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Abstract SK3 channels are potassium channels
found to promote tumor aggressiveness. We have
previously demonstrated that SK3 is regulated by
synthetic ether lipids, but the role of endogenous
ether lipids is unknown. Here, we have studied the
role of endogenous alkyl- and alkenyl-ether lipids on
SK3 channels and on the biology of cancer cells. Ex-
periments revealed that the suppression of alkylgly-
cerone phosphate synthase or plasmanylethanolamine
desaturase 1, which are key enzymes for alkyl- and
alkenyl-ether-lipid synthesis, respectively, decreased
SK3 expression by increasing micro RNA (miR)-499
and miR-208 expression, leading to a decrease in SK3-
dependent calcium entry, cell migration, and matrix
metalloproteinase 9–dependent cell adhesion and in-
vasion. We identified several ether lipids that pro-
moted SK3 expression and found a differential role of
alkyl- and alkenyl-ether lipids on SK3 activity. The
expressions of alkylglycerone phosphate synthase,
SK3, and miR were associated in clinical samples
emphasizing the clinical consistency of our observa-
tions. To our knowledge, this is the first report
showing that ether lipids differentially control tumor
aggressiveness by regulating an ion channel. This
insight provides new possibilities for therapeutic in-
terventions, offering clinicians an opportunity to
manipulate ion channel dysfunction by adjusting the
composition of ether lipids.

Supplementary key words ether lipids • miRNA • potassium
channels • SK3 channel

SK3 channels, members of the small conductance
calcium-activated potassium channels family, have
been identified as promoters of tumor aggressiveness
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(1). SK3, along with SK1 and SK2 channels, are
expressed in specific cells types (e.g., brain, smooth
muscles, and, as recently shown, heart cells) and
participate in cell excitability by controlling muscle
contraction and cellular secretion. When SK3 is
expressed in cancer cells, it strongly increases their ca-
pacity to migrate and invade a matrix similar to the
physiological extracellular matrix (1). Thus, cancer cells
appear to hijack the physiological functions of SK3
found in excitable cells to promote their ability to
migrate. By using mouse models of metastatic breast
cancers (including orthotopic xenografts), we have
demonstrated that SK3 channel promotes the devel-
opment of metastases (1). Our previous study also
identified a new molecule belonging to the class of
synthetic alkyl ether lipids (ELs), 1-O-hexadecyl-2-O-
methyl-sn-glycero-3-lactose (ohmline), which inhibits
SK3 channel activity and abolishes the development of
metastases (1, 2). This prompted us to investigate the
role of endogenous EL in the regulation of SK3.
Endogenous ELs exist as triglycerides or phospholipids
and contain a long fatty alcohol chain linked to the sn-1
position of the glycerol unit by an ether bond. Within
cell membranes, they form alkyl (with a saturated ether
bond) or alkenyl phospholipids (also referred to as
plasmalogens, with a vinyl-ether bond). The distribution
of EL varies across tissues, with alkenyl-EL generally
more abundant than alkyl-EL. Both EL species are
enriched in the heart, brain, and, to a lesser extent in
muscle, and adipose tissues (3, 4). Interestingly, they are
generally found in greater amounts in tumors,
including breast tumors, than in normal tissues (5).
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However, the physiological roles of these ELs have not
been elucidated so far. Moreover, it remains unknown
whether alkyl and alkenyl-EL exert distinct biological
effects (6), which prompted us in this work to deter-
mine whether alkyl- and alkenyl-EL had the same role
in the regulation of SK3.

One study showed that alkylglycerone phosphate
synthase (AGPS), the key enzyme in natural EL syn-
thesis, was overexpressed in breast cancer tissues
compared to noncancerous tissues (5, 6). AGPS is a
peroxisome enzyme catalyzing the conversion of acyl-
glycerone-3-phosphate to alkyl-glycerone-3-phosphate,
replacing the fatty acid in the sn-1 position of the
glycerol unit with a fatty alcohol, thus forming the first
precursor for EL. Several cellular models have already
shown that AGPS knockdown using siRNA decreases
the amount of cellular natural EL by 60–80% and re-
sults in a decrease in cell migration (7, 8). AGPS there-
fore seems to be a prime target for studying the
regulation of SK3 channel by endogenous EL (alkyl-EL
and alkenyl-EL). More recently, the gene TMEM189
coding for plasmanylethanolamine desaturase 1
(PEDS1), the key enzyme for alkenyl-EL synthesis, was
identified. This gives us the opportunity to distinguish
between alkyl-EL and alkenyl-EL, whose discrimination
has so far been a major challenge (9, 10).

In this report, we took advantage of these two key
enzymes producing EL to study the effects of alkyl and
alkenyl-EL on the SK3 channel expression and activity
and its associated biological activities.

Here, we showed that the suppression of AGPS and
PEDS1 decreased SK3 expression through micro RNA
(miR)-499 and miR-208, leading to a decrease in SK3-
dependent constitutive calcium entry (CCE), cell
migration, and matrix metalloproteinase 9 (MMP9)-
dependent cell adhesion and invasion. We then identi-
fied alkyl- and alkenyl-EL that promoted SK3 expres-
sion and found a differential role of alkyl- and alkenyl-
EL on SK3 activity. The expressions of AGPS, SK3, and
miR were found to be correlated in clinical samples,
which emphasize the clinical consistency of our
observations.
MATERIALS AND METHODS

Patients and samples
All human studies abide by the Declaration of Helsinki

principles.

Cohort 1. The study cohort consisted of 50 female patients
presenting with invasive breast cancer, scheduled for breast
surgery at the University Hospital of Tours in 2012. Samples
were stored in liquid nitrogen to avoid degradation and
conserved in the tumor collection (Declared to French min-
istry of Health with n◦ DC2008-308), and the study was per-
formed with approval of the Tours University Review Board.
Histological slides and reports of all patients were reviewed by
an expert pathologist. All less frequent phenotypes (triple
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negative and HER2+++ tumors) were selected, and patients
with positive hormone-receptor tumor phenotypes (luminal A
and B) were matched according to the age distribution of
patients with the less frequent phenotypes. The characteristics
of patients and tumors are reported in Supplemental Table S1.

Cohort 2. The study was performed on tumor samples
from 78 women treated for invasive breast carcinoma by
surgery and chemotherapy between 2012 and 2014 at the
University Hospital of Tours (Tours, France). The study was
approved by the Ethics committee of the hospital, was con-
ducted in accordance with recognized ethical guidelines, and
written informed consent was obtained from all patients. The
characteristics of patients and tumors are reported in
Supplemental Table S2.

Cohort 3. Samples were collected from patients treated at
the “Institut de Cancérologie de l’Ouest” (ICO, http://www.
ico-cancer.fr). All patients recruited gave signed informed
consent. All the samples collected and the associated clinical
information were registered in the database (N◦ DC-2018-
3321) and validated by the French research ministry. Biolog-
ical resources were stored at the “Centre de Ressources Bio-
logiques-Tumorothèque” (ICO, Saint-Herblain, France) (11).
All clinical and radiologic data were collected from the elec-
tronic medical records stored at the ICO. The characteristics
of patients and tumors are reported in Supplemental
Table S3.
Cell lines and reagents
MDA-MB-435s (HTB-129), PC3 (CRL-1435), and C4-2

(CRL-3314) cancer cell lines were purchased at the Amer-
ican Type Culture Collection (LGC Standards, Molsheim,
France). A673 (CRL-1598) cells were a kind gift from Franck
Verrechia (INSERM UMR1307, France) and cultured in
DMEM (Lonza, Basel, Switzerland), supplemented with 10%
FBS (Gibco). PC3 and C4-2 cells were cultured in RPMI
(Gibco) supplemented with 10% FBS, whereas MDA-MB-435s
cells were cultured in alpha Modified Eagle’s Medium
(Gibco) supplemented with 5% FBS. MDA-MB-435s cell line
has been transduced by a lentivector, which contains a
scrambled shRNA sequence (SK3+ cell) or a shRNA
sequence targeting SK3 expression (SK3- cell). These cells
have been characterized in a previous study (12). HEK-hSK3
cells characterized previously in patch-clamp experiment
(13) are cultured in DMEM supplemented with 10% fetal
bovine serum. Mycoplasma contamination was regularly
evaluated, and thanks to MycoAlert Mycoplasma detection
kit (Lonza, Levallois-Perret, France).

