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Abstract: This study investigated how printing conditions influence the fracture behaviour of 3D-
printed acrylonitrile butadiene styrene (ABS) under tensile loading. Dog-bone-shaped ABS specimens
were produced using the fusion filament fabrication technique, with varying printing angles. Tensile
tests were conducted on pre-notched specimens with consistent pre-notch lengths but different
orientations. Optical and scanning electron microscopies were employed to analyse crack propagation
in the pre-notched specimens. In order to support experimental evidence, finite element computation
was implemented to study the damage induced by the microstructural rearrangement of the filaments
when subject to tensile loading. The findings revealed the simple linear correlation between the
failure properties including elongation at break and maximum stress in relation to the printing angle
for different pre-notch lengths. A more progressive damage was found to support the ultimate
performance of the studied material. This experiment evidence was used to build a damage model of
3D-printed ABS that accounts for the onset, growth, and damage saturation. This damage modelling
is able to capture the failure properties as a function of the printing angle using a sigmoid-like damage
function and a modulation of the stiffness within the raster. The numerical results demonstrated
that damage pattern develops as a result of the filament arrangement and weak adhesion between
adjacent filaments and explains the diffuse damage kinetics observed experimentally. This study
concludes with a topological law relating the notch size and orientation to the rupture properties of
3D-printed ABS. This study supports the idea of tailoring the microstructural arrangement to control
and mitigate the mechanical instabilities that lead to the failure of 3D-printed polymers.

Keywords: crack propagation; additive manufacturing; material extrusion; microstructure; finite
element computation; tensile behaviour

1. Introduction

Additive manufacturing (AM) is among the promising techniques used to design
technical parts with a large degree of freedom [1]. One of the main advantages of this
technique is the low dependence on the tooling to adapt designs and structures according
to the engineering needs [2]. In addition, the local control of the material deposition allows
adjusting locally the properties of the materials, which results in developing novel concepts
such as gradient-based materials [3], topologically optimised structures [4], metamaterial
designs [5], or some combinations of these concepts [6]. These possibilities of material
structuring enable several prospects in many research areas such as aeronautics [7], bio-
engineering [8], civil engineering [9], food [10], and automotive [11]. All processes that use
the deposition layer-by-layer framework from digitalised models can be categorised as an
additive manufacturing technology. Several techniques fall within this definition, such as
stereolithography [12], polyjet [13], selective laser sintering [14] and melting [15], digital
light processing [16], electron beam melting [17], laser engineered net shaping [18], and
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material extrusion [19]. The last process is a popular way to design polymeric materials
ranging from single materials such as polylactic acid (PLA) [20] and acrylonitrile butadiene
styrene (ABS) [21], to composites with different types of fillers [22]. Several contributions
focused on the ultimate properties of ABS under tension. Mogan et al. [23] studied the
thermo-mechanical properties of ABS/stainless steel composite using material extrusion.
The authors showed that the elongation at break and the ultimate stress of the composites
containing up to 10 wt% of steel powder is higher than those of genuine 3D-printed ABS.
The comparative study by Golubovic et al. [24] demonstrated that the DLP (digital light
processing) route to produce ABS leads to tensile results lower than those from material
extrusion. Rodríguez-Reyna et al. [25] conducted a different study, which compared ABS
with different feedstock materials such as PLA and nylon/carbon fibres. The authors
concluded that the ultimate tensile stress of ABS can be restored by material extrusion
with typical values close to 33 MPa. Dusanapudi et al. [26] addressed the relationship
between porosity resulting from material extrusion and the efficacy of 3D-printed ABS. By
employing a hybrid optimisation technique to fine-tune printing parameters, they achieved
a tensile strength of approximately 112 MPa with a porosity level of 24%. He et al. [27]
examined the crack behaviour of 3D-printed ABS when subjected to thermomechanical
loading. Their research concluded that ABS samples printed with a 0◦ building orientation
exhibited superior fatigue resistance.

