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ABSTRACT 

 

Interpreting observed changes over time in Patient-Reported Outcomes (PRO) 

measures is still considered a challenge. Indeed, concluding an observed change at group level 

is statistically significant does not necessarily equate this change is meaningful from the 

perspective of the patient. To help interpret within and/or between group changes in the 

measure over time, the estimation of the Minimal Important Difference (MID) of the 

instrument – the smallest value that patients consider as a perceived change – is useful. In the 

last 30 years, a plethora of methods and estimators have been proposed to derive this MID 

value using clinical data from sample of patients. MIDs for hundreds of PROs have been 

estimated, with frequently a substantial variability in the results depending on the method 

used. Nonetheless, a rigorous assessment of the statistical performances of numerous 

proposed methods for estimating MIDs by experimental design such as Monte-Carlo study 

has never been performed. 

The purpose of this paper is to thoroughly depict a protocol for a large-scale 

simulation study designed to investigate the statistical performances, especially bias against a 

true populational value, of the common proposed estimators for MID. 

This paper depicts how investigated methods and estimators were retained after the 

conduct of a systematic review, the design of a conceptual model that formally defines what is 

the true populational MID value and the translation of the conceptual model into a model 

allowing the simulation of responses of items to a hypothetical PRO at two times of 

measurement along with the response to a Patient Global Rating of Change at the second time 

under the constraint of a known true MID value. A statistical analysis plan is depicted in order 

to conclude if working hypotheses on what could be appropriate MID estimators will be 

verified. Strengths, assumptions, and limits of the simulation model are exposed.  

Finally, we show how this protocol could be the basis for fostering future 

methodological research on the issue of interpreting changes in PRO measures. 

 

Key words: Patient-Reported Outcomes, Minimal Important Difference, Minimal 

Clinically Important Difference, Psychometrics, Simulation study, Monte-Carlo study 
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I/ INTRODUCTION AND OBJECTIVES 

In the field of human healthcare, Patient-Reported Outcomes (PROs) allow measuring 

quantitatively relevant subjective constructs such as fatigue, depression, pain, or Quality of 

Life [1,2]. These constructs can be assessed almost exclusively by any other means than 

taking the patient’s perspective into account. Their measure is of paramount importance to 

access their thoughts, feelings, or preferences, as they go through new medical experiences 

such as living with a chronic disease or engaging in an intensive therapeutic course. Most of 

the times, PROs are self-administered questionnaires, composed of multiple items (i.e., 

questions) with a pre-specified response format (usually a Likert scale or a Visual Analogous 

Scale) [1]. Using a measurement model (i.e., an algebraic mapping), responses to items are 

transformed into a quantitative measure of the latent construct of interest (i.e., latent as it is 

not observed directly but is supposed to explain the variability of the responses to the items) 

onto a measurement scale [3]. The most frequent measure that is used is called a score and is 

usually computed as the simple sum of codes affected to the responses to the items [4]. If a 

sufficient level of psychometric properties (i.e., in general, validity and reliability) are 

verified, the score can be taken as an appropriate ordinal measure of the construct of interest 

[4]. 

While the interpretation of the relevance of observed change in a PRO measure over 

time (e.g., before and after chemotherapy) is a topic of great interest in the field of healthcare 

psychometrics, it is still considered a challenge [3,5,6]. Indeed, first, PROs have a much 

shorter history of development than others historic measures in physics. Second and more 

importantly, due to the subjective nature of the targeted constructs, the calibration of scales is 

relative to internal standards in people’s mind (e.g., when assessing pain on a single Visual 

Analogous Scale item, it is the patient who defines what is “absence of pain”, what is “the 

most pain I have ever experienced”, and what change in the “true” level of pain constitutes a 

change of one unit in the measure) [7]. Therefore, the interpretation of a change on such a 

scale is often considered difficult by clinician and researchers. When, for example, an average 

increase of 4 points in Quality of Life on a scale from 0 to 100 is observed on a group of 

patients over time, a rejection of the null hypothesis of no change using a test statistic is not 

sufficient to assume this change is meaningful for the patients [8]. 

To enhance the interpretability of observed change in PRO scores over time, the 

search for a relevant threshold allowing the partition of patients as having experienced a 

meaningful change in PRO scores or not is a frequent strategy [9]. This threshold has been 
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defined by the US Food and Drug Administration since 2009 as the responder definition: “the 

individual Patient-Reported Outcomes (PRO) score change over a predetermined time period 

that should be interpreted as a treatment benefit” [10]. This search for a responder definition 

value can be obtained through a choice of a numerous perspectives (e.g., from the point of 

view of a healthcare professional, or from the point of view of healthcare policy makers) [11]. 

The most frequent perspective is to estimate a threshold that has meaning according to the 

patient’s perspective. When doing so, this threshold is usually called the Minimal Clinically 

Important Difference (MCID) or Minimal Important Difference (MID). This notion was 

firstly defined by Jaeschke et al. in 1989 as follows: “the smallest difference in score in the 

domain of interest which patients perceive as beneficial and which would mandate, in the 

absence of troublesome side effects and excessive cost, a change in the patient's management” 

[12]. Since 1989, estimating the MID of a given PRO has been the subject of hundreds of 

studies on empirical clinical data [13,14]. 

Most methods to estimate a MID belong to two categories: anchor-based methods and 

distribution-based methods [5,13,15,16]. Anchor-based methods link the observed change in 

scores to an external indicator (the anchor) classifying patients as improved, worsened, or 

stable. The most used anchor is a Patient Global Rating of Change (PGRC) [14]. It is a single 

item used at the second time of measurement (e.g., after a surgery) assessing an overall 

feeling of perceived change since the baseline assessment [12]. An example would be: 

“Compared to before your surgery, overall, do you think your quality of life is now…”. 

Response options can be “a lot worse”, “a little worse”, “about the same”, “a little better”, 

and “a lot better”. This assessment of perceived change is then used to estimate a MID 

threshold. An example would be to estimate a MID as the mean of observed change in scores 

within the subgroup of patients who have experienced a little change according to the PGRC 

[15]. As anchor-based methods involve an explicit assessment of perceived change by the 

patient, they are frequently considered appropriate to estimate a responder definition threshold 

according to the patient perspective, despite being prone to recall bias [8,17]. On the contrary, 

distribution-based methods use exclusively the variability of PRO scores (either the score at 

baseline or the observed change in scores) as data to derive a MID [15,16]. They can be based 

on Cohen’s effect sizes [18]. An effect size is obtained by dividing the mean change in scores 

by the standard deviation of the baseline score. For example, based on data from studies in 

experimental psychology, Cohen has proposed that 0.5 effect size corresponds to a change 

“visible by the naked-eye”. This value is frequently used as a MID estimate [14,19]. 
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Distribution-based methods can also be based on discriminating an observed change as true 

signal from measurement error [15,16]. Based on empirical observations, 1 Standard Error of 

Measurement of the score at baseline is also frequently assumed to be a plausible estimate of 

the MID [14,20,21].  