Apamin was purchased from Sigma-Aldrich (Bristol) and
dissolved in water. Ohmline was synthesized as described
previously (12) and dissolved in 60% DMSO/40% ethanol
(EtOH) (v/v). Details on the lipids tested are in Supplemental
Table S4.
Immunohistochemistry on tissue microarray
TMA construction. Tissue microarrays (TMAs) were con-

structed using formalin-fixed paraffin-embedded tissue
samples. For each case, 3 cores 0.6 diameter were transferred
from the selected areas to the recipient block, using a TMA
workstation (Manual Tissue Arrayer MTA Booster, Alphelys,
France). Serial 3 μm sections of the TMA blocks were used for
immunohistochemistry. One section on 10 was stained with
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hematoxylin-Manual Tissue Arrayer MTA eosin to check that
the cores adequately represented diagnostic areas.

Immunohistochemistry. Slides were deparaffinized, rehy-
drated, and heated in citrate buffer pH 6 for antigenic
retrieval. After blocking for endogenous peroxidase with 3%
hydrogen peroxide, the primary antibodies were incubated as
described in Supplemental Table S5.

Immunohistochemistry was performed using the
streptavidin-biotin-peroxidasemethodwith diaminobenzidine
as the chromogen (Kit LSAB, Dakocytomation, Glostrup,
Denmark). Slides were finally counterstained with hematoxy-
lin. Negative controls were obtained after omission of the pri-
mary antibody or incubation with an irrelevant antibody.
Staining was scored as negative or positive.

Western blot
Whole-cell lysates were prepared with 2% sodium dodecyl

sulphate and protease inhibitor cocktail (P2714, Sigma-
Aldrich, France). Protein concentration was determined us-
ing BCA protein assay kit (Thermo Fisher Scientific). Proteins
(25 μg) were separated by denaturing SDS-PAGE (4–15% Mini-
PROTEAN® TGX Stain-Free™ Protein Gels, Bio-Rad) and
transferred onto polyvinylidene fluoride membranes (Trans-
Blot Turbo Mini Transfer Packs, Bio-Rad). Dilution (in 1%
nonfat dry milk, 1X TBS 0.1% Tween-20), incubation condi-
tions, and reference of primary antibodies used are described
in Supplemental Table S5. Antibody binding was revealed
with an anti-rabbit (1:10,000; Jackson Immuno-Research Lab-
oratories) IgG coupled to horseradish peroxidase, using ECL
chemiluminescence kit (Clarity Western ECL substrate, Bio-
Rad) and read on ChemiDoc Imaging System (Bio-Rad).
Band quantification was performed on Image Lab software
(Bio-Rad) using total protein stain as normalization.

siRNA, miRNA, and plasmid transfection
Cells were seeded in 6-wells plates at 200,000 cells and

transfected 24 h later with 40 nM of siRNA by using lip-
ofectamine RNAimax (Invitrogen, France) or with 10 nM of
LNA™ miRNA mimics (hsa-miR-499a-5p, hsa-miR-208a-3p,
negative control miRCURY LNA, Qiagen, Courtaboeuf,
France) by using HiPerfect transfection reagent (Qiagen),
following manufacturer’s instructions. siRNA sequences are
detailed in Supplemental Table S6 and were synthetized by
Eurogentec (Belgium). The construct of human SK3 (pPRI-
puhSK3) was kindly provided by Dr P. Martin (CNRS, UMR
6543, Nice, France). The pore motif, GYG, was altered to AAA
by site-directed mutagenesis leading to a nonconductive or
nonpore SK3 (pPRIpuhSK3np). This construct was produced
and sequenced by ProteoGenix (France). Cells were seeded in
6-wells plates at 350,000 cells and transfected 24 h later with
0.25 μg of pPRIpu (CTL), pPRIpuhSK3 (SK3WT), or pPRI-
puhSK3np (SK3np) by using TransIT-2020 reagent (Mirus Bio
LLC), following manufacturer’s instructions.

RT-qPCR
RNA from cells was extracted with the NucleoSpin RNA kit

(Macherey-Nagel, Hoerdt, France). RNA from tumors was
extracted withMaxwell RSC simplyRNATissueKit (Promega).
Reverse transcriptions of 500 ng of RNAwere performed with
PrimeScript RT-PCR kit (Takara, Ozyme, France). Quantitia-
tive polymerase chain reaction (qPCR) were performed on the
CFX Connect Real Time System (Bio-Rad, France) using TB
Green® Premix Ex Taq™ (Takara, France), following manu-
facturer’s instructions. Quantity of mRNA was analyzed using
the ΔΔCT method normalized to the housekeeping genes
HPRT and ALAS-1 for cell experiments and HPRT and TBP
for tissue experiments. Primers were purchased at Eurogentec
(Seraing, Belgium), and their sequences are detailed in
Supplemental Table S7. The miRNA were extracted with
miRNEasy mini kit (Qiagen, Courtaboeuf, France) and were
reverse transcribed using the miRScript II RT kit (Qiagen) and
analyzed by qPCR with the miScript SYBR Green PCR Kit
(Qiagen) using the specific hsa-miR miScript Primer Assays
(Qiagen) according to the manufacturer's instructions. miRs
expression fold changes were calculated using the 2-ΔΔCt
formula and SNORD61 and RNU6-2 as normalizers according
to the manufacturer’s instructions.
Reporter gene constructs and luciferase assay
KCNN3 promoter sequence has been delineated following

publication of Sun et al. that described limits of functional
promoter (2,540 bp) (Sun, G et al., J. Hum.Genet. 2001). Nhe1 and
Nde1 sites have been created for actual and further cloning
purposes. For convenient cloning, a DNA synthetic fragment
comprising promoter from Nhe1 site to internal luciferase
Mre1 site has been generated and inserted in Nhe1 and Mre1
sites of pGL4.17 cloning reporter vector (Promega). Stable
transfection was performed with TransIT-2020 reagent (Mirus
Bio LLC) and G418™ selective antibiotic (Sigma-Aldrich). The
MDA-MB-435s-KCNN3 promoter-luc cells were transfected
with siAGPS for 48 h and 72 h. Cells were seeded in a 24-wells
plate at 40.000 cells 24 h before measurements. Cells were
lysed with passive lysis buffer (Promega), and reporter assays
were measured with luciferase assay system (E1500, Promega)
according to the manufacturer's instructions. The quantifica-
tion of proteins contained in samples was assessed and biolu-
minescence was normalized to protein quantity.
Cross-linking immunoprecipitation
Cross-linking immunoprecipitation experiments were per-

formed using a RiboCluster Profiler RIP-Assay kit (Clin-
iScience, Nanterre, France) according to the manufacturer's
protocol plus some modifications.