The outcome of the extrusion process yields a configuration of filaments varying
in cohesion, influenced by both the printing parameters and the inherent properties of
the feedstock material [28–30]. For instance, several contributions demonstrated the link
between the printing temperature and the mechanical performance of ABS. Foltut et al. [31]
showed that the brittleness of 3D-printed ABS depends on the printing temperature. Most of
the contributions that focus on the link between the thermal behaviour and the mechanical
performance of 3D-printed ABS deals with specific fillers such as glass or carbon in an
ABS matrix. For instance, Aw et al. [32] studied the tensile and thermal properties of
3D-printed ABS conductive composite. The authors showed a positive correlation between
thermal conductivity, tensile strength, and filler weight content. Aravind et al. [33] also
studied the thermal and mechanical properties of 3D-printed ABS composite reinforced
with glass/carbon fibres. The authors demonstrated the high tensile properties of the ABS
composites, namely elongation at break, tensile modulus, and tensile strength, as well as
enhanced thermal expansion behaviour.

The extrusion process creates a 2D discontinuity in the space of the part, which results
in a particular arrangement of process-induced porosity [34]. This porosity contributes neg-
atively to the mechanical behaviour by generating an amount of loss in stiffness, strength,
and elongation at break [35]. In this study, the effect of the process-induced porosity in 3D-
printed ABS was explored by allowing crack propagation deviation. ABS serves as an ideal
polymer feedstock for validating the experimental and numerical approaches conducted
in this study, benefiting from extensive literature and widespread interest in AM [36–38].
Compared to PLA, ABS boasts superior properties, such as greater tensile, impact, and
flexural strength, enabling its consideration for applications beyond prototyping. This
study focused on the correlation between the printing parameters such as the printing
angle on the crack deviation processes, which can delay unstable failure of the 3D-printed
material. This correlation was studied from both experimental and modelling viewpoints.
Through the experimental development, it was shown that a pattern exists between the
notch orientation and the printing angle. In addition, the experimental evidence provided
a simple quantification of the microstructural arrangement effect on the overall tensile
properties such as the elongation at break and the maximum stress. Through the numerical
development, the damage law implemented shows that the cracking behaviour can be
captured with a small set of parameters, allowing better understanding of the rupture
properties in AM materials.
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2. Experimental Layout

The feed material used for tensile experiments was the thermoplastic acrylonitrile
butadiene styrene (ABS). ABS is the result of the copolymerisation of three monomers:
acrylonitrile (32%), butadiene (20%), and styrene (48%). ABS has an average molecular
weight of 105,210 g/mol. The ABS grade used in the experiment was P430XL, which
was provided by the CADvision company (Guyancourt, France). Regular specimens
(length = 80 mm, width = 20 mm, thickness = 2 mm) were used for tensile toughness
experiments according to the ISO 13934-1 standard [39] for strip testing. CAD models of
the specimens were printed using an uPrint SE 3D printer from Stratasys (Eden Prairie,
MN, USA) (Figure 1).
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Figure 1. Experimental setup for the 3D printing and testing of ABS: (a) ABS specimen geometry and
printing configuration; (b) ongoing printing process and testing experimental setup.

Samples were printed along the thickness where the plane of construction encompasses
the length and width dimensions (Table 1).

Table 1. Printing conditions and sample nomenclature. θ: printing angle; ϕ: pre-notch orientation;
a: pre-notch length.

Sample θ (deg.) ϕ (deg.) a (mm)

F00-00-02 0 0 2

F00-00-04 0 0 4

F00-00-05 0 0 5

F00-00-06 0 0 6

F00-00-08 0 0 8

F00-00-10 0 0 10

F00-30-05 0 30 5

F00-45-05 0 30 5

F30-00-05 30 0 5

F30-30-05 30 30 5

F30-45-05 30 45 5

F45-00-05 45 0 5

F45-30-05 45 30 5

F45-45-05 45 45 5
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The as-received ABS filaments (diameter = 1.75 mm) were extruded to filaments
having a diameter of 254 µm through the printer nozzle. Printing was performed with the
full dense option corresponding to an infill of 100% but with a varied printing angle (θ). A
dissolvable support material was used to ease the adhesion between the building platform
and the printed specimens. Filaments were arranged in an orthogonal way with respect
to the printing angle. This means that the following layups were generated: −45◦/+45◦,
−15◦/+75◦, and 0◦/+90◦, and these correspond to printing angles (θ) of 0◦, 30◦, and 45◦.
The built-in software (CatalystEX version 2.1) was used for .stl file preparation of collections
of filament paths (Figure 2).
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Figure 2. SEM micrographs showing the nature and extent of defects in 3D-printed samples: (a) lack
of inter-filament adhesion, (b) intra-filament porosity, (c,d) porosity at the junction between the
soldered frame and the core filaments.

