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Abstract: Obesity causes metabolic changes, such as the development of cardiovascular diseases.
Moreover, physical exercise promotes protection against these diseases. Thus, the objective of
the present study was to evaluate whether combined physical training can improve the metabolic
system of women with obesity, reducing plasma concentrations of trimethylamine N-oxide (TMAO)
and sphingolipids, regardless of weight loss. Fourteen obese women (BMI 30–40 kg/m2), aged
20–40 years, sedentary, were submitted to 8 weeks of combined physical training (strength and aerobic
exercises). The training was performed three times/week, 55 min/session, at 75–90% maximum heart
rate. All participants were evaluated pre- and post-exercise intervention, and their body composition,
plasma TMAO, creatinine, lipid profile, and sphingolipid concentrations were recorded. Maximum
oxygen consumption (VO2max), Speed lactate threshold 1 (SpeedLT1), and Speed lactate threshold 2
(SpeedLT2) evaluated physical performance. Results: After combined exercise, it did not change body
composition, but TMAO, total cholesterol, and sphingolipid concentrations significantly decreased
(p < 0.05). There was an increase in physical performance by improving VO2max, SpeedLT1, and
SpeedLT2 (p < 0.05). The combined physical exercise could induce cardiovascular risk protection by
decreasing TMAO in obese women, parallel to physical performance improvement, independent of
weight loss.

Keywords: physical fitness; body composition; lipids; cardiovascular risk; weight loss

1. Introduction

Obesity is considered a global epidemic, with an estimated 2.1 billion people world-
wide being obese or overweight, representing almost 30% of the world’s population [1].
Traditionally, obesity is seen as a high energy intake and a sedentary lifestyle, resulting in
a positive energy balance that will be stored as energy in adipose tissue [2,3]. However,
obesity is much more complex, as several internal and external factors contribute to this
growing challenge [4,5].

Obesity is also a significant risk factor for the development of cardiovascular dis-
eases [6,7]. Human studies have shown positive associations between trimethylamine
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N-oxide (TMAO), body mass index (BMI), and fat mass (FM) [8,9]. TMAO has been identi-
fied as a biomarker of cardiovascular morbidity (CVD) risk factors [10]. The concentration
of TMAO originates through trimethylamine and intestinal bacterial flora from dietary
compounds of carnitine, betaine, and choline [11]. A landmark study [12,13] reported that
higher plasma concentrations of TMAO were associated with a 50% increase in the adverse
event of coronary morbidity. Furthermore, many recent meta-analysis data have confirmed
that circulating TMAO levels predict increases in cardiovascular disease and mortality
risks. Each 10 µM increase in TMAO level is associated with an approximate 7.6% increase
in the relative risk of all-cause mortality [14,15]. They have also been linked to increased
cholesterol deposition in macrophages and the development of atherosclerosis [10]. Fur-
thermore, elevated circulating TMAO produces pro-inflammatory cytokines, contributing
to the induction of obesity [6,15].

In this same sense, inflammation caused by obesity is systematically amplified through-
out the body [16], which can activate the synthesis of lipids such as sphingolipids, mainly
due to the increase in free fatty acids in the blood circulation, which assists the synthesis of
ceramides through the de novo pathway. High levels of ceramides have been associated
with obesity and other metabolic diseases [17]. Thus, increases in sphingomyelins and
ceramides, while reductions in plasma sphingosine-1-phosphate (SIP), may contribute to
cardiovascular diseases [18].

Exercise is an adjuvant therapy for many chronic diseases, including cardiovascular
diseases associated with obesity [19]. Physical exercise leads to physiological changes
in energy homeostasis, as it depends on changes in cellular responses to internal and
external stress. Along these lines, some reports have observed that exercise can also affect
human metabolism in plasma, which is the most responsive environment to changes in
the body [20]. The effect of physical exercise on the lipid profile was notable in short-
term interventions in postmenopausal women with dyslipidemia or obesity [21]. Another
study showed that 8 weeks of combined physical training in women with obesity showed
changes in different classes of lipids [22]. Furthermore, the physical activity was associated
with lower TMAO levels, suggesting a possible new mechanism about physical activity as it
protects cardio-metabolic health [23]. However, the effects of supervised exercise training on
circulating TMAO and sphingolipid levels in subjects with obesity have not yet been reported.