Cross-linking step was performed on ice by cells irradiation
with UV light (365 nm) at 150 mJ/cm2, and cytoplasmic lysates
were obtained according to the manufacturers.

Prestep of preparation of antibody-immobilized Protein/
A/G agarose beads was performed by incubating 15 μg of
control antibody (IgG, Abcam, Amsterdam, Netherlands) or
GW182 antibody (CliniSciences, Nanterre, France).

Cellular lysate and antibody-immobilized Protein/A/G
agarose beads were incubated overnight at 4◦C with rotation.
Separation method was next used to isolate large and small
RNAs according to the manufacturer’s instructions. Reverse
transcription quantitiative polymerase chain reaction were
next performed to identify endogenous mRNAs and miRNAs
coimmunoprecipitated with GW182. Relative levels of
enrichment were calculated using Ct values (immunoprecip-
itation anti-IgG, immunoprecipitation anti-GW182 and input)
and the 2ΔΔCt formula.

For cell viability assay, see Supplemental Text S1.
Cell migration and invasion assays
Cell migration and invasion were assessed by using 8 μm

pore size polyethylene terephthalate membrane cell culture
Ether lipids and SK3 3



inserts without (Falcon, #353097) or with Matrigel™ (Corning,
#354480). After 48 h of transfection, cells were seeded at
40,000 (migration) or 50,000 (invasion) cells per insert.
Migration was performed for 24 h and cells were fixed with
cold methanol. Cells that did not cross the membrane were
removed with a cotton ball, and nuclei were stained with
DAPI (Sigma-Aldrich). Nine pictures per insert were taken
and nuclei were automatically counted (14).
Cell adhesion assays
Cell adhesion by tapping was assessed by seeding 40,000 cell

per well on a 96-wells plate coatedwith 6 μg/cm2 of fibronectin
(Sigma-Aldrich, #F1141). After 2 h, culture medium was
removed and the plate was firmly tapped once on the bench
surface covered with absorbent paper and PBS was added to
the wells. This procedure was repeated three times. The
remaining cells were fixed with EtOH and their nuclei were
stained.Nine pictures per insertwere taken and the nuclei were
automatically counted (14). To assess an increase in adhesion,
impedance measurements were performed with the xCELLi-
gence real-time cell analysis DP (Agilent technologies) system
after seeding 20,000 cells per well in 16-wells E-plate (Agilent
technologies, France) coated with 6 μg/cm2 of fibronectin
(Sigma-Aldrich, #F1141). The cell index, corresponding to the
impedance at any time point minus the impedance without
cells was monitored every 4 min for 150 min.
Calcium entries measurements
For CCE, cells were seeded in 6-wells plates at 200,000 cells

per well and 24 h after cells were incubated with the ratio-
metric calcium probe Fura-2 AM (F1201 – 1 mg, Molecular
Probes) at 1 μM for 45 min at 37◦C. Then medium was
removed, cells detached with EDTA, and suspended in Opti-
MEM (Life Technologies, Saint Aubin, France). After centri-
fugation, OptiMEM was removed and cells were resuspended
into 2 ml of free-calcium physiological saline solution (NaCl
140 mM, KCl 4 mM, MgCl2 2 mM, Hepes 10 mM, glucose
11.1 mM, and EGTA 1 mM, pH: 7.4) in a magnetically stirred
cuvette and after 10 s of measurements 2 mM of calcium were
added. Cytosolic calcium variations were obtained by a spec-
trofluorometer (F-2710 FL, Hitachi/VWR, Fontenay-sous-
Bois, France) by measuring fluorescence at 510 nm after
excitation of Fura-2 at 340 and 380 nm. The 340/380 nm ratio
is proportional to cytosolic calcium concentration. For more
details, see previous study (1).

For store-operated calcium entry (SOCE), see Supplemental
Text S1.
Patch clamp experiments
Experiments were performed using the conventional

whole-cell recording configuration of the patch-clamp tech-
nique with an extracellular solution and an intracellular
pipette solution previously described (Girault et al. 2011). Sta-
ble transfection of pPRIpuhSK3 was performed in HEK293T
cells by using TransIT-2020 reagent (Mirus Bio LLC) as
transfection reagent and puromycin as selective antibiotic
(Sigma-Aldrich) as described previously (13). Whole-cell cur-
rents in HEK293T-hSK3 cells were generated by ramp pro-
tocol from +100 to −100 mV in 500 ms (4 s intervals) from a
constant holding of 0 mV with a pCa 6. Whole-cell recordings
of membrane currents were made under vehicle application
during 4 min then with an EL application.
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Bioinformatics analyses
RNA-Seq data from prostate adenocarcinoma and normal

tissue were generated by The Cancer Genome Atlas Research
Network (http://cancergenome.nih.gov/) and Genotype Tis-
sue Expression consortium, respectively (15). The Genotype-
Tissue Expression Project was supported by the Common
Fund of the Office of the Director of the National Institutes
of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and
NINDS. Logarithmic transformed normalized data for KCNN3
and AGPS (expressed as transcript per million units) from
TCGA-PRAD and Genotype-Tissue Expression dataset were
obtained from UCSC (16) Xena Browser (https://xena.ucsc.
edu).
EL liposome preparation and supplementation
Liposomes were prepared according to a method adapted

from (17). Briefly, 1 mg of EL was diluted in 1 ml of chloro-
form in a glass tube. Chloroform was evaporated until com-
plete dryness. One milliliter of sterile water was added to the
tube, which was closed and let at 4◦C overnight to let the lipid
film hydrate. The resulting solution was sonicated three times
at 40◦C for 10 min and vortexed. Liposomes were considered
usable when no visible aggregate remained and stored at 4◦C.

To determine the relevant dose for EL supplementation,
the amount of EL in FBS was first measured by high-
performance TLC (HPTLC) according to the method
described previously (18), slightly modified from the method
described hereafter to quantify separately alkyl- and alkenyl-
EL. We estimated that FBS contained on average 1.9 μg/ml of
alkyl-EL and only traces of alkenyl-EL (N = 3). Cells were
treated with water (vehicle control) or liposomes at 20 μM in
culture media daily for up to 96 h, representing a dose of EL
roughly 500 times greater than the dose provided by FBS. The
liposomes were sonicated for 5 min at 40◦c and vortexed for
5 s right before treatment.
EL quantification (HPTLC) and composition (mass
spectrometry)

High-performance TLC. Cells were extracted according to
the Bligh and Dyer method (19). Samples were solubilized in
an ether/hexane (80/20, v/v) mix and nonether links were
reduced by Vitride® (sodium hydride and aluminium) (0.5 ml
Red-Al® for 10 mg total lipids) according to a described
method (20). Reaction is neutralized by a mix EtOH/water
(20/80, v/v) in ice. Obtained products from the ether phase
were dried and r-solubilized in chloroform/methanol (2/1, v/
v) at the concentration of 20 mg/ml. The silica gel plate for
HPTLC premigrated in chloroform/methanol (1/1, v/v),
samples were separated by migration in chloroform/acetone
(90/10, v/v) for 30 min and were revealed in a bath of sulfuric
acid/EtOH (10/90, v/v) for 1 min. Plate was heated at 140◦C
for 11.5 min to carbonize organic substances. A range of batyl
(1-O-octadecyl-sn-glycerol) from 1 to 10 μg migrated with
samples. Bands were visualized by the TLC visualizer (Camag)
and quantified using the batyl range. Quantities of EL were
expressed in microgram per million of cells and normalized
to control condition.