Numerous methods and estimators have been proposed for deriving a MID value [13–

16]. However, to this date, there is no consensus on the appropriate method(s) to use. Little to 

nothing is known about the statistical performances of almost all estimators, especially bias 

against a true populational MID value. Therefore, some authors recommend to “triangulate” 

the MID of a given PRO by using multiple estimators from different family of methods to 

come up with a plausible range within which the true MID value is [22]. Nonetheless, the 

application of any statistical methods to empirical data, whether triangulated or not, does not 

allow studying their statistical performances, such as bias, as the “truth” behind the generation 

of the data is unknown. 

Monte-Carlo simulation studies are appropriate experimental designs to investigate the 

statistical performances of methods. They are "computer experiments (or in silico designs) 

that involve creating data by pseudo-random sampling from known probability distributions” 

[23]. Simulation studies must be used when the performances of a statistical technique cannot 

be assessed analytically because of complexity (e.g., a simulation study would be useless to 

study the sampling variability of a sample mean because theories like the Central Limit 

Theorem provide the necessary solution analytically). As true values of statistical parameters 

used to simulate data are known and therefore can serve as reference, simulation studies can 

be used to assess the statistical performances of methods such as bias under ideal 

circumstances or robustness to varying sample characteristics (e.g., sample size…) [23]. 

Simulation studies can be used to assess the statistical performances of a single method, but 

comparisons of the relative performances of multiple methods in estimating the same 

populational parameter can also be performed. In the realm of modeling longitudinal PROs 

data, they have been frequently used to assess the robustness of certain models to the presence 

of missing data in terms of bias, or power and control of type-I-error of complex algorithms in 

detecting phenomenon such as lack of measurement invariance [24–27]. Two aspects can be 

considered critical when designing a simulation study. First, as they are based on creating 

artificial data, a simulation model generating the data must be designed. While the model is 

almost certainly a simplification of the “true” data generation mechanism, it needs to be 

plausible (i.e., it needs to mimic a theory of data generation with sufficient plausibility). 
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Second, when conducting a simulation study, many methods can be assessed under many 

scenarios (e.g., variations in sample size or amount of missing data) and in each scenario 

pseudo-random sampling is replicated many times (to obtain sufficient precision in estimating 

statistics of interest such as bias). Therefore, these studies can produce a huge amount of data 

and proposing an appropriate statistical analysis plan can be challenging. Although these 

studies can have a high level of complexity and are built under strong assumptions, the 

methodology of a Monte-Carlo study is frequently under-reported in papers investigating 

methods for analyzing longitudinal PRO data [28].  

To our knowledge, we are currently performing, for the first time, a large-scale 

simulation study investigating the statistical performances of common MID estimators found 

in the literature under various scenarios, by simulating responses to the items of hypothetical 

PROs and to a PGRC at two times of measurement under the constraint of a known true MID 

value. To do so, we have faced numerous conceptual and methodological challenges and our 

simulation model is built under specific assumptions. Therefore, the objective of this paper is 

to propose a comprehensive protocol describing the details and assumptions of our 

experimental design. 

First, we will briefly describe how we have selected the methods for estimating a MID 

we have investigated in this study and what are their characteristics. Second, we will 

summarize an overarching conceptual model we have built [29]. This model is a proposed 

theory describing the relationships between the different agents that are engaged when people 

answer to a PRO at two times of measurement and to a PGRC at the second time. This 

conceptual model allows us to formally define the MID as a statistical parameter in the 

population. Third, from the conceptual model, we will deduce working hypotheses on the 

plausible appropriate estimators of a MID. Fourth, we will describe in detail the different 

steps of the simulation model and its assumptions. We will also describe the scenarios we 

have simulated. Fifth, we will propose a statistical analysis plan for some of the investigated 

scenarios to confirm or not our hypotheses. Last, we will discuss the implications of the 

assumptions and the limits of our simulation study.  

 

II/ PREREQUSITES  

1. Methods for estimating MIDs retained in this study 
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A systematic literature review was conducted from February 2017 to January 2018 on 

articles published between January 1989 (the year the MCID was defined) and February 2017 

[14]. Included articles were any study about a PRO (according to the Food and Drug 

Administration definition [10]) and in which there is a report of at least one empirical estimate 

of a MID, published in English or French. We searched potential articles to be included using 

MEDLINE and PsychInfo databases. A search for references within reviews of the MID 

concept was also performed and has helped to identify the first papers published in the early 

1990s. Because we wanted to capture an a-priori unknown number of methods, the search 

equations (MesH terms, free text terms and synonyms) were designed to be of high 

sensitivity. 

In the end, 328 articles were included, which corresponds to 474 PROs assessed (269 

unique). The characteristics of 945 MID estimates were collected and a qualitative and 

quantitative analysis was performed to identify and classify the methods for MID estimation 

that we found. First, as the distinction between anchor-based and discrimination-based 

methods is consensual, this first layer of classification was used for each estimator we have 

found. Then, within these two main categories, we have classified each estimator into 

subtypes based on their proximity in terms of statistical modeling to derive an MID value. For 

example, all distribution-based estimators based on the idea of using Cohen’s effect sizes 

were classified into the same subtype. Then, for anchor-based methods, additional 

characteristics were collected and taken into considerations for designing the simulation 

study. These characteristics are the number of response categories to the PGRC, the way the 

answers to the PGRC are used to define the group that is considered to have experience a 

“little change” or as having experienced “a change”, the way the answers to the PGRC are 

used to define the group that is considered to have been stable. These additional 

characteristics can modify the way certain subtypes (or sometimes all subtypes) are used to 

derive a MID value, thus increasing the number of methods for MID estimation. These 

characteristics, as well as the subtypes for which they apply, are described further in the 

manuscript when appropriate and are summarized in Table 1. For the rest of the manuscript, 

we will make the distinction between a MID estimator (i.e., the subtype) and a method for 

MID estimation (the whole process for deriving a MID value). It would not be manageable to 

fully describe each method within the manuscript. A comprehensive description of each 

method retained in this study is available as a supplementary material (eText1). 
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Regarding anchor-based methods, 31 different estimators were found. We have 

classified them into five subtypes: 1. the use of the mean of the “little change” group; 2. the 

search for a discriminative threshold between the “ change”’ group and the “stable group” 

using either Receiver-Operating Curve (ROC) analysis, predictive modeling by logistic 

regression, or discriminant analysis; 3. the mean of the “little change” group modeled by 

linear regression, 4. the use of the 75th percentile of the “little change” group, and 5. other 

various estimators. Then 21 distribution-based estimators were found. We have classified 

them into four subtypes: 1. those based on effect sizes, 2. those based on Standardized 

Response Means, 3. those based on measurement error, and 4. those based on the range of the 

scale of change in scores.  