Aerobic and strength training, when performed separately, have several benefits when
it comes to obesity [24,25], but recent research demonstrates how the combination of both
trainings (strength and aerobic) in the same session provides changes in levels ranging
from strength gain to improvements in cardiometabolic and changes in epigenetic patterns
in women undergoing combined physical training [26–28], achieving the benefits of aerobic
and strength training combined in the same training session.

Therefore, we hypothesize that combined physical training is an effective tool to
improve the metabolic system of women with obesity, protecting against cardiovascular
diseases through reducing TMAO and plasma sphingolipid concentrations, regardless of
weight loss. Therefore, we aimed to evaluate the effects of 8 weeks of combined physical
training on plasma TMAO and sphingolipid levels in women with obesity.

2. Materials and Methods
2.1. Ethical Aspects, Participants, and Study Design

This prospective study was conducted in compliance with the Declaration of Helsinki.
It was approved by the Research Ethics Committee of the University of the State of Minas
Gerais, Divinópolis Unit (protocol 67644723.8.0000.5115) and registered in ClinicalTrials.gov
(NTC 03119350). All subjects gave written consent for participation.

After the study was released, websites and social networks advertised the protocol.
Approximately 100 subjects were interested in participating in the study. However, the
inclusion criteria were as follows: women aged 20–40 years, BMI between 30 and 40 kg/m2,
steady weight, sedentary lifestyle, without other metabolic diseases, drug consumption,
bariatric surgery, or weight loss treatments. The 40 obese women met the inclusion criteria;
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however, only 20 obese women started the intervention, and 14 obese women finished the
intervention (Figure 1).
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Figure 1. Flowchart.

The intervention program lasted 12 weeks (two weeks of evaluation before and after
the intervention, two weeks of physical exercise adaptation and physical test evaluation,
and eight weeks of the physical training program). All subjects were clinically evaluated
before and after the intervention of physical training.

2.2. Body Composition and Anthropometric Data Wall-Mounted Stadiometer

All participants were in an 8–10 h fasting state for evaluation. An electronic platform
Fiziola™ scale with a precision of 0.1 kg and a maximum capacity of 300 kg measured body
weight. A wall-mounted stadiometer with 0.5 cm graduation was used to measure body
height. The body composition was evaluated by the deuterium oxide dilution method [29],
each volunteer having received a dose of 1 mL/kg of 7% deuterium oxide (Cambridge
Isotope, Cambridge, MA, USA). Urine samples were collected before and three hours after
dose intake. Deuterium enrichment in urine samples was determined by mass spectrometry
as previously reported (Europa Scientific Hydra System, Cheshire, UK) [30].

2.3. Plasma Collection and Biochemical Quantification

Blood samples were collected after 8–10 h fasting in heparin tubes, and plasma was
separated by centrifugation. Creatinine, cholesterol, high-density lipoprotein cholesterol
(HDL-c), and triglycerides were assayed by spectrophotometer (Labtest Diagnóstica S.A®,
Lagoa Santa, Brazil).