With typically 16 to 21 samples on the printing platform, 44.98 cm3 to 55.49 cm3 and
20.66 cm3 to 28.25 cm3 of feedstock and support materials were required. The information
about the print volumes serves as a guidance for the determination of the printing cost
and environmental footprint of the ABS material. In addition, it helps with measuring the
extent of the volume mismatch between the CAD model and the 3D-printed material [40].
The printing duration varied from 242 min. to 389 min depending on the print volume and
the filament arrangement. Indeed, this print time was influenced by the part orientation, as
the nozzle travel time was different depending on the filament arrangement [41,42]. The
experimental campaign required 8 trays, 136 samples, consumption of 427 cm3 and 212 cm3

of ABS and dissolvable support, and a total printing duration of 33 h.
Uniaxial tensile testing was performed on printed specimens to determine the crack

propagation behaviour according to the strip method (ISO 13934-1). For this purpose,
notches were creating after the printing process in which both length (a) and orientation
(ϕ) varied (Table 1). The notch orientation was defined as the relative angle between
the crack direction and the transverse direction. Notches are used in tensile testing to
determine the fracture toughness of materials [43]. Various standards incorporate the
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notch in tensile tests, including ASTM F 1473 [44]. This standard has been employed to
evaluate and compare the resistance to slow crack growth across various polyethylene
pipes. Another relevant standard is ISO 16241:2005 [45], which provides guidelines for
notch tensile tests on polymeric materials. Additionally, ASTM E602-03 [46] is utilised
for determining sharp-notch strength. In this study, five replicates were used for testing
each condition. Prior to loading, speckles were added to the surface of the specimens to
track the local deformation of the samples upon mechanical solicitation (Figure 1). Loading
was performed using a Zwick universal tensile machine (Roell Group, Ulm, Germany)
equipped with a 10 kN load cell. The loading rate was adjusted to 10 mm/min and the
testing was performed until specimen failure. Monitoring of the sample deformation was
conducted using a high-speed camera Phantom V7.3 from Photron company (Tokyo, Japan)
under full resolution (800 × 600 pixels) with a rate varying between 100 and 50,000 fps
(frames per second).

Illustrations of the testing process for different configurations, including the effect of
the notch length and orientation, are provided as Supplementary Materials.

Additionally, microscopic fractures were examined using a BlueBox apparatus (INRAE,
Nantes, France) on post-mortem specimens, alongside high-speed camera recordings. A
series of 2D-stitched images were captured at a high resolution, with each image typically
containing 1620 × 1220 pixels, where each pixel measures 3.6 µm. Up to 25 images were
collected for each condition, constituting a field of view of 8100 × 6100 pixels, equivalent
to an acquired area of 29 × 22 mm.

3. Modelling Technique

A finite element (FE) model was constructed to evaluate the progression of damage in
printed samples under tensile loading. To numerically examine stress and strain localisation,
a basic 2D FE model was suggested. The computations were conducted on slices within
the XY plane of the printed samples, as illustrated in Figure 3.
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Figure 3. Diagram illustrating the simulated domain utilising the finite element method and the
spatial distribution of Young’s modulus based on weak regions between filaments, including the
notch (on the right), alongside the corresponding finite element meshing (on the left).

The overall geometry of the tested specimens was built using primitives under Comsol
version 5.2 software (COMSOL France SAS, Grenoble, France). The included geometry
represents an array of intersecting filaments resulting from the creation of two consecutive
layers. This region consists of a regular pattern of sturdy square cells bounded by weaker
interphases. These interphases denote the connections between neighbouring filaments
with low cohesion and implicitly capture the impact of the porous network. Consequently,
it is appropriate to characterise this stiffness-induced anisotropy using a spatially varying
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Young’s modulus that adjusts at a scale consistent with the filament’s cross-section. The
proposed expression for this is as follows:

E(m(x, y)) =


EM i f p /∈ ∂Γ

α × EM × D(εi) i f p ∈ ∂Γ
(1)

where EM is the matrix modulus representing the stiffness of the as-received ABS
(EM = 1.36 GPa), α represents the decrease in stiffness due to the lack of cohesion be-
tween adjacent filaments, ∂Γ represents the junction region, m(x, y) is sample material
point, εi is an engineering strain, and D is a damage function that has a sigmoid-like form:

D = 1 − β

1 + e−γ(εi−ε0)
(2)

where:
εi =

√
(ε11(x, y))2 + (ε22(x, y))2 + (ε12(x, y))2|ε11 > 0; ε22 > 0 (3)

where β, γ, ε0 are damage law coefficients, and εi is a strain function that accounts for
longitudinal, transverse, and shear contributions.

Equation (3) was proposed by the authors to explain damage behaviour in 3D-printed
polymers subjected to severe compression loading [47]. The model examines the progres-
sion of damage caused by lateral expansion, resulting in positive strain. It effectively
encompasses the primary mechanisms leading to cracking and failure. Validation of the
model relied on X-ray microtomography data, affirming the cracking pattern proposed by
the model. This model is applicable in scenarios involving tensile loading, where positive
strain triggers localised alterations in material stiffness.

Equation (1) adheres to certain constraints imposed by the spatial periodicity of the
domain ∂Γ. Specifically, the periodicity of the stiff domains, which are also subject to
stiffness degradation, is enforced by the logic of filament crossing. Expression (1) implicitly
assumes that the stiff square cells exhibit elastic isotropic material behaviour. Furthermore,
the orientation of the domain is adjusted for each printing angle, as depicted in Figure 3.
Expression (1) also assumes that the junctions susceptible to damage remain elastic.

The kinetics of damage is governed by geometrical considerations related to the
arrangement of cells and the localisation behaviour at the junctions for samples loaded in
the plane of construction.

All computations were carried out using Comsol® software. The solid mechanics
module was used to simulate the mechanical behaviour of the 3D-printed ABS under
elasticity conditions. The material model selected for ABS assumes isotropic behaviour
and stationary conditions are used for all simulations. Regular meshing was applied to the
gauge area using square elements, which accounts for the presence of a notch (Figure 3).
Quadratic elements were used for the meshing. Each element has two degrees of freedom
corresponding to the displacement in X and Y directions. The typical size of the model
amounted to approximately 3 × 106 degrees of freedom (dof). Boundary conditions were set
in accordance with the experimental testing conditions, involving constrained displacement
in the lateral direction and uniform displacement in the longitudinal direction. Geometric
nonlinearity was included in the study. The parallel sparse direct solver was used to obtain
the predicted stress and strain fields.

4. Results and Discussion
4.1. Experimental Results

Figure 2 shows typical SEM micrographs of the microstructure of 3D-printed ABS
material. The in-plane observation illustrates the filament alignment along the longitudinal
direction (Figure 2a). Within this plane of construction, the necking is represented by the
space left between adjacent filaments, which results in a lack of adhesion in the transverse
direction. Other defects, such as the reduced section of the filament, also affect the packing
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of the structure, as shown in Figure 2a. This type of defect can be associated with a varied
flow rate and/or change in the nozzle speed. Figure 2b shows porosities within the filament
that can be captured from the cross-section views. These porosities are generated by the
air trapped inside the filament at the fabrication stage. The intra-filament porosity has a
genuine effect on the intrinsic properties of the ABS filament. Figure 2c highlights another
type of defect, which is related to the presence of an external frame. This frame contributes
to the mechanical stability of the printed structure. However, the junction between the
soldered frame and the raster requires an abrupt change in filament trajectory, which
generates a triangular porosity (Figure 2d). Similar SEM observations of the microstructure
of 3D-printed ABS were obtained by Ahmad et al. [48]. The authors demonstrated that
the microstructure of ABS can vary depending on the printing parameters. It may either
form a strong, densely packed filament arrangement or exhibit a weaker structure with
increased voids, attributed to inadequate adhesion between layers.

Figure 4 shows the effect of the pre-notch length on the crack propagation of ABS
samples printed according to the printing angle of 0◦.
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pre-notch orientation (ϕ = 0◦) are fixed.