We chose not to retain all estimators that were found. First, we have excluded 

estimators that cannot be assessed within our simulation framework (i.e., estimators using 

data from more than two times of measurement). Second, we have decided to exclude the 

estimators based on the mean of the “little change” group modeled by linear regression as we 

have considered these estimators as equivalent to the MID as the sample mean estimate of the 

“little change” group. Third, we have excluded estimators that were used in less than 1% the 

studies we have assessed. Last, an exception was made for the estimator based on predictive 

modeling by logistic regression. While this estimator was used in less than 1% of the studies 

we have assessed, this was the only estimator for which simulations studies suggesting 

interesting statistical properties were performed [30–32]. 

In the end, we have retained five main anchor-based estimators:  

1. the MID as the mean of the change in scores within the “little change” group 

according to the PGRC [12],  

2. the MID as the mean of the change within the “little change” group minus the mean 

of the change in scores within the stable group [33],  

3. the MID as the 75th percentile of the change in scores within the “little change” 

group [34],  

4 the MID as a threshold in the change in scores discriminating patients who are 

classified as having changed from those classified as not according to the PGRC using a ROC 

analysis [15],  

5. the MID as a threshold using predictive modeling where the threshold is 

algebraically derived from the estimates of a logistic regression with the classification of 
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patients as changed or not as the dependent variable and the change in scores as the 

independent variable [30]. 

Applying to all the anchor-based methods, two other design characteristics are 

explored in this simulation study. First, we found it is frequent to estimate a MID for 

improvement (i.e., for patients who feel they are better at the second time of measurement) 

and a MID for deterioration (i.e., for patients who feel they are worse at the second time of 

measurement). This study explores both cases. Second, the number of response categories to 

the PGRC can vary: it can be five (“a lot worse”, “a little worse”, “stable”, “a little better” “a 

lot better”), seven (“a lot worse”, “somewhat worse”, “a little worse”, “stable”, “a little 

better”, “somewhat better”, “a lot better”) or three (“worse”, “stable”, “better”) [14]. 

Anchor-based methods using ROC analysis or predictive modeling are two estimators 

grounded in the idea of discriminating two populations with the best threshold value possible 

(i.e., the MID estimate). They require classifying some or all the patients into two groups 

based on the answers to the PGRC: 1. those classified as having experienced a change and 2 

those classified as not. We explore four different ways of using the responses to the PGRC to 

classify the patients into two groups (changed or not) (Figure 1): 1. “little change” patients 

only versus stable patients only, 2. “little change” patients only versus the rest of the patients, 

3. “little + somewhat change” patients versus stable patients (PGRC with 7 categories only),  

4. “little + somewhat change” patients versus the rest of the patients (PGRC with 7 categories 

only) [14,35].  

For anchor-based methods based on ROC analysis, a statistical criterion for 

discriminating the patients that have changed from those that have not has to be used. The 

choice of the criterion can have an impact on the MID estimate. We explore five different 

criteria for finding the MID threshold:  

1. the point the closest to the top-left of the cartesian plan in Euclidian distance,  

2. the point maximizing the Youden index,  

3. the point allowing obtaining at least a specificity of 80%,  

4. the point allowing obtaining a specificity of 100%,  

5. the point allowing obtaining a sensitivity of 100% [14].  

For the predictive modeling estimators, two algebraic ways of deriving the MID 

estimate were proposed: 1. a crude one and 2. an algebraically adjusted one on the observed 

proportion of patients who have changed according to the PGRC [30,31]. The study explores 

both estimates. 
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Finally, we have retained eleven distribution-based estimators. Three are based on 

effect sizes: the MID as 0.2 effect size, 0.5 effect size, or 0.8 effect size. Three are based on 

standardized response means: the MID as 0.2 standardized response mean, 0.5 standardized 

response mean, or 0.8 standardized response mean. Three are based on the measurement 

error: the MID as 1 Standard Error of Measurement, 1.96 Standard Error of Measurement or 1 

Minimal Detectable Change [15,16]. Two are based on the range of the scale of the change in 

scores: 8% of the range of the change and 7% of the total change possible [14]. These 

estimates do not distinguish the MID for improvement from the MID for deterioration.  

In all, the study investigates 70 MID methods for MID estimation. Their classification 

is summarized in Table 1. 

2. A conceptual model defining the “true MID” as a populational value 

Since the inception of the MCID notion in 1989, empirical estimates of this parameter 

were performed on hundreds of clinical datasets [13,14]. Nonetheless, the MID was never 

formally defined. The lack of definition of a true MID as a populational parameter was a 

major caveat for our simulation study. Indeed, to investigate the bias of the proposed methods 

for estimating MIDs, it is necessary to simulate data under the constraint of a known 

populational MID value which is the “truth” against which sample estimates are compared. 

Therefore, before planning the simulation study, we have proposed a conceptual model 

describing the relationships between the agents engaged when patients answer to PROs items 

at two times of measurement and to a PGRC at the second time of measurement [29]. From 

this model, we were able to propose a formal definition of the true MID value. This proposal 

was fully developed in a previous paper [29]. The development of this conceptual model was 

based on an adaptation of an already existing model: the Rapkin and Schwartz model, 

published in 2004 [36]. This model describes the agents engaged in explaining change in 

Health-Related Quality of Life over time, using concepts from the field of psychology of 

survey response [37]. Briefly, first, we have adapted this model such as it describes the agents 

engaged in explaining the level of any subjective construct at two times of measurement. 

Then, we have postulated the necessary occurrence of two additional cognitive constructs (the 

perceived change and the remembered baseline level of the latent trait (which will be 

described further)) to explain how someone answers to a PGRC at a second time of 

measurement, and we have delineated their plausible relationships with the other agents. 

Plausible paths between the different agents were proposed based on the literature. Finally, 
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from the model, we were able to propose a plausible definition of the MID at the populational 

level.  

As mentioned in the introduction section, a responder definition threshold can be 

estimated from several other perspectives than the patient perspective. In addition, the concept 

of the MID has generated various debates. Some of these issues involve the distinction about 

getting a threshold that characterizes a change as “minimal” versus “meaningful” or the non-

ambiguous meaning of “important” [38]. Thus, to be specific, we need to clarify what 

perspective we adopt. The responder definition threshold we define corresponds to the 

minimal amount of change in PRO scores that is subjectively considered a change by the 

patient. We call it the “Minimal Perceived Change” (MPC) and its definition is “the minimum 

amount of change in PRO scores over time that is perceived by a person as a nonstable 

trajectory” [29]. Therefore, for the rest of the manuscript, we will use the term MPC instead 

of MID. 

The full conceptual model is presented in Figure 2. A construct of interest (e.g., 

Quality of Life, fatigue…) is measured at two times (SCt1 and SCt2). To answer the PRO 

items at each time of measurement, personal appraisal processes are elicited. These are the 

cognitive processes that are needed to select the desired answers to the items (A2 and A6 

bidirectional paths). Between the two measurements, there is the occurrence of a catalyst: one 

or multiple event(s) or life experience(s) susceptible to trigger a change in the target construct 

(e.g., the diagnosis of a cancer susceptible to decrease Quality of Life) (S4 path) [39]. The 

catalyst can trigger psychological mechanisms to buffer the effect of the catalyst on the target 

construct (C3 then C4 paths). Antecedents are more or less stable personal or environmental 

characteristics (e.g., personality, socioeconomic status) which set the baseline conditions. 