TMAO and its precursors (betaine, choline, carnitine, and TMA) were analyzed by liq-
uid chromatography tandem mass spectrometry (LC-MS/MS) using a Xevo® TQD system
with an electrospray ionization interface and an Acquity H-Class® UPLC™ system (Waters
Corporation, Milford, MA, USA). All solvents were of chromatographic grade and ob-
tained from Biosolve® (Valkenswaard, The Netherlands). Standards were purchased from
Sigma Aldrich® (Saint-Quentin Fallavier, France). A set of standard reference solutions
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was prepared and serially diluted in acetonitrile to obtain a curve of 7 standard solutions
ranging from 0.05 to 10 µmol/L. From plasma samples (20 µL), TMAO and precursors were
extracted with 180 µL of acetonitrile containing exogenous internal standards at 3 µmol/L
(2H9-choline, 2H9-carnitine, 13C2-betaine, [13C3,15N]-TMA, and 2H9-TMAO). Samples
were mixed and centrifuged for 10 min at 10,000× g (10 ◦C). Supernatants were transferred
to small glass vials and analyzed by LC-MS/MS. From these samples, 10 µL (of TMAO and
precursors) were injected onto a C18 HILIC®-BEH column (1.7 µm particle size, 2.1 mm in-
ternal diameter × 100 mm length, Waters Corporation®), maintained at 30 ◦C. Compounds
were separated using a linear gradient of mobile phase B (98% acetonitrile, 0.1% formic
acid, 1.9% MQ water) and mobile phase A (10 mmol/L ammonium acetate, 0.1% formic
acid) at a flow rate of 400 µL/min. Mobile phase A was held constant for 1 min at 1%,
linearly increased from 1% to 45% over 6.5 min, held at 45% for 0.5 min, and returned to the
initial condition of 1% at 8.5 min, remaining constant for 2.5 min before the next injection.
Target compounds were detected by mass spectrometer (LC-MS/MS) with electrospray
ionization operating in positive ion mode (capillary voltage, 1.5 kV; desolvation gas flow
(N2) and temperature, 650 L/h and 350 ◦C; source temperature, 150 ◦C). Multiple reaction
monitoring modes were applied for MS/MS detection. Peak area ratios between unlabeled
compounds and their respective internal standards constituted the detector response. Stan-
dard solutions were used to plot calibration curves for quantification. Linearity, expressed
by mean r2 values greater than 0.998 for all compounds (linear regression, 1/x weighting,
excluding the origin), was achieved. Intra- and inter-assay imprecisions were less than 9.7%
for all compounds. Recoveries, assessed with internal standards, exceeded 96% [29]. It is
important to note that endogenous TMA was not detected in most samples and hence is
not documented here.

For the quantification of plasma sphingolipids, a set of standard reference solu-
tions, including sphingosine-1-phosphate (S1P; d18:1), nine species of ceramide (Cer),
and nine species of sphingomyelin (SM) (Avanti Polar Lipids, Alabaster, AL, USA), were
prepared by serial dilution with methanol to obtain seven standard solutions, ranging from
1–500 nmol/L for Cer, 2–1000 nmol/L for S1P, and 0.04–20 mmol/L for SM. From plasma
samples, 10 µL (of sphingolipids) were extracted with 500 µL of a methanol/chloroform mix-
ture (2/1, v/v) containing exogenous internal standards [IS; Cer (d18:1/17:0) 500 nmol/L; S1P
(d17:1) 500 nmol/L; and SM (d18:1/17:0) 5 µmol/L]. Samples were mixed and centrifuged
for 10 min at 20,000× g (10 ◦C), and supernatants were dried under a stream of nitrogen
gas and reconstituted in 100 µL of pure methanol for liquid chromatography tandem mass
spectrometry (LC-MS/MS) analysis, performed on a Xevo TQD mass spectrometer with
electrospray ionization interface and Acquity H-Class® UPLC™ system (Waters Corpora-
tion, Milford, MA, USA). Data acquisition and analysis were conducted using MassLynx1
and TargetLynx1 software version 4.1, respectively (Waters Corporation, Milford, MA,
USA). From these samples, 10 µL were injected onto an Acquity® BEH C18 reverse-phase
LC column, 2.1 Ø × 50 mm in length, where compounds were separated. The mobile
phases were as follows: Phase A: 5/95 (acetonitrile/water v/v) + 0.1% formic acid + 10 mM
ammonium formate solution, and Phase B: 50/50 (isopropanol/acetonitrile v/v) + 0.1%
formic acid + 10 mM ammonium formate. The U-HPLC elution gradient coupled to MS
was composed of the following: 60% Phase A at minute zero, decreasing to 1% at 4 min
and maintained until 5.5 min, returning to 60% at 6 min and remaining until 8 min before
the next analysis cycle. Sphingolipids were detected by MS with electrospray ionization
operating in positive ion mode (capillary voltage, +3 kV; desolvation gas flow [N2] and tem-
perature, 1000 L/h and 400 ◦C; source temperature, 150 ◦C). Multiple reaction monitoring
(MRM) mode was applied. Linearity, expressed by mean r², was >0.998 for all compounds
(linear regression, 1/x weighting, origin excluded). Intra- and inter-assay method impreci-
sions were evaluated in four separate experiments (six replicates for four concentrations),
with RSDs < 13%, <6%, and <9% for Cer, SM, and S1P, respectively. Recoveries were
assessed with IS and were >91% [31].
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2.4. Physical Performance Test