Mass spectrometry. The dry residue was reconstituted with
100 μl of a 6:3:1 mix of acetonitrile/water/isopropanol, fol-
lowed by centrifugation (15,000 g, 10 min, 4

◦
C) before mass

spectrometry analysis. Liquid chromatography-high
resolution mass spectrometry analysis was realized following
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already published method (21). For more detail, see
Supplemental Text S1.

Data processing: Briefly, features were automatically
detected using eXtensible Computational Mass Spectrometry
online. Manual verification of the features detected was
performed. In every sample, the intensity of each feature was
normalized to the sum of all features’ intensities in the sample
and expressed as the normalized peak area. An algorithm was
used to identify matching isotopes and only M+0 isotopes
were kept. When possible, lipids were annotated according to
their retention time and m/z using an in-house database builds
with MS/MS data. EL identified are putatively annotated as
follows: “PC” or “PE” stands for the phosphatidylcholine (PC)
or phosphatidylethanolamine (PE) polar heard, respectively.
“O-” means ether bond (alkyl-EL) and “P-”, vinyl-ether bond
(alkenyl-EL). When possible, both sn-1 and sn-2 chains are
annotated with their carbon chain length, followed by the
number of unsaturations, with the first chain being the ether-
linked one, followed by the sn-2 fatty acid. Some species are
annotated with the sum of both their sn-1 and sn-2 chains. As a
general rule due to their abundance described in the litera-
ture, EL with PC polar head are putatively identified as alkyl-
EL and EL with PE polar head with at least one unsaturation
as alkenyl-EL. Noteworthily, as an example, a PC(O-16:1/20:4)
could be a PC(P-16:0/20:4) and a PE(P-18:0/22:6) could be a
PE(O-18:1/22:6).
Statistics
Data were represented as median ± interquartile range,

with N the number of experiments and n the number of
replicates. For experiments with two conditions, the
Mann–Whitney test was used and for those with more than
two conditions, the Kruskal–Wallis test with Dunn’s correc-
tion was used. When working with paired samples, Wilcoxon
matched-pairs signed rank test was used. Differences were
considered significant when P value <0.05 (the software used
for statistical analysis was GraphPad Prism). For immunohis-
tochemistry assay on TSA, statistical analyses were carried out
with StatView, version 5.0, software (Abacus Concepts, Ber-
keley, CA). Comparison between groups was performed using
the χ2 test or the Fisher exact test. For heatmap representa-
tion, the normalized peak area of each EL was centered and
scaled across all the samples, converting them to a Z-score and
plotted as a heatmap using R (22, 23).
RESULTS

Coexpressions of AGPS and SK3 in breast biopsies
To study the expression of AGPS and SK3 in breast

cancers, we analyzed AGPS and KCNN3 mRNA (coding
for SK3 protein) expressions in 50 invasive breast
cancer biopsies (cohort 1). Figure 1A shows a signifi-
cant correlation between AGPS and KCNN3 mRNA. To
confirm this observation, immunohistochemical stain-
ing against AGPS and SK3 proteins was carried out on
a TSA (serial 3 μm sections) of 78 invasive breast car-
cinoma specimens (cohort 2). As illustrated in Fig. 1B,
we observed that the AGPS protein was expressed in
43 tumors out of 78, the SK3 protein was positively
stained in 38 cases, and a significant correlation be-
tween AGPS and SK3 protein expression was found.
Moreover, according to the gene expression analysis of
the Cancer Genome Atlas (https://portal.gdc.cancer.
gov/) database, a similar correlation between AGPS
and KCNN3 mRNA was observed in prostate tumors,
extending these observations beyond breast cancer
(Fig. 1C).

AGPS promotes SK3 by regulating miR-499 and
miR-208

Since the key function of AGPS is to synthesize EL
and that the SK3 channel was previously found to be
regulated by EL analogs (2), we then investigated
whether knocking down the AGPS affected SK3
expression in various cancer cell lines (breast and
prostate cancer, osteosarcoma). First, we checked the
efficiency of siRNA and found that siAGPS#1 inhibited
more than 90% the AGPSmRNA and 73% of the protein
72 h after transfection (Supplemental Fig. S1, A–D). As
expected, the HPTLC results showed that knocking
down AGPS significantly decreased the quantity of EL
by 81% (N = 5, Mann–Whitney test, P = 0.017,
Supplemental Fig. S23). This was associated with a large
reduction of the expression of the SK3 protein and
KCNN3 mRNA in various cancer cell lines (Fig. 1D). This
effect was time-dependent (Supplemental Fig. S2A),
with a large effect observed 72 h post transfection in
the four different cell lines tested, namely MDA-MB-
435s, A-673, PC3, and C4-2 cells (Fig. 1D). Another
sequence of siRNA (siAGPS#2) yielded the same results
on AGPS and SK3 expressions (Supplemental Figs. S1E
and S2B). It has been reported that some epithelial-to-
mesenchymal transition transcription factors were
found to be regulated by AGPS (8), including Zeb1
which we found to enhance KCNN3 promoter activity
(24–26). Nevertheless, we found that AGPS knockdown
had no effect on the expression of various epithelial-to-
mesenchymal transition transcription factors, including
Zeb1 expression (Supplemental Fig. S3). In addition,
AGPS knockdown had no effect on KCNN3 promoter
activity (Fig. 1E), suggesting that AGPS could control
SK3 expression through a posttranscriptional regula-
tion mechanism, such as through miRNA expression.
Interestingly, miR-499a-5p (that we named hereafter
miR-499), which was previously found to control
KCNN3 expression (27), increased after siAGPS trans-
fection (Fig. 1F). Bioinformatic analyses (www.
targetscan.org/vert_71/) predicted three other miR,
among which miR-218-3p and miR-208a-3p (miR-208)
were found to be increased by AGPS knockdown but
not miR-135-3p (Fig. 1F). To determine whether these
miRNAs could bind the 3′ untranslated region (UTR)
of KCNN3, cross-linking immunoprecipitation was per-
formed using GW182 antibodies to immunoprecipitate
miR induced silencing complexes. Reverse transcrip-
tion quantitiative polymerase chain reaction were sub-
sequently performed and only the binding of miR-499
and miR-208 to the KCNN3 3′UTR was detected (Fig. 1G,
Ether lipids and SK3 5
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left). Note that miR-499 and miR-208 had similar seed
sequences and targeted the same site in KCNN3 3′UTR
(Fig. 1G, right). The regulatory role of these two miRs
on the expression of KCNN3 mRNA was confirmed
through the use of miR-499 and miR-208 mimics as
shown in Fig. 1H. Consistent with all these results, a
significant inverse correlation between AGPS and miR-
499/miR-208, KCNN3 and miR-499/miR-208 was
observed in invasive breast carcinoma tissues (cohort 3)
(Fig. 1I). All the results demonstrate that the key enzyme
responsible for EL synthesis, AGPS, promoted SK3
expression by decreasing the expression of miR-499
and 208 (schematic representation in Fig. 1J).