Answering the PGRC at the second time of measurement is a process that appraised a 

cognitive construct we call the perceived change: an overall feeling of change conceived as 

continuous. To elicit this feeling of Perceived Change in someone’s mind, there is a need to 

remember what the level of the target construct at baseline was (SCt1mem). The P2 path 

represents the ability of correctly remembering what the baseline level was. But SCt1mem can 

also be reconstructed from the present state (P5 path). Antecedents can explain the ability to 

remember (P1 path) as well as the catalyst and psychological mechanisms (e.g., a head trauma 

resulting in memory impairment) (P3 and P4 paths). Finally, the level of perceived change is 

set as the difference between SCt2 and SCt1mem (P7 minus P6 paths). 
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Then, selecting a response category to answer a PGRC is akin to discretize a 

continuous state (i.e., the level of perceived change) into one of the proposed answers. To 

achieve this, one needs to set several thresholds of perceived change values defining the 

bounds for switching from one category to the next (e.g., from “the same” to “a little better”). 

We denote these PGRC thresholds ��, and for a PGRC with K categories, there are K-1 Τ�. By 

comparing the level of perceived change with adjacent Τ�, one can select the desired answer 

to the PGRC. As appraisal processes are psychological personal characteristics, we assume 

each Τ� is a random variable with a distribution in the population (i.e., calibrating the value of 

the thresholds on the perceived change scale is relative to internal standards). If Τ� and Τ�� 

are the perceived change values for switching from “the same” to “a little change” (either 

improvement or deterioration), they therefore have a distribution in the population with a 

location and dispersion parameter: ��~�(
� , �) and ���~�(
�� , ��). The MPC for 

improvement is therefore ���� = 
� and ���� = 
�� (Figure 3). 

 

III/ WORKING HYPOTHESES 

Because we have formally defined what is the true population MPC value, we are also 

able to deduce hypotheses about what could be appropriate estimators of the MPC (these 

hypotheses were already partly exposed in the paper about the conceptual model) [29]. 

First, among anchor-based methods, we hypothesize that appropriate estimators which 

indeed target the populational MPC value are the ones based on discriminating the population 

of unchanged patients from whose who have changed according to the response of the PGRC. 

Thus, we hypothesize than estimators based on ROC analysis or predictive modeling will be 

unbiased estimators of the populational MPC, at least under the assumption of a perfect 

recollection of the SCt1 value at the second time of measurement. In addition, we hypothesize 

distribution-based methods, as they do not use the data obtained from the response to the 

PGRC, can target the populational MPC value by chance only and thus will all be biased in 

this simulation study when averaging the results on all the explored scenarios. 

Three simulations studies from the same group of researchers have been published 

about the statistical performances of predictive modeling against ROC analysis (using the 

Youden index) [30–32]. If there are major differences between their simulation model and 

ours (it is discussed below in the paper), we do think some of their conclusions can be the 

basis of specific hypotheses our study can confirm or not. Two main results of their studies 
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are of interest and can be investigated in our study. First, under ideal circumstances (perfect 

recollection of the value of SCt1 and a proportion of improved or worsened patients equal or 

close to 50% according to the response of the PGRC), estimators based on predictive 

modeling or ROC analysis are unbiased, but those based on predictive modeling exhibit a 

better precision. Then, when the proportion of improved or worsened patients is not equal or 

close to 50%, the adjusted estimator based on predictive modeling will be the only one 

unbiased. 

 

IV/ SIMULATING SAMPLES OF PATIENTS 

1. Overview 

The simulation model allows us to simulate responses to items at two times of 

measurement and a response to a PGRC at the second time. The model is an 

operationalization in variables and mathematical functions of the conceptual model. The aim 

is to obtain simulated empirical samples of people drawn from a population with known true 

parameters while respecting a trade-off between simulating plausible conditions and ease of 

simulation. 

To simulate all the necessary data for a given dataset, three main steps are required 

(Figure 4): 

1. the simulation of responses to items of a PRO questionnaire at two times of 

measurement (red and orange boxes of Figure 4). Each time, the responses are 

supposed to be caused by the level of a unique latent trait (�(�) and �(�)) (i.e., 

hypothesis of unidimensionality). The latent trait operationalizes the hypothetical 

construct of interest (i.e., SCt1 and SCt2; e.g., Quality of Life, fatigue, pain, 

depression, anxiety). It has a distribution in the population with a mean and 

variance. The level of the latent trait is correlated at the populational level between 

the two measurement occasions; 

2. the simulation of necessary variables and structural relationships to estimate for 

each person an individual level of SCt1mem (the remembered baseline level of the 

latent trait) and perceived change (blue box of Figure 4); 

3. the simulation of a response to a polytomous PGRC at the second time of 

measurement. It is obtained by a process of discretization of the individual level of 
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perceived change (conceived as continuous) onto one discrete state (i.e., the 

response to the PGRC) (green box of Figure 4). 

 

2. Generating responses to items at two times of measurement 

The purpose of this first step is to simulate plausible individual polytomous responses 

to items at two times of measurement for each person of a hypothetical dataset under two 

constraints: a known distribution in the population of the latent traits (i.e., the 

operationalization of the construct of interest as variables) at both times of measurement, and 

the simulation of responses to item of an hypothetical PRO questionnaire with an adequate 

level of reliability and structural validity (i.e., assuming the hypothesis of unidimensionality). 

To do so, a measurement model such as a longitudinal Partial Credit Model (lPCM) 

from Rasch Measurement Theory (RMT) can be considered adequate [25]. The choice of a 

model coming from the RMT allows satisfying the fact that the simple sum score of the code 

affected to the responses to the items is an adequate ordinal measure of the concept to 

measure (latent trait). Indeed, models coming from the Rasch Measurement Theory verify the 

property of the sufficiency of the score on the latent trait : for each value of the score, there is 

only one possible estimation of the latent trait [40]. 

Let simulate the responses of N patients to J polytomous items. We assume that the 

items have M positive response categories, and these measures are repeated 2 times on the N 

patients of the study. The response of patient i (i = 1;…;N) to an item j (j = 1;…; J) at time t 

(t = 1;2) is denoted by ���(�). 
The measurement model is as follows: 

� ����(�) = ℎ|��(�), ���, … , ��� ! = "#$ %&'(())�∑ + ,-()),./ 0
∑ "#$ �1'(())�∑ + ,2,./ !3 2.4  (Eq 1). 

With: ℎ: a specific possible answer to item j, 

��(�): level of latent trait of patient i at time t, 

5��67: item threshold of item j (l = 1;…;m9). 
It models the probability for an individual i to answer h to item j at time t as a function 

of a person characteristic (its level of latent trait θ;(<)) and a characteristic of the items called 

item threshold parameters 5δ9>7. For an item j with m+1 response categories (modalities), 
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there are m9 item threshold parameters. When an item has high values of item thresholds, a 

high level of latent trait is necessary to have a high probability of answering the highest 

modality of the item (e.g., if the latent trait is physical functioning, a corresponding item 

could be “How is it easy for me to run a marathon”: a very high level of physical functioning 

is required to have a high probability to answer the highest category (“Very easy”)). 