Physical performance tests were performed before and after 8 weeks of interven-
tion. The aerobic performance was evaluated by an adapted, incremental Shuttle walking
test [32]. It required the participants to walk/run up and down a 10-meter course, which
started at 4 km/h pf speed, increasing 0.28 m/s every 3 min by stage. The speed at which
the participant walked/ran was dictated by an audio signal and was interrupted when
subjects could not maintain the determined rhythm [33]. After each stage (3 min), 25 µL
of blood was collected to determine the lactate threshold. Lactate was determined by an
electrochemical lactometer (Yellow Springs™ Instruments model 1500 Sport). The fixed
point was used for lactating the threshold (lactate threshold 1 = 2.0 mM; lactate threshold
2 = 3.5 mM). A curve was constructed between lactate thresholds and the test’s speed per-
formed by the OriginPro versão 7.0 program (OriginLab Corporation®, Northampton, MA,
USA). To determine which speed the participants were at the time of both lactate thresh-
olds, the lactate threshold speed 1 (SpeedLT1) and lactate threshold speed 2 (SpeedLT2)
were estimated. Finally, the estimated maximum oxygen consumption (VO2max) was
determined, according to Heyward [34].

2.5. Physical Training Intervention

The intervention was executed in a Ribeirão Preto School Gym of the University of
São Paulo, 100% supervised. The subjects who completed the intervention had a mean
80% of participation in total days of training. The combined physical training (alternating
strength and aerobic exercise) consisted of 15 stations of strength exercises (for all the
main muscle groups) for 30 s (at least ten repetitions per exercise) alternated with 30 s
of jogging (between strength exercises). The strength exercises were performed in a cir-
cuit manner, alternating upper and lower limb exercises (flying chest, flexor, biceps, leg
extension, straight abdominal, calf raise, bench press, leg press, front pull, infraumbilical
abdominal, squat, press, lunge, triceps) with dumbbells and machines. The total circuit
was repeated three times. The physical training intervention lasted eight weeks (with a
frequency of 3 times/week with 55 min/day of duration and intensity of 75 to 90% of
HRmax), but before accounting for this time, two weeks of adaptation to the exercise
took place [35]. The intensity of training was controlled by the heart frequency meter
(Polar®) and rating of perceived exertion (RPE), according to Foster [36]. The same-trained
professional supervised all exercise sessions and the heart rate of participants. During the
intervention, we emphasized to all participants to keep constant food intake. There were
no diet intake restrictions.

2.6. Statistical Analyses

Descriptive statistics consisted of mean and standard deviation. After checking the
normality of the sample (Shapiro–Wilk test). The paired t-tests were used for group
comparison. The effect size was calculated by d-Cohen. Variation percentage was ob-
served by differences between baseline and post-intervention by the following formula:
fold-change % = ((Post − Pre)/Pre)x100); the percentage was presented in mean values.
Results were considered significant at p ≤ 0.05. All analyses were performed by Jamovi 2.3
version software.

3. Results

After combined physical training intervention, no differences were observed for
anthropometric data, except for waist circumference. However, there was an improvement
in physical performance (Table 1). The fat-free mass and fat mass, respectively, increased
by 4% and decreased by negative 4% (p > 0.05). The waist circumference also decreased
after training (p < 0.05). The increased VO2max by 8%, SpeedLT1, and SpeedLT2 by 12%
(p < 0.05). Just as we found an improvement in physical performance, in Table 2, it is
observed that there was a reduction in TMAO (95%CI: Pre 4.91–12.12 vs. Post 3.47–6.80),
independent of its precursors.
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Table 1. Anthropometric, body composition, and performance data before and after physical training
intervention from women with obesity.

