter. Though the main target is to reduce program
execution time, the memory needed to store the intermediate and final output images and
program parameters is reduced. In [75], authors propose an AxC technique to mitigate
the bottlenecks of limited off-chip bandwidth and long access latency when the data are
transferred from CPU to GPU and back. When a cache miss happens, RFVP predicts
the requested values. In this case, the main goal of approximation is to achieve off-chip
memory bandwidth consumption reduction, while speedup and energy reductions are
also reported.

Through Tables 10–13, besides the accuracy column, there is an error metric(s) column
that reports the error metric(s) presented in each study to measure accuracy degradation due
to applying approximation. Among all the parameters mentioned—power consumption,
execution time, performance, memory utilization, and circuit area—accuracy is unique
because the metrics used to measure accuracy degradation are often more complex and
application-specific. For example, while power consumption differences are reported
simply as ED between the measurements from approximate and exact versions, accuracy
degradation error metrics involve a variety of sophisticated measures that are tailored to
the specific application domain. In Table 1, the most popular error metrics are listed.

Pareto Front Analysis

Finally, every proposed DSE approach results in a solution or a set of optimal solutions
for the MOP. In some cases, an optimal solution exists. In many other cases, no global
optimal solution can be found, and a Pareto front (a set of non-dominated solutions) is
presented. The last column in Tables 10–13 indicates the studies that reported a Pareto
front as the result of the DSE performed, or at least compared a set of solutions resulted
from the proposed DSE approach with a Pareto front obtained by exhaustive search or
other methods. In most cases, the obtained Pareto front shows a trade-off between ac-
curacy on the one hand and an evaluated parameter, such as energy efficiency, on the
other hand [12,50–52,54,56–59,61,65–69,76–80].

The rest of the reviewed studies that did not obtain a Pareto front but provided other
analysis methods for comparing the DSE results are considered hereafter.

In some studies, a single threshold or multiple thresholds for the acceptable accuracy
degradation was set, and then the DSE was performed for each accuracy threshold. For
example, in [53], a solution was provided for each accuracy threshold. In [62], performance
is plotted for different accelerator designs. However, no Pareto front is provided. Also,
in [64], three different DNN accuracy thresholds were set, and the DSE was performed
for each threshold. Hence, the plots show the energy reductions for each DNN accuracy
threshold instead of a Pareto front. Similarly, in [70], the plots show the energy reductions
for each DNN accuracy threshold instead of a Pareto front.

In [55], two application-specific error metrics were proposed to evaluate the accuracy
for DNN quantization and plot the quantization space Pareto frontier for these two error
metrics called State of Relative Accuracy and State of Quantization.

In [37], an RL approach was selected for performing the DSE, and steps of exploration
have been plotted for evaluated parameters, including accuracy; however, a Pareto front is
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not obtained. In [60], plots show the accuracy and energy against multiple thresholds for
the number of program instructions to be approximated. However, a comparison to the
Pareto front is not provided.

In [63], the quantization is applied dynamically during training and inference of the
DNN. Therefore, the plots show the changes in the DNN accuracy concerning the number
of MACs used in the computations. Also, in the same plot, the results are compared with
other quantization-aware approaches in the literature instead of comparing the results with
a Pareto front obtained by other DSE methods. Since in dynamic approximation of the
DNNs, the changes in accuracy during the training or inference are more representative of
the approach effectiveness, plotting a Pareto front seems unnecessary.

In [71] and the previous studies with the same framework [72], no Pareto front was
presented. Instead, for each DNN, compute efficiency, training throughput, and inference
latency were reported. In [73], an NPU is employed as an accelerator for a frequently
executed region of code or function to approximate the function by replacing it with a
neural network. Since an ANN is employed, similar to other works on ANNs, multiple
thresholds for function quality loss, or in other words, different ANN accuracy levels, were
investigated. Hence, the speedup and energy reduction for multiple thresholds of function
quality loss were plotted. In consequence, no Pareto front was demonstrated.

4.6. DSE Methodologies Comparison by Use Case Domain

In this subsection, we categorize the reviewed studies based on their general use case
domains, such as image processing, ML, signal processing, and scientific computing. For
each use case domain, the studies are compared based on metrics used in DSE, such as
accuracy, power savings, execution time, and area utilization.

4.6.1. Image Processing Applications

Several studies applied DSE methodologies to optimize image processing applications,
balancing accuracy with power and area savings.

• Hashemi et al. [50] focused on iris scanning applications using RL to reduce filter
kernel sizes. This study achieved notable energy savings and area utilization improve-
ments while maintaining acceptable accuracy, measured by the HD between images.