Contrarywise, an item with a low level of item thresholds could be “How is it easy for me to 

run 20 meters”.  

The latent trait is distributed as follow: �~? @%A(�) = 0A(�) 0 , %C�(�) = 1  EE C�(�)0F with 

A(�) the mean value of the latent trait at time t, C�(�) the variance at time t, and E the between-

time covariance.  

The matrix of items thresholds 5δ9>7 is chosen to reflect a well-adapted questionnaire 

for the population: the global item distribution is centered on α(�) = 0 at time 1 and the 

respective items thresholds are regularly spaced to cover the whole distribution of the latent 

trait while avoiding floor and ceiling effects. A graphical illustration for 5 dichotomous items 

and a distribution of the latent trait θ(�)~N(A(�) = 0, σJ(�)� = 1) is proposed as Figure 5. 

Therefore, the random draw of items thresholds is as such: 

- ∀j δ��∗  are the j/(J + 1)<Q percentiles of N~(0,1) if θ(�)~N(α(�) = 0, σJ(�)� = 1),  

- ∀j δ�6∗ = δ��∗ + 2(S − 1)/(U� − S) for 1 < l ≤ m9, 

- δY = ∑ ∑ δ ,∗3 ,./  ./∑ �   ./ , 

- ∀Z, S δ�6 = δ�6∗ − δY. 

An example with J = 5 and ∀j, m9 = 3  would be: 

5δ9>7 =
\
]̂

−1.962 −0.962 −0.038−1.432 −0.432 0.568−1.002−0.572−0.032
−0.0020.4280.968

0.9981.4281.968 f
gh. 

We assume people appraise the items at time 2 the same way than time 1. Thus, the 

items thresholds remain constant from time to time (i.e., longitudinal measurement invariance 

is assumed). 
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Simulated values for each person of correlated latent traits level at time 1 and time 2 

are as follow: 

- for each patient, i, values are randomly drawn for two independent variables Z1 

and Z2: i�~?(0,1) and i�~?(0,1), 

- at time 1: ��∗(�) = i��, 
- at time 2: ��∗(�) = Ei�� + j1 − E�i�� ,, 
- it follows: �∗~? k�00! , %1  EE 10l. 

These “standardized” latent traits are then transformed to obtain individual latent traits 

values drawn from the desired distribution at time 1 and 2: 

- ��(�) = ��∗(�) × C'(�) + A(�), �(�)~?(A(�), C'(�)� ), 

- ��(�) = ��∗(�) × C'(�) + A(�), �(�)~?(A(�), C'(�)� ), 

- it follows nop(�(�), �(�)) =  E. 

Finally, for each person, the responses to the items are simulated as follow: 

- q��&� = � ����(�) = ℎ(�)|��(�), ���, … , ��� ! (calculated using Eq 1), 

- rst~u(0,1),  

- X;9(<) = h if ∑ p;9Q<Q��y < uni ≤ ∑ p;9Q<Qy . 

This algorithm to simulate the responses to the items permits a stochastic attribution of 

values and therefore simulate the occurrence of measurement error. 

 

3. Generating the individual values of the perceived change 

For simulating individual values of perceived change, the simulation of individual 

values of SCt1mem (the remembered baseline level of the target construct) is first required. 

SCt1mem is conceptualized as a function of the level of the target construct at time 1 and time 

2, and as a function of other contingencies (antecedents, catalyst, mechanisms (Figure 2 and 

Figure 4)). As at least antecedents and mechanisms at time 2 can vary between individuals, it 

makes sense to represent in the model the effect of the other contingencies as a random 

variable with different values for everyone and not just by a fixed “disturbance coefficient”. 
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For the sake of simplicity, the remembered baseline level of the latent trait is modelled 

as a linear function of three variables: 

��}(�) = ~���(�) + ~���(�) + ~�u� (Eq 2). 

With: 

��}(�): level of remembered baseline level of the latent trait of patient i at time 2, 

u�, u~?(�� = 0, C�� = 1): level of the random variable pooling the specific influences of 

other contingencies (i.e., antecedents, mechanisms, possibly the catalyst) not already 

explained by the value of ��(�) and ��(�). 
~�, ~�, ~�: the relative importance of each of the three variables on determining ��}. 

By constraint: ~� + ~� +  ~� = 1. 

As θ�(�) is a linear combination of θ(�), θ(�) and U, each following a normal 

distribution, it follows: �}(�)~?(�'�(�) = ~�A(�), C'�(�)� = ~�� + ~�� + ~�� + 2~�~�E), (see 

analytical proof in Supplementary eText2). 

By varying the value of β� and β�, it is possible to simulate different situations. For 

example, β� = 1 corresponds to a situation where the latent trait level at baseline can be 

remembered perfectly. 

Finally, the individual perceived change level is determined as follows (Figure 4): 

��$1(�) = ��(�) − ��}(�)
(Eq 3). 

With ��$1(�): level of perceived change of patient i at time 2. 

It follows: �$1(�)~?(�'�2(�) = A(�)(1 − ~�), C'�2(�)� = 1 + ~�� + ~�� + ~�� +
2(~�~�E − ~�E − ~�)) (Eq 4) (see analytical proof in Supplementary eText2). Supplementary 

eTable1 shows the values of the true correlation in the population between the true change 

(θ(�) − θ(�)) and the perceived change (θ��(�)) as a function of different values of β�, β�, and 

β�. 

 

4. Generating the responses to a PGRC under the constraint of a known 

populational MPC value 
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A response to a categorical PGRC is akin to truncate a latent continuous indicator (i.e., 

the perceived change (θ��(�))) following a normal distribution. Thus, for a PGRC with K 

categories of responses, there are K-1 PGRC thresholds (with K an uneven natural number at 

least equal to 3). These thresholds are values defining how the categories of the manifest 

ordinal indicator (i.e., the PGRC) and the latent continuous indicator (i.e., the perceived 

change) are related. These PGRC thresholds are the values at which there is a switch from one 

category to another of the observed categorical indicator. We assume these PGRC thresholds 

are random variables: their values vary between individuals in the population of interest.  

Let simulate the responses of N patients to a PGRC at time 2 (Y with K categories of 

possible responses). This response is denoted ��(�). For a PGRC with K categories, there are 

K-1 PGRC thresholds (��) with � = �−1,1� if K = 3, � = �−2, −1,1,2� if K = 5 and � =�−3, −2, −1,1,2,3� if K = 7 defining the symmetrical position of the threshold from 0 (the 

hypothetical point of no perceived change at all). 

Each PGRC threshold is a random variable with a distribution in the population. We 

assume the shape of a Gaussian distribution, thus: ��~?(
�, ��). 

To set the distribution of the PGRC thresholds, we can scale them as a function of the 

number of response categories of the PGRC (K), and on the standard deviation of the 

perceived change (θ��(�)) as follows: 

��~?(
� = �t�s(�) ����2(�)(�|�|��)
��� , �� = � ����!�)  (Eq 5). 