For these configurations, the generated layups are −45◦/+45◦ and the pre-notch
length varies between 2 mm and 10 mm (Table 1). Up to a pre-notch length of 6 mm, crack
deviation is witnessed ahead of the crack tip. The deviation matches the filament layups of
−45◦/+45◦, which means that the crack follows more preferentially the junction between
the filament where the energy spent for the crack extension is lower compared to a path
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leading to a fully opening mode. This deviation tends to vanish when the crack length is
too large, where a predominant opening mode prevails, especially for 8 mm and 10 mm
pre-notch lengths (Figure 4). Dvorak et al. [49] obtained similar results for CT 3D-printed
specimens obtained using laser sintering. Crack propagation was found to be dependent
on the orientation of the printing layers.

These experiments yield the crack toughness directly from the standard employed
in conducting tensile loading tests on samples with pre-existing notches. Based on these
experiments, the critical stress intensity factor was determined using the weight function
method for a single-edge crack. As per this approach, the critical crack intensity factor is
expressed as:

KIC = σ
√

π a × f
( a

W

)
(4)

where σ is the maximum stress and a is the notch length.
Equation (4) can be rewritten as:

K1C

(
MPa × m

1
2

)
= Y(−)× σ(MPa)×

√
π × a(m) (5)

where the geometry factor Y in the typical range of 1.20–2.8 MPa × m
1
2 depends on a and

corresponds to the case of an edge crack in a finite-width strip subject to tension loading.
The achieved crack toughness of printed ABS is lower than that in a former study by
Aourik et al. [50], which suggests the range of 1.70–3.87 MPa × m

1
2 .

By excluding large pre-notch lengths (a > 8 mm), the measured crack toughness
is 2.95 + 0.28 MPa × m½. This value corresponds to the experiments conducted with a
printing angle of 0◦ (θ = 0◦) and a flat pre-notch normal to the loading direction (ϕ = 0◦).

Figure 5a shows the tensile response of the same pre-notched samples for a pre-notch
length varying between 2 mm and 10 mm.
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Figure 5. Tensile response of 3D-printed ABS samples, which are pre-notched according to a varied
notch length and fixed pre-notch orientation (ϕ = 0◦) and printing angle (θ = 0◦): (a) stress-strain
curves, (b) ultimate properties as a function of the notch length.

The pre-notch length ratio represents 10% to 50% of the sample width. All samples
exhibit nearly the same behaviour, which is a combination of a large elasticity stage followed
by a short plasticity stage. The failure of the samples is progressive, which can be quantified
by the large difference between the peak stress and the stress at break. The ranking of the
materials follows the size of the pre-notches, where the highest responses are attributed to
the samples with the smallest pre-notches (Figure 5b).

Figure 6 shows the damage pattern generated from the crack extension of notched
samples according to different pre-notch lengths.
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Figure 6. High speed camera recording showing the damage extent for ABS 3D-printed samples with
a varying pre-notch length and fixed pre-notch orientation and printing angle.

When the pre-notch length is small, there is a high probability of generating a crack
deviation at early stages of crack extension. This crack deviation promotes a mixed mode
crack propagation, where the shearing effect prevails more when the filament orientation is
far away from transverse direction. The printing angle of 0◦ is a good example of such a
situation. As a consequence, a large damaged zone appears ahead of the crack tip, as shown
in Figure 6 for a pre-notch of 2 mm. The extent of the damaged zone is reduced when the
pre-notch length increases. The extreme case corresponds to a pre-notch of 10 mm where
the damage area is reduced to the central line ahead of the crack tip. The results shown in
Figure 6 are in agreement with a study by Aourik et al. [50] on the determination of the
fracture toughness of 3D-printed ABS material. The authors showed, through experimental
evidence and numerical predictions, varying crack and damage patterns according to two
different raster angles (namely 0◦/90◦ and −45◦/45◦).