• Ullah et al. [51] used MBO to approximate Gaussian blur filters. The study reported
reduced LUT count and power savings, with output accuracy evaluated using MAE.

• Mrazek et al. [12] applied approximate multipliers and adders to Sobel and Gaussian
blur filters, achieving significant energy savings with minimal SSIM loss.

• Rajput et al. [52] employed AI-based heuristics to optimize image processing tasks
such as RGB2gray and Gaussian blur filters. The study reported accuracy levels
evaluated with MRED and PSNR while achieving area and energy savings.

• Awais et al. [53] optimized image processing applications, including RGB2gray and
FIR filters, by applying approximate adders and multipliers, achieving power savings
and maintaining acceptable accuracy levels.

• Manuel and Kreddig [56,57] used EAs to optimize a pixel-streaming pipeline for image
processing, achieving power savings with limited color differences, measured using
the CIELAB ∆E metric.

• Barbareschi et al. [59] applied NSGA-II for JPEG compression optimization, balancing
power, area, and image quality, evaluated using MSSIM and DSSIM metrics.

• Savino et al. [74] used custom algorithms for optimizing image processing tasks
(matrix multiplication and FIR filters), reporting reductions in area and power with
minimal accuracy degradation.

Overall, these studies reveal that different DSE approaches have been successfully
applied to various image processing tasks. Most studies show that approximate hardware
components, such as adders and multipliers, provide significant power savings with
minimal accuracy loss. While some methods, like those used by Hashemi et al. [50] and
Mrazek et al. [12], focus on energy efficiency, others, like Rajput et al. [52] and Barbareschi
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et al. [59], emphasize balancing area utilization with accuracy and energy consumption.
However, the wide range of objectives and varying use cases across these studies makes it
difficult to perform a unified performance comparison beyond these metrics.

4.6.2. ML Applications

The reviewed studies also applied DSE methods to optimize Machine Learning models,
particularly Deep Neural Networks (DNNs).

• Elthakeb et al. [55] used RL for quantization of CNN layers, achieving accuracy
improvements and energy savings by adjusting quantization levels dynamically.

• Pinos et al. [61] applied NAS algorithms for optimizing CNN models like Mo-
bileNetV2 and ResNet50V2, reporting energy savings during inference with minimal
accuracy degradation.

• Fu et al. [63] focused on DNN training, using dynamic fractional quantization to
optimize training energy and latency while maintaining classification accuracy across
multiple ResNet models.

• Venkataramani et al. [71,72] applied precision reduction techniques in AI accelerators
for DNNs like VGG16 and BERT, achieving inference latency and energy reductions
with minor accuracy trade-offs.

All studies in this category target improving energy efficiency while maintaining
acceptable accuracy levels for Machine Learning applications. While Elthakeb et al. [55] and
Pinos et al. [61] focus on optimizing DNN quantization and inference energy, Fu et al. [63]
specifically optimize training energy and latency. Venkataramani et al. [71,72] focus on
overall system-level reductions in inference latency and compute efficiency. The primary
challenge in comparing these methods lies in the varying objectives, such as training versus
inference optimization. However, all studies demonstrate that precision reduction and
quantization techniques are highly effective in balancing accuracy and energy consumption
in Machine Learning applications.

4.6.3. Signal Processing Applications

Signal processing tasks require optimization in terms of power consumption, perfor-
mance, and accuracy, which several studies achieved by applying hardware AxC techniques.

• Mrazek et al. [12] used approximate multipliers and adders in Sobel and Gaussian
blur filters, achieving significant power savings and minimal SSIM loss.

• Rajput et al. [52] employed AI-based heuristics to optimize signal processing tasks like
FIR filters, showing a trade-off between area savings and output accuracy, measured
using MRED and PSNR.

• Saeedi et al. [37] applied RL to optimize FIR filters and matrix multiplication, achieving
power savings with acceptable MAE levels.

• Alan et al. [66] used custom algorithms to optimize Sobel and Gaussian blur fil-
ters, achieving power and area savings by applying clock gating and precision
reduction techniques.

In signal processing applications, the main focus is on achieving power and area
savings while maintaining output accuracy. While Mrazek et al. [12] and Alan et al. [66]
emphasize hardware-level optimizations, such as approximate multipliers and clock gat-
ing, Rajput et al. [52] and Saeedi et al. [37] focus on trade-offs between accuracy and
energy savings. Despite these differences, all studies demonstrate that approximate com-
puting techniques are effective in optimizing power consumption with minimal impact
on accuracy.