With �t�s(�) = 1 if s > 0, �t�s(�) = −1 if s < 0, and D a dispersion factor which can take 

a real value. 

With this operationalization of the mean and variance of the PGRC thresholds in the 

population, we assume:  

- a symmetry of the thresholds around 0 (the point of no perceived change at 

all), 

- an equal interval between each of the thresholds on the same side of the 

distribution of the perceived change from 0, 

- the distributions of the thresholds are a function of the number of response 

categories K to the PGRC, with K an uneven natural number at least equal to 3, 

- the variance of each threshold is the same (for a given k). 
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We can note:  

- ��~?(
� = ����2(�)��� , �� = � ����!�) (Eq 6.1),  

- and ���~?(
�� = − ����2(�)��� , �� = � ����!�) (Eq 6.2). 

It follows:  

- ���� = 
� = ����2(�)���  (the true MPC value for improvement in the 

population), 

- ���� = 
�� = − ����2(�)���  (the true MPC value for deterioration in the 

population). 

Finally, for a patient i, the response ��(�) to the PGRC at time 2 is determined by: 

��(�) =
\
]]̂

t� ���,� <  ��$1(�) ≤ ��,� → 0�S�� t� ��$1(�) ≤ ����(�),� → − �����S�� t� ���#(�),� ≤  ��$1(�) → ���� .
�S�� t� ���� <  ��$1(�) ≤ �� → � f

gg
h

 (Eq 7). 

With ��,� the value of the PGRC threshold s of an individual i. 

A comprehensive formal definition of random variables and parameters of the study is 

proposed in Supplementary eText2. 

 

5. Simulation parameters and explored scenarios 

In this study, several person parameters or PRO characteristics have unique values for 

all the scenarios that are explored, as either these characteristics are constrained fixed values, 

or it seems plausible they do not explain a potential variation in the statistical performances of 

MPC estimation. Contrarywise, there are other parameters which will vary from scenarios to 

scenarios, as it seems plausible they can explain bias in MPC estimation. For these 

parameters, we have selected either values that can be encountered when analyzing clinical 

data, or values for exploring specific situations. 

Person parameters with unique values for all the scenarios are: 

• the distribution of the latent trait level at time 1: θ(�)~N(α(�) = 0, σJ(�)� = 1), 
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• the variance of the latent trait level at time 2: σJ(�)� = 1, 

• the correlation between the two latent traits: cor(θ(�), θ(�)) =  ρ = 0.7, 
• the distribution of the variable representing the influences of several 

contingencies on remembering the baseline latent trait level at time 2: 

U~N(μ£ = 0, σ£� = 1). 

PRO characteristics with unique values for all the scenarios are: 

• the number of response categories to all the items: M = 4, 

• the matrix of items thresholds at each time of measurement 5δ9>7 (see values 

for each possible number of items in Supplementary eText2). 

Person or PROs characteristics or parameters that are explored from scenarios to 

scenarios are (Table 2): 

• the sample size: N = �200, 500, 1000�, 

• the true change in the latent trait over time: α(�) = �−0.8, −0.5, −0.2,
0, 0.2, 0.5, 0.8�, 

• the importance of θ(�) on determining θ�(�): β� = �0, 0.1, 0.2, 0.3, 0.5, 1�, 

• the importance of θ(�) on determining θ�(�): β� = �0, 0.1, 0.2, 0.3, 0.5�, 

• the variance of the PGRC thresholds: ζ�� = ¦� �§��!� , � y.¨§��!�© corresponding to 

D = 1 or D  = 0.5, 

• the number of items: J = �5, 10, 20�, 

• the number of response categories to the PGRC: K = �3, 5, 7�. 

The two different values of the variance of the PGRC thresholds (ζ��) were chosen to 

reflect a situation where thresholds are quite heterogeneous within the population or more 

homogeneous. The choices of 1 and 0.5 as the dispersion factor were also determined for 

ensuring a low probability of inadequate ordering of the PGRC thresholds along the perceived 

change continuum. If it happens during the simulation process, it is prevented by the 

following conditional statement: 

k t� �ª;«(�),� < �ª;«(�)��,� < ⋯ < �ª®(�)��,� < �ª®(�),� = ¯°±�² →  ³(�) = 0´ℎtS� ³(�) = 0 →  µp¶´ s�´ ��,� rs·tS  ³(�) = 1 l. 
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With ³(�) an indicator variable taking the value 0 or 1 for a patient i. 

For illustration, Figure 6 shows the distribution of thresholds on the scale of the 

perceived change for  K = 3, or 5; α(�) = 0 and  assuming θ�(�) is a perfect recollection of 

θ(�) (thus, β� = 1, β� = 0, β� = 0, in that case θ��(�)~N(0, 0.6)), for ζ�� = � �§��!�
.  

In the end, seven person or PRO characteristics can vary from scenarios to scenarios 

(Table 2). The combination of all these values leads to 9 828 explored scenarios. For each 

scenario, 500 sample replicates are simulated. 

 

V/ STATISTICAL ANALYSIS PLAN 

1. Prerequisites 

After the simulation of all the 500 sample replicates for the 9 828 explored scenarios, 

observed scores (i.e., the sum of the response to the items of the simulated PROs) are 

estimated at each time of measurement for all the individuals of all simulated datasets. This 

allows using the responses to the items as a basis for measuring the target construct using a 

measurement model which is the most common one (i.e., the sum of the codes affected to the 

responses to the items). Indeed, when performing the systematic review on all MID methods, 

we found that almost all MID estimates were obtained using this measurement model [14].  

Then, observed scores are scaled on a 0-100 continuum to express them on a common 

metric. Finally, using observed scores, MPCs are estimated for the aforementioned 70 

retained methods on all the simulated datasets. 

While the true populational MPC values are known in the same metric than the metric 

of the latent trait which is a continuum on the real line (and centered on 0 at the first time of 

measurement), MPC estimates are expressed on the score metric (i.e., a 0-100 continuum). 

Therefore, to estimate bias against true MPC values, we need to map these true values on the 

same metric than the metric of observed scores. True MPC values in the score metric are a 

function of the number of items J (3 different values), the number of response categories to 

the anchor K (3 different values) and the variance of the perceived change (C'�2(�)� ). The 

variance of the perceived change is a function of β�, β� and β� (26 different combinations) 

(see Eq 4). Thus, 234 different true MPC values are needed to be known in the metric of 

observed scores. 
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To get these true MPC values, we can simulate responses to the PRO items at two time 

of measurement of a sample of 100 000 individuals under the constraint of a true change 

equal to the simulated true MPC value in the metric of the latent trait (α(�) = ����2(�)��� ). Then, 

the mean of observed scores are estimated for the dataset. The average difference of observed 

scores at each time of measurement is an estimate of the true MPC value in the score metric. 

This procedure is repeated for each of the 234 conditions to get all true MPC values in the 

score metric for the corresponding scenarios. 