Variables Pre Post p-Value d-Cohen

BMI (kg/m2) * 32 ± 2 33 ± 2 0.169 −0.389
Weight (kg) * 86 ± 8 87 ± 9 0.150 −0.408
%FM 47 ± 3 45 ± 5 0.312 0.281
%FFM 53 ± 3 55 ± 5 0.312 −0.281
Waist circumference * 93 ± 2 91 ± 2 0.027 0.664
Hip circumference 118 ± 7 117 ± 7 0.702 0.105
Waist/Hip rate 0.79 ± 0.08 0.77 ± 0.06 0.001 1.104
VO2max (ml/kg/min) * 35 ± 3 38 ± 3 0.002 −1.015
SpeedLT1 (km/h) 5 ± 1 6 ± 1 0.001 −1.134
SpeedLT2 (km/h) 6 ± 1 7 ± 1 <0.001 −1.483

Note—Data are expressed as means ± standard deviations (M ± SD). Paired T test. p ≤ 0.05. d-Cohen represents
effect size. Bold represent significant p-values. Abbreviations: BMI, body mass index; FM, fat mass; FFM, fat-free
mass; VO2max, maximum oxygen consumption; SpeedLT1, the speed of lactate threshold 1; SpeedLT2, the speed
of lactate threshold 2. * Published data [32,34].

Table 2. Biochemicals, TMAO, and precursors data before and after physical training intervention
from women with obesity.

Variables Pre Post p-Value d-Cohen Reference Value

Creatinine (mg/dL) 0.83 ± 0.9 0.84 ± 0.9 0.850 −0.051 0.6 and 1.2
Cholesterol (mg/dL) 177.1 ± 17.5 166.8 ± 18.2 0.049 0.581 <190
HDL-c (mg/dL) 29.8 ± 6.2 31.9 ± 10.2 0.281 −0.300 >40
LDL-c (mg/dL) 126.1 ± 20.6 115.4 ± 18.9 0.095 0.481 <130
Triglycerides (mg/dL) 110.8 ± 56.4 98.1 ± 49.2 0.143 0.416 <150
TMAO (µmol) 8.5 ± 6.2 5.1 ± 2.8 0.017 0.730 -
Choline (µmol) 1.7 ± 0.3 1.9 ± 0.4 0.235 −0.333 -
Betaine (µmol) 31.7 ± 7.5 32.3 ± 11.1 0.768 −0.080 -
Carnitine (µmol) 41.3 ± 7.5 41.0 ± 7.2 0.944 0.054 -

Note—Data are expressed as means ± standard deviations (M ± SD). Paired T test. p ≤ 0.05. d-Cohen represents
effect size. Bold represent significant p-values. Abbreviations: HDL-c, high-density lipoprotein cholesterol; LDL-c,
low-density lipoprotein cholesterol; TMAO, trimethylamine N-oxide, reference value [37]. There are no reference
values for TMAO and its precursors.

For the lipid profile, there was a reduction in total cholesterol (95%CI: Pre 168.0–188.2
vs. Post 156.3–177.3). When the analysis of sphingolipids was carried out, the physical
training intervention caused the reduction of concentration of 10 lipids, including ceramides
and sphingomyelin, with an increase in SIPd18:1 (Table 3).

Table 3. Sphingolipid concentrations in plasma before and after physical training intervention from
women with obesity.

Lipids Pre (nmol/L) Post (nmol/L) p-Value d-Cohen

S1P d18:1 366.27 ± 82.77 471.214 ± 75.87 0.003 −0.974
CER 16:0 201.88 ± 36.83 160.10 ± 50.19 0.028 0.659
CER 18:0 133.04 ± 60.77 104.79 ± 42.11 0.044 0.597
CER 20:0 14.87 ± 6.97 13.58 ± 4.62 0.498 0.194
CER 22:0 1909.23 ± 411.61 1421.06 ± 375.39 0.015 0.753
CER 24:0 265.79 ± 45.14 214.64 ± 67.71 0.072 0.523
CER 18:1 9.50 ± 2.38 7.81 ± 2.24 0.112 0.455
CER 20:1 7.83 ± 2.18 6.38 ±2.74 0.120 0.444
CER 22:1 7.18 ± 3.46 6.65 ± 2.45 0.588 0.148
CER 24:1 1098.98 ± 340.48 956.50 ± 370.26 0.329 0.271
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Table 3. Cont.