AGPS promotes SK3-dependent cell migration,
invasion, and adhesion

In a previous study, we found that the SK3 channel
has no effect on cell viability but promotes the migra-
tion of various cancer cell lines by increasing SOCE
(dependent of calcium from reticulum endoplasmic)
and only CCE (not dependent of intracellular calcium
stores) in MDA-MB-435s cells (1, 24, 28). As expected,
AGPS knockdown had almost no effect on cell viability
(Supplemental Fig. S4) but decreased by 56% the
migration of MDA-MB-435s, which expressed SK3
(SK3+ cells), and their CCE by 50% (Fig. 2A,B, left).
These effects were totally abolished in MDA-MB-435s,
which did not express SK3 (SK3- cells) (Fig. 2A,B,
right). The suppression of AGPS also had no effect on
the SOCE of MDA-MB-435s (Supplemental Fig. S5A).
Note that we already found that the suppression of SK3
in MDA-MB-435s reduced the capacity of the cell to
migrate by 59% and decrease the CCE by 60%
AGPS (30 on 50). Cohort 2, N = 78, Chi2, ****P = 0.0002. No correla
with the lymph node status was found (P = 0.36). C: Scatter plot rep
KCNN3 in function of the mRNA expression of AGPS in prostate a
0.0001. D: AGPS is critical for SK3 expression in cancer cells. Left
decreased 72 h after transfection with siAGPS#1 compared to siCTL
to the total protein signal of the lane and then relativized to the siCT
qPCR is decreased 72 h after transfection with siAGPS#1 compared
interquartile range, Mann–Whitney test, ****P < 0.0001). The numbe
E: AGPS knockdown does not affect KCNN3 promoter activity. KC
performed 48 h (N = 4) and 72 h (N = 6) after siAGPS#1 transfectio
(median ± interquartile range, N = 6, Mann–Whitney test, not signif
miRNA–targeting KCNN3 mRNA. miR-499-5p (N = 7), miR-208-3
quantified by RT-qPCR 48 h after transfection with siAGPS#1 in
(median ± interquartile range, Mann–Whitney test, ****P < 0.0001, **
mRNA. Left: organization of endogenous KCNN3 mRNA, miRN
silencing complex (RISC) assessed by cross-linking immunoprecip
499a-5p, or miR-208-3p to the 3′ UTR KCNN3 mRNA were detecte
and miR-135-5p (N = 3, median ± interquartile range). Right: alig
their target site in the 3′ UTR of KCNN3 mRNA. The binding site
mammals. H: miR-208-3p and miR-499-5p mimics downregulate KC
after transfection with miR-499-5p or miR-208-3p mimics and relativ
4, median ± interquartile range, Kruskal–Wallis test, P < 0.0001 an
0.0001). I: AGPS and KCNN3 mRNA are inversely correlated with m
miR-499-5p, and miR-208-3p were quantified by RT-qPCR. Graphic
versus miR-208-3p+miR-499-5p: r = −0.40, *P < 0.05, AGPS versus
representation of SK3 regulation by AGPS. AGPS, alkylglycerone
polymerase chain reaction; RT-qPCR, reverse transcription qua
Richardson; TCGA, The Cancer Genome Atlas; UTR, untranslated
compared to SK3+ cells (1). SK3 potassium channels are
associated with the Orai1 calcium channel forming an
oncocomplex that promotes CCE and cell migration
(29). It was observed that AGPS knockdown had no
effect on Orai1 expression (Supplemental Fig. S5B)
suggesting a specific control of SK3 by AGPS, leading
to increased CCE and cell migration.

We subsequently investigated the role of AGPS in
cell invasion and adhesion, other key cellular mecha-
nisms promoting tumor aggressiveness. Figure 2C,D
show that cancer cell invasion was reduced by 80% and
cell adhesion by 50% upon AGPS knockdown. Since
SK3 expression is controlled by AGPS and its role in
cell invasion and adhesion remains unknown, we
investigated the involvement of the SK3 channel in
these cell functions. The downregulation of SK3
expression by using a siRNA directed against KCNN3
(siKCNN3#1) (Supplemental Fig. S6) reduced cell inva-
sion by 70% and cell adhesion by 46% (Fig. 2C,D), sug-
gesting that part of AGPS-dependent cell invasion and
adhesion depended on SK3 expression. Curiously, a
treatment with two different SK3 channel blockers
(apamin and ohmline that inhibit SK3 currents) was two
times less effective in cell invasion (Fig. 2E) than
siKCNN3#1 (Fig. 2C). This differential outcome was even
more obvious when we studied the effect on cell
adhesion assay since the capacity of cells to adhere
remained totally unchanged with apamin or ohmline
treatments (Fig. 2F). Note that we previously reported
that apamin or ohmline reduced the capacity of the cell
to migrate by 50% and 60%, respectively (12, 30). In or-
der to remove any doubt on a nonspecific effect of
siKCNN3#1, we used a second siKCNN3 sequence
tion between AGPS staining and histoprognostic grade SBR or
resenting the Pearson’s correlation of the mRNA expression of
denocarcinoma. TGCA-PRAD dataset, N = 495, r = 0.4, ****P <
: SK3 protein level studied in stain-free Western-blot is highly
in MDA-MB-435s cells. SK3 detection band area was normalized
L condition (N = 4). Right: KCNN3 mRNA level analyzed by RT-
to siCTL in MDA-MB-435s, A673, PC3, and C4-2 cells (median ±
rs in brackets indicate the number of independent experiments.
NN3 promoter activity studied by reporter luciferase assay was
n in MDA-MB-435s cells. Data are relativized to siCTL condition
icant). F: AGPS knockdown increases the expression of putative
p (N = 4), miR-218-3p (N = 3), and miR-135-5p (N = 3) were
MDA-MB-435s cells. Data are relativized to siCTL condition

P < 0.01). G: miR-208-3p and miR-499-5p bind to 3′ UTR KCNN3
As, and GW482 (RNA-binding protein) within RNA-induced
itation in MDA-MB-435s cells. The binding of GW182, miR-
d. In opposite, the binding were not detected with miR-218-3p
nment of the sequences of miR-499-5p and miR-208-3p with
is the same for both miRNAs and is highly conserved among
NN3 mRNA. KCNN3 mRNA was quantified by RT-qPCR 48 h
ized to the mimic control condition in MDA-MB-435s cells. (N =
d post hoc Dunn’s test (compared to control condition),****P <
iR-208-3p and miR-499-5p in breast carcinoma. AGPS, KCNN3,
s show Pearson’s correlation analysis. Cohort 3, N = 28, KCNN3
miR-208-3p and miR-499-5p: r = 0.38, *P < 0.05. J: Schematic
phosphate synthase; miRNA, micro RNA; qPCR, quantitiative
ntitiative polymerase chain reaction; SBR, Scarff Bloom et
region.
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(siKCNN2#2) that was also found to reduce cell adhesion
(Supplemental Fig. S7). We then hypothesized that the
differential effects of SK3 channel blockers compared
to SK3 knockdown on cell adhesion could be explained
by the presence of a nonpore function of SK3 that
controls cell adhesion.