 

2. Analyses 

As a first study, we will focus exclusively on the 378 scenarios where β� = 1 (the 

θ�(�) is a perfect recovery of θ(�)) as this will allow analyzing the statistical performances of 

methods for MPC estimation under optimal conditions. These scenarios are the most 

appropriate ones to confirm or reject our working hypotheses.  

First, our main objective is to analyze the overall statistical performances of the 

proposed methods for MPC estimation by pooling the results of the 378 aforementioned 

scenarios. Here, when using a method based on ROC analysis or predictive modeling to 

estimate the MPCs, we will first restrict analyses to the situation where the responses to the 

PGRC are used to classify patients as improved or not by using the “little change” group 

versus “the rest of the patients” (see II.1 and Figure 1).  

For a given scenario, different indicators measuring the accuracy and variability of the 

MPC estimates for all the investigated methods will be used. These indicators will be 

averaged for the 500 replicates of the scenario. These indicators are: mean of the MPC 

estimates, variance of the MPC estimates, bias (difference between the estimate and the true 

MPC value), Mean Square Error (MSE, the square of the bias + the variance of the estimate), 

the Root Mean Square Error (RMSE). To answer our main objective, these different 

indicators will be averaged for the 378 investigated scenarios. 

Then, we will study several secondary objectives. These analyses will be restricted on 

the subgroup of methods declared as unbiased after the previous analyses (unbiased is defined 

as an average bias for the 378 scenarios within a range of minus or plus 1 point around the 

true MPC value (in score metric)).  
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A first secondary objective is to investigate the influence of the 4 ways of using the 

responses to the PGRC for classifying patients as changed or not (see II.1) on the different 

indicators. 

Then, another objective is to investigate the variability of the bias by the different 

conditions of the simulated scenarios (i.e., sample size, number of items…). To do so, for 

each globally unbiased MPC method, a linear model will be fitted with the estimated bias on 

the 378 scenarios as the dependent variable and the person and PRO characteristics (i.e., 

sample size, number of items, true change…) as the independent variables. Estimates of the 

model will be used to explore the robustness of the MPCs estimates under specific 

circumstances. 

Finally, the same linear model will be performed for the least globally biased methods 

but using the MSE instead of bias as the dependent variable. This model will also be 

performed for unbiased methods. This analysis will help to investigate the possibility than, 

compared to unbiased methods, the loss of accuracy could in specific circumstances be 

compensated by an increase in precision (reflected by a smaller expected MSE value). 

After analyses of the results under an ideal condition of a perfect recollection of the 

value of SCt1 at time 2, subsequent analyses will be focused on the influence of varying 

values of β�, β�and β� on the statistical performances of methods for MPC estimation. These 

analyses will be the focus of future works. 

 

VI/ DISCUSSION 

In this paper, we have thoroughly described a protocol for a large-scale simulation 

study investigating the statistical performances of many proposed estimators of the MIDs of 

PROs from the selection of methods to investigate, the conception of a theoretical model, the 

deduction of working hypotheses, the translation of the conceptual model into a simulation 

model to the statistical analysis plan. Several comments can be made. 

First, the design of this simulation study presents several strengths. Indeed, to our 

knowledge, this is the first simulation study investigating in detail the statistical performances 

of many methods for MID estimations selected after a systematic review of the literature, 

including both anchor-based and distribution-based estimates. Second, our simulation model 

is the operationalization of an overarching conceptual model. This allows a clear distinction 

between a theory of structural relationships linking hypothesized agents which are supposed 
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to play a role in explaining the generation of data, and the operationalization of these 

relationships and agents into mathematical functions and variables. In addition, it allows to 

formally define what is the populational MPC value. This separation between the conceptual 

and simulation models helps to avoid a situation where the simulation process and analysis of 

the results lead to a tautology. Indeed, Monte-Carlo study results can be criticized if they 

obviously exhibit the expected results because of the operationalization of the simulation 

process and not because of the statistical performances of the investigated method(s). Or, at 

least, the data generation mechanism can favor some methods over others [23]. In addition, 

the distinction between a conceptual and simulation model allows an adequate examination of 

the assumptions underlying the generation of data, as well as its limitations [41]. Moreover, 

formally defining what is the populational MPC value has helped to deduce hypotheses on 

what can be appropriate MPC estimators; and has helped to propose an appropriate statistical 

analysis plan with clear primary and secondary objectives, avoiding a “data mining” strategy 

of analysis. 

As aforementioned, three simulation studies have been performed to investigate the 

statistical performances of the estimator based on predictive modeling with sometimes a 

comparison against the estimator based on ROC analysis and Youden index [30–32]. As 

described in section III, it will be of great interest to see if the main results of these studies 

will be confirmed or not by the results of our simulation study. Nonetheless, the process of 

simulating data in these studies are quite different than the proposed process in our study. 

Thus, these differences need to be discussed as they can explain, in part, differences in results 

(if differences in results will be observed). Moreover, the simulation model used in Terluin 

and colleagues’ studies has evolved from study to study (we will compare our simulation 

model with the one used in their last study). A first fundamental difference is the fact Terluin 

and colleagues’ study simulate observed scored without simulating responses to items [32]. 

The simulation model used in this study assume these scores are obtained from items that are 

repeated parallel tests of the level of the construct of interest (i.e., all items measure the same 

construct, on the same scale, with the same item thresholds, and with the same amount of 

error) [32]. By simulating responses to items first, our model can be thought as more general, 

allowing us to investigate multiple issues that cannot be explored using the Terluin and 

colleagues’ simulation model, such as the impact of choosing a specific measurement model, 

investigation of the impact of missing answers to the items, or investigation of the impact of 

lack of measurement invariance such as differential item functioning or response shift. A 
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second fundamental difference is the definition of the populational MID, and the 

operationalization of classifying patients as having changed or not. In the Terluin and 

colleagues’ study, responses to a PGRC are not directly simulated [5]. Rather, patients are 

directly classified as having experienced a change or not by discretizing the distribution of 

thresholds reflecting a perfect relationship between change in the target construct and a 

hypothetical PGRC. Thus, in their study, structural relationships between the different agents 

involved in explaining responses to PRO items and to a PGRC are not operationalized, 

especially the relationships leading to the elicitation of perceived change values. Thus, their 

simulation model does not currently allow an explicit investigation of the influence of 

different agents (i.e., SCt1, SCt2, other contingencies) in explaining SCT1mem, perceived 

change and ultimately responses to the PGRC. Last, a minor remark would be to notice that in 

Terluin and colleagues’ study, baseline and final scores are simulated as uncorrelated [32].  