Lipids Pre (nmol/L) Post (nmol/L) p-Value d-Cohen

SM 16:0 54.64 ± 5.47 47.96 ± 9.05 0.024 0.681
SM 18:0 9.35 ± 2.64 7.37 ± 2.35 0.025 0.675
SM 20:0 18.34 ± 3.09 16.22 ± 3.90 0.059 0.553
SM 22:0 19.77 ± 2.95 17.01 ± 4.45 0.025 0.677
SM 24:0 20.44 ± 2.88 15.16 ± 5.63 0.003 0.963
SM 18:1 3.35 ± 0.81 2.80 ± 0.85 0.043 0.598
SM 20:1 1.19 ± 0.22 0.99 ± 0.282 0.047 0.586
SM 22:1 19.66 ± 2.99 18.50 ± 4.66 0.333 0.268
SM 24:1 34.49 ± 6.74 33.36 ± 9.48 0.682 0.112

Note—Data are expressed as means ± standard deviations (M ± SD). Paired T test. p ≤ 0.05. d-Cohen represents
effect size. Bold represent significant p-values. Abbreviations: S1P, sphingosine-1-phosphate; CER, ceramides;
SM, sphingomyelin.

4. Discussion

The 8 weeks of combined physical training were sufficient to promote protection
against cardiovascular diseases through the reduction of TMAO, ceramides, and sphin-
gomyelins. It also increases physical performance (VO2max, SpeedLT1, and SpeedLT2),
independent of weight loss.

The study did not show a change in total body weight attributed to the duration of
the training period since some studies have found weight loss only after ten weeks in
obese/overweight women [38,39]. Despite subjects keeping constant weight, the results
showed increased physical performance by enhancing VO2max, SpeedLT1, and SpeedLT2.
The enhancements are also indicators of lower pathological risk factors, independent of
weight loss [40]. In agreement with our data, Kong et al. [41] found similar results in women
with obesity/overweight after five aerobic training weeks. There were also body metabolic
changes with improved strength and aerobic performance that can prevent comorbidity
associated with obesity [40]. Physical activity is associated with improvements in car-
diometabolic health, with previously elucidated mechanisms including insulin resistance,
lipid metabolism, and chronic low-grade inflammation [42,43].

It is important to consider that the women with obesity in this study had a normal
lipid profile (except for HDL-C) and creatinine level within the references for the Brazilian
population. The lipid profile is an essential biomarker of CVD. In recent years, numerous
studies recognized the TMAO as an enhancer of cardiovascular risk via atherosclerotic
lesion development [8,10,15].

Our study found values within Brazilian standards for standards considered normal
for lipid profile, but a decreased level of plasma TMAO and total cholesterol after 8 weeks
of combined physical training. Bordoni et al. [44] evaluated a group of older women,
whether a 6-month l-leucine or l-leucine and l-carnitine supplementation combined with a
resistance training protocol. No differences between groups at basal levels were observed
for lipid profile and showed that l-carnitine supplementation increases TMAO level and
no significant effects on TMAO were exerted by training alone. Creatinine is an important
biomarker for assessing renal function, especially in people with obesity, due to kidney
disease risk factors [45]. The values found in our study are within the normal range of
0.5 to 1.1 mg/dL [37]. No significant changes were demonstrated after physical training on
plasma creatinine.

We found reductions in plasma concentrations of TMAO, a novel mechanism and
clinical marker of risk factors for cardiovascular disease [10]. Usually, studies show that
circulating levels of TMAO are sensitive to change through manipulation of dietary [46] and
that Erickson et al. [47] showed that changed TMAO levels after exercise and hypocaloric
diet. Nevertheless, the effects of exercise on TMAO remain controversial, as reports
showed decreased [48], increased [49], or unmodified [50] responses after physical train-
ing. However, an animal study showed that voluntary exercise could inhibit elevations
of gut macrobiotic-dependent metabolite TMAO [19]. In these studies, plasma TMAO
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concentrations were lower, leading to some biases in data interpretation [50]. The sys-
temic concentration of TMAO in an individual’s normal weight is between 0.5 µmol and
5.0 µmol [51,52]. Concentrations between 6.0 and 8.0 µmol are usually found in people
with heart failure [53]. In our study, the TMAO concentration found was 8.2 ± 6.4 µmol to
5.4 ± 2.8 µmol, changing to normal levels after the exercise intervention.