4.6.4. Scientific Computing Applications

Scientific computing tasks often involve balancing execution time, energy efficiency,
and accuracy. Several studies focused on optimizing scientific computing applications
using DSE techniques.
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• Park et al. [60] applied genetic algorithms to scientific computing tasks such as FFT and
Successive Over-Relaxation (SOR), achieving energy reductions with slight accuracy
trade-offs, measured using normalized difference.

• Yazdanbakhsh et al. [75] applied custom DSE techniques to optimize tasks on GPUs,
showing improvements in speedup and energy savings while balancing accuracy and
memory bandwidth.

• Mahajan et al. [73] applied NPUs as accelerators to scientific tasks such as FFT,
reporting significant energy reductions with acceptable accuracy, measured using miss
rate and image difference.

In scientific computing applications, the primary goal is to reduce execution time
and energy consumption while maintaining accuracy. Although the studies employ dif-
ferent techniques, such as genetic algorithms in Park et al. [60], GPU optimization in
Yazdanbakhsh et al. [75], and NPU acceleration in Mahajan et al. [73], they all report
improvements in speedup and energy savings. Due to the variety of techniques and the
specific application focus of each study, further direct comparison between the studies
is challenging.

4.6.5. Video and Audio Processing Applications

Several studies targeted video processing applications, with a focus on optimizing
power, area, and accuracy.

• Hoffmann et al. [54] applied RL for video encoding tasks like x264, achieving en-
ergy savings through techniques like loop perforation while maintaining acceptable
accuracy levels.

• Prabakaran et al. [58] used NSGA-II to optimize HEVC video processing tasks, show-
ing trade-offs between area, power, and accuracy, evaluated using PSNR.

• Shafique et al. [62] applied custom DSE methods to optimize HEVC processing,
achieving power savings through approximate adders with minimal quality loss,
measured by BER.

The reviewed studies on video and audio processing show that DSE methodologies
focus on balancing power and area savings with maintaining acceptable accuracy or quality
metrics like PSNR and BER. Hoffmann et al. [54] applied more general techniques like
loop perforation, whereas Prabakaran et al. [58] and Shafique et al. [62] used hardware-
specific optimizations. Though they all focus on video encoding and compression tasks,
the diversity in techniques and objectives limits the potential for direct comparison beyond
energy savings and accuracy metrics.

4.6.6. Robotics, Financial Analysis, and Other Applications

A few studies focused on specialized domains such as robotics and financial analysis.

• Mahajan et al. [73] applied NPU accelerators in robotics and financial analysis applica-
tions, achieving energy reductions while maintaining acceptable accuracy levels, as
measured by metrics such as MRED and miss rate.

• Hoffmann et al. [54] applied RL to financial analysis tasks, such as Swaptions, showing
significant energy savings while balancing accuracy, measured by Swaption price.

For robotics and financial analysis applications, the reviewed studies focus primarily
on energy savings, using techniques such as NPU acceleration (Mahajan et al. [73]) and
RL-based optimization (Hoffmann et al. [54]). While these studies achieve notable results,
the specificity of their application domains and techniques limits further comparison.

In conclusion, while each study employs DSE methodologies to optimize approximate
designs based on metrics like output accuracy, power savings, and execution time, com-
paring them even within the same use case domain is challenging due to differences in
target hardware, benchmarks, AxC techniques, and optimization goals. For example, some
of the reviewed studies focused on image processing applications, such as Sobel filters
and Gaussian blur, and employed approximate hardware to achieve power savings. In
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contrast, some studies targeting Machine Learning applications, such as Neural Networks
for image classification (e.g., ResNet or MobileNet models), employ approximate comput-
ing techniques like quantization to balance energy consumption and accuracy. Despite
shared metrics, the diversity in techniques and objectives, such as reducing neural network
inference latency on FPGAs versus optimizing power consumption on ASICs, makes direct
comparisons difficult. Instead, most studies highlight how their proposed DSE methods can
help identify the most suitable approximate designs within specific domains, optimizing
metrics according to the unique needs of each target software or hardware.

4.7. Comparison of the Reviewed DSE Approaches by Frequent Categorizes

Figure 4 presents the distribution of the reviewed studies based on the search algo-
rithms employed to perform DSE for approximate designs. The results reveal that 48.48%
of the studies opted for custom algorithms, underscoring that nearly half of the approaches
rely on application-specific methods, potentially due to the need for pruning large design
spaces and addressing particular hardware or software constraints. This significant por-
tion suggests that custom algorithms remain popular for solving highly specialized DSE
problems in the AxC domain.