A new nonpore function of SK3 promotes cell
adhesion and invasion through the AGPS/SK3/
MMP9 axis

Invasion-related genes such as the MMP were previ-
ously reported to be regulated by AGPS expression in
cancer cells (31). If the expression of MMP2 was
decreased when AGPS was suppressed, it remained
unchanged after SK3 knockdown (Supplemental
Fig. S8A). In contrast, the suppression of AGPS or
SK3 led to a strong reduction of MMP9 mRNA
expression in various cell lines, suggesting that AGPS
controlled MMP9 expression through the regulation of
the SK3 channel (Fig. 3A). Consistent with this result, an
overexpression of SK3 channel increased MMP9
mRNA expression by 70% (Fig. 3B). In contrast, a
decrease of MMP9 expression was not observed with
SK3 channel blocker treatments, while apamin treat-
ment slightly increased MMP9 mRNA in A673 cells
(Fig. 3C). Note that this increase could be explained by
an increase of SK3 expression in A673 cells observed
after long-term SK3 channel blocker treatments
(Supplemental Fig. S9). To explore the role of a non-
pore function of SK3, we used a SK3 mutant where the
pore motif, GYG, was altered to AAA leading to a
nonconductive or nonpore SK3 (SK3np) (32, 33). The
enforced expression of SK3np increased the expression
of MMP9 by 210% (Fig. 3B), while the suppression of
MMP9 expression reduced the cell invasion and adhe-
sion by 80% (Fig. 3D and Supplemental Fig. S8B). In
addition, the enforced expression of SK3np increased
the adhesion capacity of the cells (Fig. 3E). These
findings strongly suggest that SK3 promotes MMP9
expression independently of its channel activity,
resulting in a promotion of cell adhesion and cell in-
vasion. Since part of the cell invasion capacity depends
on cell migration, the effect of SK3 channel blockers
observed on cell invasion (Fig. 2E) could be explained
Mann–Whitney test, **P < 0.01, ns = not significant). C and D: Cell inv
C: MDA-MB-435s cells were transfected with siCTL (N = 4), siKCNN
(24 h). Data are relativized to siCTL condition (median ± interquartil
compared to siCTL condition, **P < 0.01, ***P < 0.001). Represent
represents 60 μm, and nuclei staining are in white color. D: MDA-M
siAGPS#1 3 days before cell adhesion assay (2 h). P < 0.001. Data ar
range, Kruskal–Wallis test, P < 0.0001, and post hoc Dunn’s test, com
slightly reduced and cell adhesion is unmodified by pharmacologi
treated daily during 2 days then during invasion assay (24 h) with ap
Data are relativized to control condition (median ± interquartile r
compared to siCTL condition, **P < 0.01. F: MDA-MB-435s cells were
with apamin (100 nM) or ohmline (1 μM), two inhibitors of SK3 curr
interquartile range, Kruskal–Wallis test, P = 0.05. Representative pic
60 μm; and nuclei staining are in white color. AGPS, alkylglycerone
by their effect on cell migration. Indeed, we have
already reported that apamin and ohmline decreased
cell migration (1, 30). The reduction of cell migration
induced by SK3np (Fig. 3F) supports this hypothesis
since it was observed that when associated as a tetramer
with endogenous SK3 protein, this construct acted as
dominant negative of SK3 currents (32, 33).

PEDS1, the key enzyme of alkenyl-EL synthesis, is
involved in the AGPS/SK3/MMP9 axis

The obvious mechanism through which AGPS con-
trols SK3 expression would be through ELs, which are
produced by AGPS as alkyl- and alkenyl-EL. We per-
formed a targeted lipidomic analysis of siAGPS
compared to si control cells using a LC-MS/MS–based
protocol that enabled the identification of alkyl- and
alkenyl-EL molecular species and their relative quan-
tification. As shown in Fig. 4A and in the Supplemental
Figs. S10 and S11, in negative ion mode, 35 molecular
species of EL were identified, including alkyl- and
alkenyl-EL (plasmalogens); among these, 25 were
significantly reduced while the remaining showed the
same tendency. The same was observed in positive ion
mode, with the identification of a total of roughly 60
different EL species in our cells accounting for a broad
overview of the EL cellular levels (see individual
graphics in Supplemental Figs. S10–S14). Considering
that the production of both alkyl- and alkenyl-EL was
reduced when suppressing AGPS, we subsequently
investigated the specific role of alkenyl-EL in the
regulation of miR-208 and miR-499 targeting KCNN3
by using a siRNA directed against PEDS1, the enzyme
responsible for the desaturation of alkyl-EL into
alkenyl-EL, encoded by TMEM189 (see schematic rep-
resentation in Fig. 4B). The delivery of siPEDS1 into
cells inhibited the mRNA TMEM189 encoding for
PEDS1 by more than 90% (Supplemental Fig. S15) and
the protein PEDS1 was inhibited by 87% 72 h after
transfection (Fig. 4C). Interestingly, PEDS1 knockdown
resulted in an increase of the identified miR-208 and
miR-499 (Fig. 4D) similar to what was observed upon
AGPS knockdown (Fig. 1F). In a similar way, PEDS1
knockdown induced a large reduction of KCNN3
mRNA and SK3 protein quantities in various cell lines
asion and adhesion are reduced upon AGPS or SK3 knockdown.
3#1 (N = 4), siAGPS#1 (N = 3) 2 days before cell invasion assays
e range, Kruskal–Wallis test, P < 0.0001 and post hoc Dunn’s test,
ative pictures of cells after cell adhesion assays. The scale bar
B-435s cancer cells were transfected with siCTL, siKCNN3#1, or
e relativized to siCTL condition (N = 3, median ± interquartile
pared to siCTL condition, ***P < 0.001. E and F: Cell invasion is
cal inhibitors of SK3 currents. E: MDA-MB-435s cells were pre-
amin (100 nM) or ohmline (1 μM), two inhibitors of SK3 currents.
ange, Kruskal–Wallis test, P < 0.0001 and post hoc Dunn’s test,
pretreated daily during 3 days then during adhesion assay (2 h)
ents. Data are relativized to control condition (N = 4, median ±
tures of cells after cell adhesion assays. The scale bar represents
phosphate synthase.
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(Fig. 4E, Supplemental Fig. S16), alongside a decrease of
SK3-dependent cell migration, invasion, and adhesion
(Fig. 4F); the knockdown also almost totally abolished
the expression of MMP9 (Fig. 4G) as was observed
following SK3 and AGPS knockdown (see Figs. 2 and 3).
However, knocking down PEDS1 induced not only a
reduction of alkenyl-EL quantities but also of alkyl-EL
(Fig. 4H, Supplemental Figs. S17 and S18). This is sur-
prising since an accumulation of alkyl-EL in PEDS1-
deficient mice has been shown along with a decrease
of alkenyl-EL (10). This could be explained by the
downregulation of the fatty acyl-coA reductase 1
expression we observed (Fig. 4I), the rate-limiting
enzyme of EL synthesis, as it reduces fatty acids into
fatty alcohols which are then incorporated at the sn-1
position of the EL (Fig. 4B). Altogether, these results
highlight a key role of alkyl- and alkenyl-EL in SK3
expression. Unfortunately, the knockdown of PEDS1
did not allow us to discriminate between the effects of
alkyl-EL and alkenyl-EL on SK3.