As assumptions of our simulation model are explicit, there is room to discuss its 

simplifications and implications. First, the different agents involved in our conceptual model 

are operationalized in the simulation model as variables measured on continuous scales 

following normal distributions. A clear advantage of this assumption is the possibility to 

simulate individual values drawn from a distribution with a shape perfectly subsumed with 

only first and second moment parameters (i.e., mean and variance). If this assumption seems 

reasonable for the distribution of the target construct (normal distributions of scores (a 

measure of the target construct) are frequently observed on empirical data) and is the 

assumption usually done in psychometrics [42], it is a conjecture for the other agents 

operationalized in our simulation model. Then, as we could not formulate an a priori on the 

shape of the relationships between SCt1, SCt2 and other contingencies (i.e., antecedents, 

catalyst, mechanisms) in explaining SCt1mem, we were restricted to operationalize this 

phenomenological relationship as a quite simple model which is a first-degree polynomial 

function where each agent has an additive and independent contribution. Then, it must be 

noted our simulation model assumes symmetrical regularly spaced distributions (with equal 

variance) of PGRC thresholds (Τ�) around the hypothetical point of no perceived change (see 

Eq 5 and Figure 6). An implication is a symmetrical value of the true MPC� and the MPC�. 

Finally, our simulation model assumes that populational MPC values are not fixed values 

between individuals but are also a function of the number of categories to the PGRC (see Eq 5 

and Eq 6). Specifically, when the number of response categories K increases, the MPC value 

decreases. The implication is we assume that, for a given individual, the MPC value is not an 
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intrinsic characteristic independent of the measurement process, but rather a value that is 

elicited because of the presentation of the PGRC. As such, our model assumes than when the 

granularity of response options to the PGRC increases, it elicits in people’s mind a different 

MPC value than the one elicited when presenting a PGRC with less granularity. We propose 

this assumption is plausible, but it is a theoretical argument only. 

Last, we can discuss the limits of our simulation study. First, our model does not allow 

to investigate the dependency of MPC values to baseline scores [32,43]. This phenomenon is 

frequently hypothesized based on empirical data (although a recent study from Terluin and al. 

shows this phenomenon can, in some cases, be wrongly hypothesized [32]). Second, our study 

does not investigate the occurrence of missing data, which is a frequent phenomenon in 

empirical studies about MID estimation [14,44]. Nonetheless, our simulation model could 

allow this investigation. Last, we assume the hypothesis of longitudinal measurement 

invariance of PRO scales holds. The violation of this hypothesis in the analysis of PRO 

longitudinal data is the subject of multiple empirical studies [6,45–47]. Because of a possible 

change in the meaning of a target construct over time, the hypothesis of longitudinal 

measurement invariance does not hold in some empirical situations. When this happens, 

observed change is not fully explained by target change: a phenomenon which is known as 

response shift [39]. The occurrence of a change in the meaning of the target construct between 

the two times of measurement could be an additional factor explaining bias in MPC 

estimations [48]. Our study assumes no response shift, therefore this impact of this 

phenomenon on bias cannot be currently assessed. Nonetheless, this could be addressed using 

our simulation model in further studies. 

 

VII/ CONCLUSION 

This study exposes a rigorous protocol for a large-scale simulation study, with a 

simulation model derived from a clear formal conceptual model, along with the assumptions, 

implications, and limits of the simulation process. Future analyses of the results of the study 

will help to confirm what are the appropriate methods for estimating the MPC of a PRO 

within ideal circumstances and explore the robustness of these methods under various 

conditions. 

Because our work delineates its explicit assumptions, we also hope it will not be 

viewed as prescriptive or normative, but rather as a proposal of a rigorous framework for 
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fostering future research and generate debates on the definition of what is a responder 

definition threshold from the patient’s perspective, what are the appropriate methods for 

estimating this threshold, and how future methods to estimate this threshold could be 

proposed. 
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Figure 1. Four different ways of classifying patients as changed or unchanged using the responses to a PGRC for estimating a MID using ROC analysis or predictive modeling 
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Figure 2. A theoretical model depicting the agents engaged when someone rates his/her level on a given PRO at two 

times of measurement and answers a PGRC at the second time (Source: Vanier at al. (2021) BMC Medical Research 

Methodology) 
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Figure 3. A definition of the MPC as a statistical parameter in the population. A: The measurement of perceived 

change by a PGRC. B: Defining the value of the MPC (Source: Vanier at al. (2021) BMC Medical Research 

Methodology) 
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Figure 4. A simulation model for generating responses to items of a given PRO at two times of measurement 

and a response to a PGRC at the second time of measurement 
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Figure 5. A hypothetical well-adapted questionnaire with 5 dichotomous items. Each vertical bar is an item threshold. 

The global item distribution covers the latent trait distribution 
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Figure 6. An example of the discretization of the Perceived Change into a response to the PGRC according to known true populational MPC value (for k=3 and k=5, when 

the SCt1 is perfectly recollected, with an absence of true change and º»¼ = � ½¾�½!¼
) 
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Table 1. Methods for estimating MIDs retained in the simulation study (specificities can be found in section II.1, Figure 1 and Supplementary eText 1) 

Main 
category 

Subtype of estimator Specific characteristics to certain methods 

Anchor-
based 

methods* 

Mean of the “little change” group 

K 
1. 3 
2. 5 
3. 7 

  
Mean of the “little change” group minus Mean of the “stable” 

group 
75th percentile of the “little change” group 

Best threshold using ROC analysis 
4 ways for classifying patients into two groups 

1. “Little change” versus “stable” only 
2. “Little change” versus “rest of the patients” 

3. “Little + somewhat change” versus “stable” only 
4. “Little + somewhat change” versus “rest of the patients” 

5 criteria 
1. Euclidian 
2. Youden 

3. Sp = 80% 
4. Sp = 100% 
5. Se = 100% 

Best threshold using predictive modeling 
2 estimators 

1. Crude 
2. Adjusted 

Distribution-
based 

methods 

Based on Cohen’s Effect Size   

3 estimators 
1. 0.2 effect size 
2. 0.5 effect size 
3. 0.8 effect size 

Based on Standardized Response Mean (SRM)   

3 estimators 
1. 0.2 SRM 
2. 0.5 SRM 
3. 0.8 SRM 

Based on measurement error   

3 estimators 
1. 1 Standard Error of 

Measurement 
2. 1.96 Standard Error of 

Measurement 
3. 1 Minimal Detectable 

Change 

Based on range of scale of change in scores   

2 estimators 
8% of the ranger of the 

change 
7% of the total change 

possible 

Notes: K= Number of response categories to the PGRC, Sp = Specificity, Se = Sensitivity 

            * All anchor-based methods can be used for estimating an MID for improvement and a MID for deterioration 
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Table 2. Varying characteristics in the different scenarios explored by the simulation study 

Characteristics Values 

Person characteristics  
Sample size (N) 200, 500, 1000 

True change in the target construct (¿(¼)) -0.8, -0.5, -0.2, 0, 0.2, 0.5, 0.8 

The importance of À(½) on explaining ÀÁ(¼) (Â½) 0, 0.1, 0.2, 0.3, 0.5, 1 

The importance À(¼) of on explaining ÀÁ(¼) (Â¼) 0, 0.1, 0.2, 0.3, 0.5 

The variance of the PGRC thresholds º»¼ % 1K − 10� , % 0.5K − 10�
 

PRO characteristics  
Number of response categories to the PGRC (K) 3, 5, 7 

Number of items of the PRO(J) 5, 10, 20 

 