On the other hand, 27.27% of the studies employed EAs, and 24.24% utilized ML-
based methods. While the data indicate that roughly a quarter of the surveyed works
leveraged ML techniques such as RL, EAs are slightly more popular, likely due to their
proven flexibility and scalability when dealing with a wide variety of design spaces and
their robustness in handling complex MOP.

Figure 4. Distribution of the proposed DSE approaches of the reviewed studies, based on employed
search algorithms.

Figure 5 shows the distribution of the reviewed studies based on the target hardware
of each study. The results indicate that a significant proportion of the studies, 36.36%,
targeted ASICs. This reflects the preference of the AxC domain for ASICs, as they allow
for highly customized and efficient hardware designs, making them a favorable target
for employing AxC techniques. The second largest group of studies, comprising 21.21%,
targeted both FPGAs and ASICs, suggesting that many DSE methodologies are designed to
be versatile enough to optimize for both reconfigurable and dedicated hardware, which
enables flexibility depending on the specific design requirements.

On the other hand, 18.18% of the studies focused solely on FPGAs. This percentage
highlights the importance of FPGAs in approximate computing, especially in cases where
reconfigurability is critical, such as during iterative design processes or for applications
requiring adaptable precision levels. Furthermore, 12.12% of the studies targeted general-
purpose CPUs, indicating that even though some studies did not include hardware-specific
optimizations, general-purpose processors are still valuable in certain contexts, particularly
for applying software-level AxC techniques.
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Interestingly, only 6.06% of the studies targeted GPUs, showing that while GPUs are
effective for parallel processing, they may not be as frequently used as much as ASICs
or FPGAs for applying AxC techniques. The last three columns reflect multi-platform
approaches, where the target hardware spans multiple categories, such as FPGAs, ASICs,
and general-purpose CPUs, each making up 3.03% of the reviewed studies. This indicates
that some DSE approaches aim to be flexible and adaptable to various hardware plat-
forms, which may be driven by the need for multi-objective optimization across different
computing systems.

Figure 5. Distribution of the proposed DSE approaches of the reviewed studies, based on the
target hardware.

Figure 6 presents the distribution of the reviewed studies based on the use case
domains of the case study benchmarks used in each reviewed paper for conducting ex-
periments. It is important to note that most studies examined benchmarks from multiple
domains. Hence, such studies are included in counting the total number of studies for each
use case domain.

As the total number of studies for each column shows, image processing tasks, such as
Sobel and Gaussian blur filters, are the most popular among the reviewed studies. ML ap-
plications are also popular among the reviewed studies. The three columns labeled “DNNs
for Image Classification and Pattern Recognition”, “Machine Learning”, and “Natural
Language Processing” are all considered ML applications. It is noteworthy that the column
labeled “Machine Learning” shows the number of case studies that cannot be categorized
under the other two columns. Signal Processing, especially Digital Signal Processing (DSP)
applications, and Video Processing (especially HEVC) applications are the next commonly
used applications in the reviewed studies, respectively.

To conclude, the distribution of use case domains demonstrates a clear preference
for image processing and Machine Learning tasks as key benchmarks for applying AxC
techniques. This trend can be attributed to the inherent tolerance of these domains to
approximation, where minor accuracy losses are often acceptable in exchange for signif-
icant gains in power and resource savings. Furthermore, signal processing and video
processing applications also emerge as prominent areas, reflecting their suitability for
applying approximations in embedded systems and real-time processing environments.
The diverse set of use case domains illustrates the adaptability of AxC techniques across
various computational tasks, emphasizing the versatility and growing importance of DSE
methodologies in optimizing a wide range of applications.

Figure 6 also illustrates the distribution of search algorithms employed for performing
the DSE for various use case domains. These search algorithms are categorized into three
main classes: “Machine Learning”, “Evolutionary Algorithm”, and “Custom”. Custom
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algorithms are the most commonly used, especially for image processing, signal processing,
and video processing tasks. This popularity may be due to the need for application-specific
optimizations and pruning techniques in large design spaces. The same trend is observable
for image classification and pattern recognition tasks.

On the other hand, EAs are applied across domains like image processing, video
processing, and scientific computing, owing to their robustness in solving MOPs. ML-
based DSE approaches are mostly utilized in image processing and signal processing tasks.
Interestingly, in these domains, ML and Custom algorithms were employed almost equally
to perform the DSE, while EAs were less employed. This trend may be attributed to the fact
that ML techniques, such as RL and NAS, excel at dynamically optimizing design trade-offs
in structured, data-rich environments like image and signal processing. Additionally, these
domains often require real-time processing or adaptive techniques, which ML algorithms
are well-suited for. Custom algorithms, on the other hand, are favored for their flexibility
in handling domain-specific constraints and heuristics that are tailored to the problem.
However, EAs, despite their proven multi-objective optimization capabilities, might be less
efficient in environments where specific, fast-converging solutions are necessary due to
time or resource constraints.