Alkyl- and alkenyl-EL supplementation promotes
SK3 expression while only alkyl-EL increase SK3
activity

To further study the role of alkyl- and alkenyl-EL
produced by AGPS and PEDS1 on SK3 expression and
activity, we supplemented our cells with commercially
available EL in their phospholipid form, as identified by
LC-MS in our cells (Fig. 4A, Supplemental Figs. S10–S14
and S17 and S18). We focused on the alkyl-EL PC(O-
16:0/22:6) and the alkenyl-EL PE(P-18:0/22:6) as they
were both identified in our cells (Fig. 4A for the alkyl-EL
and Supplemental Fig. S12 for the alkenyl-EL). These
specific EL species were chosen as they contain compa-
rable sn-2 fatty acids, unfortunately, we could not chose
an alkyl- and alkenyl-EL with comparable sn-1 fatty
alcohol chains as theywere none commercially available.
In addition, although this EL specie was not identified in
our cells, we also supplemented them with the alkenyl-
EL PC(P-18:0/22:6) to be able to compare potential ef-
fects due to the difference of polar headgroup. As
observed, both alkyl- and alkenyl-ELs (PC and PE)
increased KCNN3 mRNA (Fig. 5A). Since alkenyl-EL
cannot be transformed back into alkyl-EL (Fig. 4C), this
at least suggests that alkenyl-EL could promote KCNN3
is unmodified by a treatment with SK3 inhibitors. Cells are treated d
MMP9 mRNA was quantified by RT-qPCR and relativised to control
test for the experiment with MDA-MB-435s cells: P > 0.05, Mann–Wh
invasion and adhesion are under control of MMP9 expression. MDA
assay was performed for 24 h, 48 h post transfection. Adhesion assay
to siCTL condition (median ± interquartile range, Mann–Whitney te
independent experiments. E and F: Effect of mutated pore SK3 cons
435s cells were transfected with 0.25 μg control (CTL) or human SK
72 h by seeding the transfected cells in plates coated with electrode
graphic showing the median and the interquartile range for one exp
increased in the hSK3mut condition (median ± interquartile rang
performed for 24 h, 48 h post transfection (median ± interquartile r
indicate the number of independent experiments. AGPS, alkylglycer
quantitiative polymerase chain reaction; RT-qPCR, reverse transcri
expression independently of their polar head. To verify
whether alkyl-EL play the same role as alkenyl-EL, alkyl-
and alkenyl-EL were then supplemented to cells after
PEDS1 knockdown, preventing the metabolization of
alkyl-EL into alkenyl-EL. Interestingly, both were able to
increase KCNN3 transcript expression similarly (Fig. 5B),
confirming that both alkyl- and alkenyl-EL promoted
KCNN3 expression. Considering that bothEL subfamilies
were able to promote KCNN3 expression, we next chose
to supplement cells with the lyso-alkyl-EL lysophospha-
tidylcholine (LPC)(O-16:0) as it should be metabolized
into the corresponding C16 alkyl- and alkenyl-EL with a
variety of sn-2 fatty acids chains, and with the lyso-
alkenyl-EL LPC(P-16:0) as it should be metabolized only
into C16 alkenyl-EL. In addition, the previously supple-
mented EL could already be metabolized by phospholi-
pase A2 (PLA2) into similar lyso-EL. Supplemental
Fig. S19 in the Supporting information confirms that
LPC(O-16:0) increased KCNN3 transcript expression. In
addition, both LPC(O-16:0) and LPC(P-16:0) supplemen-
tations reduced miR-499 expression (Fig. 5C), demon-
strating the capacities of lyso-EL to promote SK3
expression by regulating miR expression. To further
investigate the role of these lipids, we tested the effects
of alkyl- and alkenyl-EL on SK3 activity using the patch-
clamp technique tomeasure SK3 currents, following the
acute application of individual ELs. Figure 5D shows that
all six alkyl-ELs tested, including the lyso-ELLPC(O-16:0),
increased the amplitude of SK3 currents with same ef-
ficiency since we observed no significant differences
between different alkyl-EL species. The effect of alkyl-
EL on SK3 currents was observed within 1 min (Fig. 5E)
and 50% of the effect was reached 2–3 min after the
alkyl-EL application, that is, longer thanwhat is observed
for ohmline (12). This effect appeared to be specific to
alkyl-EL since the EL PC(16:0/20:4), the exact analog of
PC(O-16:0/20:4), had no effect on SK3 currents
(Supplemental Fig. S19). We then tested the effect of
alkenyl-EL and found no effect on SK3 currents,
demonstrating a differential role of alkyl- and alkenyl-
EL on SK3 activity (Fig. 5G,H). Surprisingly, LPC(P-16:0)
decreased 21% of the amplitude of SK3 current
(Fig. 5G) in contrast to the corresponding alkyl LPC(O-
16:0) (Fig. 5D) that was found to increase SK3 current
by 2-fold.
aily during 3 days with apamin (100 nM) or ohmline (1 μM) and
condition. (N = 3, median ± interquartile range, Kruskal–Wallis
itney test for the experiment with A-673 cells, *P < 0.05). D: Cell
-MB-435s cells were transfected with siCTL or siMMP9. Invasion
was performed after 72h h of transfection. Data are relativized

st, ***P < 0.001). The numbers in brackets indicate the number of
truct overexpression on cell migration and adhesion. MDA-MB-
3np (hSK3np) plasmids. E: Adhesion assay was performed after
s to measure cell index every 4 min for 2 h. Left: representative
eriment. Right: after 2 h, the relative cell index was significantly
e, Mann–Whitney test, **P < 0.01). F: Cell migration assay was
ange, Mann–Whitney test, ***P < 0.001). The numbers in brackets
one phosphate synthase; MMP, matrix metalloproteinase; qPCR,
ption quantitiative polymerase chain reaction.
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Fig. 4. PEDS1, the key enzyme producing alkenyl-EL, is involved in the AGPS/SK3/MMP9 axis mediating cell migration, invasion,
and adhesion. A: AGPS knockdown reduces all EL level in cancer cells. MDA-MB-435s cells were transfected with siCTL or siAGPS#1
during 96 h before lipid extraction. The heatmap represents the significantly altered molecular species of EL identified by UHPLC-
MS in negative ion mode in the siCTL (left) and siAGPS (right) samples (see Supplemental Figs. S10 and S11 for the statistical tests
performed for the selection, N = 7, Wilcoxon signed-rank test, *P < 0.05). Each column represents a different sample with siCTL and
siAGPS samples working in pairs. Each line represents a different EL (identified on the right) and each colored square represents the
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DISCUSSION

This study has demonstrated that in addition to being
sensitive to synthetic alkyl-EL, SK3 channel is regulated
by endogenous alkyl- and alkenyl-EL. The activity of
SK3 channels (SK3 currents) was found to be either
activated or inhibited by synthetic alkyl-EL (2), leading
to the modulation of calcium entries and cell migration
of various cancer cells (1, 24, 34, 35). In contrast, no
regulation of SK3 expression by synthetic alkyl-EL was
observed (36). Here, as summarized in Fig. 6, we found
that silencing AGPS or PEDS1 decreased the expression
of SK3 and its biological activities promoting the tumor
aggressiveness of various cancer cells (calcium entry,
MMP9 expression, migration, invasion, and adhesion).
Since silencing AGPS reduced the quantity of alkyl-
and alkenyl-ELs, and since the supplementation with
both EL species promoted KCNN3 expression, part of
the effects of AGPS or PEDS1 on SK3 expression was
likely due to the alkyl- and alkenyl-EL. Both alkyl- and
alkenyl-EL supplementations were found to increase
the KCNN3 transcript expressions previously reduced
by PEDS1 knockdown in a similar manner, confirming
the role of both EL subfamilies independently.