Figure 7 shows the combined effect of the pre-notch orientation and the printing angle
on the cracking behaviour of 3D-printed ABS material.
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for a pre-notch length of 5 mm.
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These two parameters have a balanced effect on the crack deviation. For the same
notch length of 5 mm and the same printing angle of 0◦, the change in the notch orientation
helps to decrease the deviation of the crack because of the smaller difference between the
filament orientation (−45◦/+45◦) and the crack initial path. This difference starts from 45◦

and decreases to 0◦ when the notch angle with respect to the transverse direction increases
from 0◦ (configuration F00-00-5) to 45◦ (configuration F00-45-5). The same rationale applies
for the printing angle of 30◦ (configurations F30-XX-5). However, the printing angle of 45◦

does not lead to a significant change in the crack path as the same fully transverse crack
propagation occurs irrespective of the initial crack orientation. Marsavina et al. [51] studied
different notch geometries in circular bend polymeric specimens obtained by material
extrusion. The authors observed similar crack patterns that fit the filament arrangement.
However, varied crack deviation was observed depending on the form of the notch. These
differences were attributed to contours that were used in the design of the notch. These
contours at the crack tip provide a better mechanical resistance against crack propagation
by inducing higher plastic deformation.

Figure 8 exhibits the engineering stress–strain response as a function of the printing
angle and the notch orientation.
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Figure 8. Combined effect of printing angle (θ) and notch orientation (ϕ) on (a) tensile behaviour and
(b) maximum stress and elongation at break.

There is not much variation in the slope of the curves because of the equal length
of the notch. However, the rupture properties vary depending on the combination of
the two parameters. It was found that the increase in the printing angle decreases both
the elongation at break and the ultimate stress, i.e., the stress at the rupture point. In
addition, the extent of the progressive damage stage represented by the strain range
between the maximum and ultimate stress decreases. This is attributed to the extent of
the misorientation between the filament longitudinal direction and the loading direction.
The worst-case scenario corresponds to the printing angle of 45◦, where only half of the
filaments are oriented in the loading direction, while for the other half, the load transfer
occurs at the junction between adjacent filaments. For the same printing angle, the change
in the notch orientation also affects the elongation at break and the ultimate stress. When
the notch angle with respect to the transverse direction increases, Figure 8b shows an
improvement in the ultimate properties, namely the stress and the elongation at break.
Zolfagharian et al. [52] studied the fracture resistance of U-notched 3D-printed polymers
using two 3D-printing routes. The authors demonstrated a correlation between the crack
orientation and the failure loads. For samples obtained using material extrusion, the
authors observed a higher failure load when the notch was oriented towards the loading
direction. This finding is similar to the result shown in Figure 8a.
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In order to further quantify this correlation, the analysis of all printing angles and
notch orientations is needed. Figure 8b summarises the effect of both the printing angle and
the pre-notch orientation on the maximum stress and the elongation at break. A positive
linear correlation between the maximum stress and the pre-notch orientation is observed
for two printing angles (i.e., 30◦ and 45◦), whereas the opposite is found for 0◦. If the
relative difference between the printing angle and the notch angle is taken as a reference, a
more inclusive correlation can be found irrespective of the printing angle. This correlation
can be fairly represented by a linear function of the form:

σM(MPa) = 20.4 − 0.12 × |γ(deg.)| (6)

where the operator | | refers to the absolute value, σM is the maximum stress, and
γ(deg.) = θ(deg.)−ϕ(deg.).

The same trend is also found for the elongation at break, for which the linear function
takes the form:

εR(%) = 1.71 − 0.01 × |γ(deg.)| (7)

where εR refers to the elongation at break.
Figure 9a illustrates optical images obtained using the BlueBox apparatus, which

provide details of the entire microscopic fractures with the pre-notch length of 5 mm,
representing 25% of the sample width.
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a jagged profile due to the machining effect on the raster of the printed sample. It is thus 
expected that cracking departure from such a notch is affected by an early change in the 
course. In addition, damage mechanisms are likely to involve a more diffuse stress 