Normally, TMAO is produced by the intestinal microbiota [54]. While the microbiota
profile can be influenced by physical activity, particularly in obese adults [55,56]. In the
same sense, the body composition can be related to TMAO concentrations due to a positive
association between the fat-free mass, visceral fat, and plasma choline and carnitine [46].
Another study showed that TMAO was positively associated with adiposity [9].

Other variables analyzed and related to adiposity, ceramides, and sphingomyelins
were also reduced after the physical training intervention. The elevation of ceramides in
plasma has been related to obesity, increased insulin resistance, and a more significant
occurrence of cardiovascular diseases [57]. Specifically, ceramides (Cer 16:0 and Cer 18:0)
have been described as increased in people with obesity and may be negatively associated
with insulin sensitivity and body energy expenditure [58–60]. In the same way, ceramide
levels in plasma were correlated with higher BMI values [61,62]. High levels of ceramides
are also associated with increased hunger and weight gain, as they mediate ghrelin and
leptin signaling in the hypothalamus [63].

Studies have shown that ceramide levels are responsive to physical exercise interven-
tions, analyzed in plasma, adipose tissue, or skeletal muscle [64–66]. Corroborating our
findings, we found reductions in ceramides Cer 16:0, Cer 18:0, and Cer 22:0, considered
the most abundant ceramides in plasma [64]. Meanwhile, the only lipid that increased
after physical training was sphingosine-1-phosphate (S1P), following the same direction
as the study by Baranowski et al. [67], which shows an increase in S1P in the plasma of
20 healthy men after aerobic physical training sessions. The same result was found by
Ksiazek et al. [68] in 30 healthy men after eight weeks of aerobic physical training. It is be-
lieved that S1P is linked to high-density lipoprotein (HDL) and albumin. Thus, its increase
may be a mechanism with cardioprotective properties and is related to the benefits of the
effects of physical exercise on cardiovascular diseases [69]. Our data suggest that Cer16:0,
Cer 18:0, Cer22:0, and S1P could indicate the presence or absence of cardiovascular risk.

Ceramides also play an essential role in the metabolism of sphingolipids, which can be
converted into sphingomyelin (SM), which, following liver synthesis, is incorporated into
low-density lipoprotein (VLDL) [70]. Typically, sphingomyelins are accumulated in human
atherosclerotic plaques since low-density lipoprotein (LDL) is present in atherosclerotic
plaques and has high sphingomyelin levels [71]. Athletes have a lower concentration of
sphingomyelin when compared to obese people and people with type 2 diabetes melli-
tus [72]. Our study showed a reduction in ceramides, sphingomyelins, and total cholesterol
after the intervention with physical training.

This study describes a significant reduction of TMAO concentrations and sphingolipid
markers and an improvement in physical performance. These results are essential in
protecting cardiometabolic health. We hypothesized that these findings were consistent.
However, our study has some limitations, such as the low number of subjects, the short
time duration of physical training, and the indirect VO2max measure, and they deserve to
be confirmed in further studies (with the control group). Moreover, we did not monitor
the energy intake and diet of participants during follow-up. However, we reinforced it to
all participants to keep constant dietary intake habits. Usually, the studies that evaluated
the effects of exercise on plasma TMAO concentrations only gave recommendations to
increase physical activity levels or change the diet intake. Our study’s advantage is the
highly controlled supervised intervention on exercise, including frequency (days per week),
duration of each exercise session, and training intensity.



Metabolites 2024, 14, 398 9 of 12

5. Conclusions

The combined physical training reduced TMAO, sphingomyelin, and ceramide concen-
trations, while physical performance increased independent of weight loss. It suggests that
physical exercise could participate in cardiovascular risk protection in women with obesity.

TMAO is an independent risk factor for numerous metabolic diseases, while physical
exercise is a protective factor. This study concluded that 8 weeks of combined physical
training in women with obesity promoted improved metabolic health and protection
against other diseases, regardless of weight loss or dietary intervention.
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