Overall, while custom algorithms dominate most tasks, ML and EAs show strong
adaptability, each offering unique advantages based on the complexity and nature of the
design space being explored.

Figure 6. Distribution of the proposed DSE approaches of the reviewed studies, based on the use
case domains.

5. Conclusions

This survey systematically reviewed and classified existing literature on DSE method-
ologies aimed at identifying suitable AxC techniques for various applications and hardware
designs. The search strategy focused on papers that provided detailed descriptions of their
DSE algorithms, deliberately excluding those utilizing exhaustive search methods to high-
light more sophisticated and efficient approaches.

Two dominant categories of DSE methods emerged from the reviewed studies: ML
approaches and EA methods. While both methodologies have strengths, the relative
advantages depend largely on the complexity of the design space and the target application.
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The ML approaches, especially those leveraging RL, are highly effective in domains
like image processing and DNNs, where the design space is structured and substantial
data from previous executions is available. These approaches excel at fine-tuning trade-offs
between power and accuracy dynamically, making them suitable for applications requiring
frequent reconfigurations or those with domain-specific training data [50,55]. However,
ML-based DSE methods tend to be more application-specific and less adaptable to broader
hardware platforms or large, complex design spaces [51,52].

In contrast, EA-based methods, particularly those utilizing GAs and NSGA-II, offer
greater flexibility and scalability. These methods are especially suited for complex design
spaces like FPGAs, ASICs, and other hardware-specific optimizations. GAs have been
proven to deliver robust, Pareto-optimal solutions across a variety of applications, including
image and video processing, where they consistently outperform other approaches in
balancing circuit area, power consumption, and execution time [56,59]. Moreover, NSGA-II
has shown particular promise in optimizing DNNs and delivering effective performance-
power trade-offs in NN accelerator designs [61].

In conclusion, while ML-based DSE approaches offer fine-tuned control and are highly
effective in specialized applications, EA-based DSE methods, especially GAs, are better
suited for complex and large-scale design spaces that require general-purpose optimization.
Future research may combine the adaptability of EA-based DSE approaches with the fine-
grained control of ML-based methods, creating hybrid models that can optimize across
diverse hardware environments and application domains.

Furthermore, a persistent challenge is the increasing complexity posed by heteroge-
neous systems, where different hardware platforms such as FPGAs, ASICs, and GPUs
introduce unique constraints. Addressing this challenge will require the development of
generalizable DSE methodologies that can operate across multiple hardware platforms, an
area that necessitates further research.

Additionally, as discussed in Section 4, several studies have successfully integrated
pruning techniques to reduce the complexity and size of the design space, leading to more
efficient exploration. Nonetheless, future work must focus on reducing the computational
overhead of performing DSE itself, particularly for large-scale applications such as Deep
Neural Networks, where DSE can be time-intensive and resource-demanding. By develop-
ing more efficient exploration techniques and expanding generalizability across hardware
platforms, future research can help overcome the current limitations of DSE methodologies
employed for AxC systems.

In addition to discussing the strengths of various ML- and EA-based DSE methods,
it is important to discuss the computational challenges and resource demands associated
with performing DSE for approximate designs. When performing DSE for approximate
designs, computational complexity and hardware resource requirements vary significantly,
depending on the scope of the exploration and the chosen methods. Some studies face
challenges related to time, memory utilization, and processing power, especially when
exploring large design spaces with numerous approximate versions of hardware or software
designs. However, not all reviewed studies provide detailed reports on these parameters,
making direct comparisons difficult.

Where exploration time or resource usage is discussed, the computational burden
is influenced by factors such as the type of search algorithm, design space size, and the
target hardware. For instance, DSE-targeting FPGA designs may differ in complexity
and time requirements compared with DSE-targeting ASICs or GPUs, even when similar
methodologies are used.

Several studies employ pruning techniques to reduce the design space size, which
helps facilitate the exploration process and lowers the computational demands. Such
strategies are particularly prominent in studies using custom algorithms, as discussed in
Section 4.3. Pruning can significantly reduce exploration time by focusing on the most
promising candidate designs.
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However, due to inconsistent reporting on exploration time and hardware resource
consumption across different studies, drawing broad conclusions about the computational
costs of different DSE methods remains challenging. This gap presents an opportunity
for future work to provide more detailed comparisons of resource requirements across
DSE methodologies.
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