Figure 9. Optical micrographs of the microscopic fracture acquired using the BlueBox apparatus for
different printing angles (θ), and pre-notch orientation (ϕ). (a) Magnified view of a typical notch
θ = 0◦, ϕ = 0◦, a = 5 mm, and fracture microscopic images for (b) θ = 0◦, ϕ = 0◦, a = 5 mm, (c) θ = 0◦,
ϕ = 15◦, a = 5 mm, (d) θ = 30, ϕ = 30◦, (b) ϕ = 15◦.
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Figure 9a shows a magnified view of the notch for a sample printing with layups
of −45◦/+45◦ (θ = 0◦). The tip of the pre-notch has a rounded shape and both of its lips
exhibit a jagged profile due to the machining effect on the raster of the printed sample. It
is thus expected that cracking departure from such a notch is affected by an early change
in the course. In addition, damage mechanisms are likely to involve a more diffuse stress
concentration around the tip and possible varied stress concentration close to the lips.
Figure 9b shows the outcome of the printed configuration where the damage pattern
resulting from pre-notch opening is found to induce a change in the crack course at
least three times prior to the rupture because of the influence of the raster on the crack
propagation. A close observation of the crack pattern even shows a larger number of crack
deviation attempts, which materialise as the rupture of individual filaments according to a
sequence of −45◦/+45◦. In Figure 9c, the same pre-notch orientation induces a different
crack path deviation, which follows the sequence −15◦/75◦. This deviation fosters a
mixed-mode crack propagation, particularly favouring shearing effects when the filament
orientation deviates significantly from the transverse direction, exemplified by the 0◦

printing angle. The magnified views in the same figure highlight two main regions of
particular interest: the first one depicts the change in crack path by alternating from −15◦

to +75◦ cracking. This alternation is facilitated by the layups where half of the filaments are
packed in the +75◦ direction with respect to the transverse direction. The second region
shows a different damage mechanism associated with the external frame, which is more
subject to longitudinal extension in the loading direction.

Figure 9d illustrates a fractured pattern for another combination, where the printing
angle is maintained at 30◦ while the pre-notch orientation is corrected to promote a smaller
deviation. The fracture pattern demonstrates that the significance of the crack deviation
is limited because of the presence of filaments that are slightly misoriented with respect
to the initial crack orientation. This difference can be more precisely evaluated from the
layups of −15◦/+75◦ induced by the printing angle of 30◦. This difference of 15◦ allows a
main crack course in this direction with slight deviations in the direction of 75◦.

4.2. Numerical Results

The prediction of the damage evolution for a typical tensile loading of a 3D-printed
ABS is depicted in Figure 10a.
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Figure 10. Finite element results depicting the damage induced by the filament arrangement for 3D-
printed ABS subject to tensile loading: (a) damage growth for a printing angle θ = 45◦, (b) compilation
of predicted force displacement curves for different levels of notch size.

The printing setup corresponds to a printing angle θ = 45◦, filament layups of 0◦/+90◦,
and a notch length of 2 mm. The simulation results indicate a multi-damage scenario with
several sites ahead of the notch being exposed to a large localisation. The damage follows
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the orientation of the filament arrangement, which is normal to the loading direction This
kind of diffuse damage was observed experimentally, as shown in Figure 6. The damage
scenario depicted in Figure 10a is possible because of the weak cohesion between filaments
materialised by a junction of low stiffness. Aourik et al. [50] demonstrated, according to
finite element computation, that the stress concentration in the vicinity of the notch adheres
to the filament arrangement, where the 0◦/90◦ and −45◦/45◦ layups produce different
stress distribution heterogeneities, leading to marked bifurcations of the crack path. The
effect of the notch size on the predicted load response of 3D-printed ABS is shown in
Figure 10b. All configurations were printed with a printing angle θ = 0◦. As the loading
increases, the notch size negatively affects both the slope and mechanical resistance of the
3D-printed material. In addition, damage accumulation (Equations (2) and (3)) enforces
more a progressive decrease in the reaction force, for a load beyond the material tensile
strength. The damage is localised for all cases ahead of the notch because of the stress
concentration generated by the opening of the notch. When the notch size is large enough,
the extent of the damage area, as well as its longitudinal extension, becomes limited.
Figure 11a shows the damage field for a printing angle of 0◦. In this case, the filament
arrangement promotes filaments at 45◦ from both transverse and longitudinal directions.
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The same trend of a large extent of damage is observed for small notches, such as 2
and 4 mm. In addition, the damage scenario is found to predict a large deviation from
the opening mode, but the extension of the damage is limited in the direction normal
to the notch direction. At the specimen end facing the notch, the area affected by stress
localisation becomes larger. However, due to the localised bending in this area, it is unlikely
that the compressive strain would trigger crack departure in the direction opposite to the
notch main path. The predicted tensile responses of the same conditions are shown in
Figure 11b. The same raking exhibited in Figure 10 is obtained in this case according to
the notch size. Additionally, the same progressive smooth decrease in the reaction force is
obtained due to the damage growth materialised by the continuous decrease in the material
stiffness at the junction points.

Damage severity in accordance with the observed pore opening mechanism induces
more diffuse damage for small notches, as shown in Figure 11a. In the particular case of
the printing angle θ = 0◦, preferential sites of damage onset are predicted at the corners
(largest levels of strain component εyy). Damage growth takes the form of a shearing band
(Figure 11a) because of the alternation of positive and negative strains (marked using the
levels εxx = 0 and εyy = 0). This strain alternation maintains a significant level of mode II
propagation along the boundary, which highlights the change in strain sign.
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4.3. Validity of the Cracking Behaviour for Other Feedstock Polymers

In order to check the validity of the cracking scenarios for other polymers used as
feedstock materials for material extrusion technology, a comparative study was conducted
to determine the role of material properties in the failure induced by the same type of
filament arrangement. This study was based on the authors results, which adhere to the
same processing and testing conditions. In order to be consistent in the analysis, the
same orientations (θ = 0◦, layups −45◦/+45◦) and the same pre-notch characteristics (pre-
notch length of 2 mm, pre-notch oriented transversely) were used for all materials. The
materials considered were PLA–wood, PLA–hemp, ASA, PLA, PLA-PHA, PETG, nylon,
and copolyester.

Figure 12a compares the elongation at break of the tested materials. Filaments contain-
ing fillers such as wood particles and hemp fibres rank among the lowest performing ones
due to the lack of compatibility between the PLA matrix and the fillers. The elongation at
break is in the range of 6–7% for PLA–wood and PLA–hemp. The material that has the
largest elongation at break is copolyester, with an increase of up to 310% in length upon
tensile loading prior rupture. Both ABS and ASA lie in the middle range, with a typical
elongation at break of about 58%.
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The intrinsic properties of these feedstock materials have a significant influence on
the cracking patterns. Indeed, tensile loading performed on notched specimens revealed
contrasted trends depending on the ability of the filaments to stretch prior to breakage.
Figure 12b shows the evidence of two distinct scenarios of crack propagation for the same
collection of polymers. The first is associated with PLA and other polymers sharing a
small elongation at break. These materials, when printed using a printing angle of 0◦,
are supposed to induce a large deviation according to the layups of −45◦/+45◦. Instead,
there is an unstable crack propagation according to a predominant opening mode. Even
if the crack path is more or less jagged, the unstable crack does not allow diffuse damage
to lead to strong deviation in the crack path. The second collection of polymers starts
with PLA-PHA and corresponds to elongation at break as large as 70%. The optical
micrographs demonstrate a strong correlation between the raster and the crack deviation.
Such deviation is induced by a significant stretching of the filaments in the raster, as in the
cases of polyamide and copolyester.

The comparison between these feedstock polymers shows that ABS polymer belongs
to the second collection of polymers thanks to its stretching ability. The crack deviation
can be understood as a mechanism of local rupture induced by severe filament stretching
between anchoring points. These points are materialised by the crossing of the filaments
according to the selected layups.
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5. Conclusions

In conclusion, this study found that it is possible to control the cracking behaviour of
3D-printed ABS if the difference between the printing angle and the crack orientation is
known. This control was found to be dependent on the filament arrangement, and the crack
propagation was explained as an inter-filament cracking process. The crack toughness was
found to vary in a large range depending on the crack orientation, namely between 1.20
and 2.8 MPa × m

1
2 . The crack deviation results in a large damaged area ahead of the crack

tip, indicating a more progressive failure of the material. This study also found that the
mechanical stability driven by layups of −45◦/+45◦ is an optimal configuration for uniaxial
deformation, but for complex loading in technical parts, adapting the nozzle trajectory to
more complex loading paths is needed. ABS polymer is classified within the category of
polymers sensitive to the printing angle because of its notable stretchability, which allows
crack deflection to occur as a consequence of localised breakage caused by intense filament
stretching between anchor points. This opens a new research route for property-driven
slicing, where stress state determination from numerical predictions can be used as an
input to decide on the optimal approach for part filling.
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