Noteworthily, the effect of the well-known alkyl-EL
platelet-activating factor (PAF) with 2 carbons sn-2 acyl
chain was not studied in this system to avoid any effect
simply due to PAF receptor or platelet activating factor
receptor–mediated signaling. It can however be hy-
pothesized that PAF could also promote KCNN3
expression, since the sn-2 chain does not seem to be
important in this regulation. In addition, following
AGPS and PEDS1 knockdown, an increase of acyl-
phospholipid species (ester-linked phospholipids) was
dihydroxyacetone phosphate (acyl-DHAP) is replaced by a fatty al
alkyl-DHAP in a reaction catalyzed by alkylglycerone phosphate sy
form diverse alkyl-EL species. From alkyl-PE, plasmanylethanolam
enable the formation of other alkenyl-EL species. C–E: PEDS1 knock
KCNN3 mRNA and SK3 expression. D: PEDS1 protein level stud
transfection with siPEDS1 compared to siCTL in MDA-MB-435s cells
signal of the lane and then relativized to the siCTL condition (N = 3
48 h after transfection with siPEDS1 in MDA-MB-435s cells (N = 4).
after transfection with siPEDS1 in MDA-MB-435s cells (N = 3) (me
Right: SK3 protein level was measured by stain-free Western blot 72
MB-435s cells. SK3 detection band area was normalized to the tot
condition (N = 3). F: PEDS1 knockdown reduces cancer cell migratio
with siCTL, siKCNN3#1, or siPEDS1 during 72 h before migration
condition (N = 3–4, median ± interquartile range, Kruskal–Wallis
condition: ****P < 0.0001, ***P < 0.001, **P < 0.01, and ns = not signific
expressions. MMP9 mRNA was quantified by RT-qPCR 72 h after tr
siCTL condition (N = 3, median ± interquartile range, Kruskal–Wal
condition: **P < 0.01, ***P < 0.001, ****P < 0.0001, and ns, not significa
possibly through the regulation of FAR1, the rate-limiting enzyme
siCTL or siPEDS1 during 72 h before UHPLC-MS experiments in po
The fold changes plotted were calculated by relativizing the tota
siPEDS1 sample to their total abundance in the matching siCTL sam
**P < 0.01). I: FAR1 protein level in MDA-MB-435s was measured b
compared to siCTL. FAR1 detection band area was normalized to the
condition (N = 3). DHAP, dihydroxyacetone phosphate; EL, ether lip
quantitiative polymerase chain reaction; RT-qPCR, reverse transcri
UHPLC-MS, ultra-high performance liquid chromatography tande
observed as shown in Supplemental Fig. S22 and also
already described (7). This increase of ELs leads us to
hypothesize that rather than fluxing the precursors of
EL to glycolytic pathway, the rewiring likely happens
right before the AGPS step. More precisely, acyl-
dihydroxyacetone phosphate could be directly con-
verted to acyl-lysophosphatidic acid by the PexRAP
enzyme for further metabolization into acyl-
phospholipids rather than being converted to alkyl-
lysophosphatidic acid. Since the EL supplemented
cannot be metabolized into acyl-phospholipids, acyl-
phospholipids are not responsible of the regulation of
KCNN3 transcripts expression and we showed that they
had no effect on SK3 activity. The effect of this in-
crease of acyl-phospholipids, which could be to balance
out the decrease of EL, would however be interesting to
explore, as it could have important biophysical conse-
quences independently from the effect of EL on SK3.

The mechanism through which alkyl- and alkenyl-EL
increase the expression of SK3 is unknown but depends
on the negative regulation of miR-499 and miR-208.
Although miRNA, including miR-499 (37), are known
to regulate lipid metabolism (38), to our knowledge, the
regulation of miRNA by lipids and alkyl- and alkenyl-
EL has not been described. miRNA expression can be
regulated either by transcriptional and post-
transcriptional mechanisms, as well as by hypoxia or
hormones such as oestrogen (39). Interestingly, pro-
moter hypermethylation has been shown to be one of
the major mechanisms for silencing miR-31 in triple-
negative breast cancer cell lines (40). In addition, EL
could regulate transcriptional miRNA expression
through different mechanisms, such as i) a direct acti-
vation of the transcriptional factor PPAR© as
cohol produced by fatty acyl-CoA reductase 1 (FAR1) forming
nthase (AGPS). Alkyl-DHAP is catalyzed by several enzymes to
ine desaturase 1 (PEDS1) forms alkenyl-PE and other enzymes
down increases miRNAs targeting KCNN3 mRNA and reduces
ied in stain-free Western blot is highly decreased 72 h after
. PEDS1 detection band area was normalized to the total protein
). E: miR-499a-5p and miR-208-3p were quantified by RT-qPCR
F: Left, KCNN3 mRNA was quantified by RT-qPCR 72 and 96 h
dian ± interquartile range, Mann–Whitney test, ****P < 0.001).
h after transfection with siPEDS1 compared to siCTL in MDA-

al protein signal of the lane and then relativized to the siCTL
n, invasion, and adhesion. MDA-MB-435s cells were transfected
, invasion, and adhesion assays. Data are relativised to siCTL
test, P < 0.0001 and post hoc Dunn’s test, compared to control
ant). G:MMP9 expression is under the control of PEDS1 and SK3
ansfection with siCTL, siKCNN3#1, or siPEDS1 and relativised to
lis test, P < 0.0001 and post hoc Dunn’s test, compared to control
nt). H and I: PEDS1 knockdown also reduces the levels of all EL,
of EL synthesis. H: MDA-MB-435s cells were transfected with
sitive ion mode. Six independent experiments were performed.
l abundances of alkyl-EL (left) and alkenyl-EL (right) in each
ples. (N = 6, median ± interquartile range, Mann–Whitney test,
y stain-free Western blot 72 h after transfection with siPEDS1
total protein signal of the lane and then relativized to the siCTL
id; miRNA, micro RNA; MMP, matrix metalloproteinase; qPCR,
ption quantitiative polymerase chain reaction; siCTL, si control;
m mass spectrometry.
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Fig. 5. Alkyl- and alkenyl-EL promote KCNN3 expression while only alkyl-EL increases SK3 channel activity. A and B: Supple-
mentation with both alkyl- and alkenyl-EL increases KCNN3 expression and is able to restore partially its expression reduced after
PEDS1 knockdown. Cells were treated daily with 20 μM of EL in liposomes for 96 h. Cells to be transfected were pretreated with EL
liposomes for 24 h before transfection with siCTL or siPEDS1. After 6 h, the transfected cells were treated daily during the
remaining 72 h. KCNN3 mRNA level measured by RT-qPCR is increased after supplementation with EL (median ± interquartile
range, Mann–Whitney test, ****P < 0.0001, ***P < 0.001, and *P < 0.5). C: Expression of miR-499a-5p–targeting KCNN3 mRNA is
reduced after lyso-alkyl-EL and lyso-alkenyl-EL supplementation. MDA-MB-435s cells were treated daily with 20 μM of LPC(O-16:0)
(left) and LPC(P-16:0) (right) in liposomes for 48 h, after which miR-499a-5p was quantified by RT-qPCR. D–H: Acute application of
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Fig. 6. Schematic overview of SK3 regulation by EL. Both alkyl- and alkenyl-EL, requiring AGPS and PEDS1 for their endogenous
synthesis, promote SK3 expression, through the downregulation of miRNAs targeting KCNN3 transcripts (miR-SK3). Alkyl-EL, and
not alkenyl-EL, also promotes SK3 currents. This could lead to a fine regulation of SK3-dependent biological functions involved in
calcium entry, cell migration, invasion, and adhesion, thus promoting aggressive features of cancer cells. AGPS, alkylglycerone
phosphate synthase; EL, ether lipid; miRNA, micro RNA; PEDS1, plasmanylethanolamine desaturase 1.
demonstrated for alkyl-EL (41, 42) or indirectly by
polyunsaturated fatty acids hydrolyzed from the sn-2
position of EL following PLA2 activation (43), ii)
through ligands of G protein-coupled receptors such as
lysophosphatidic acid receptors which activate various
signaling pathways and transcriptional factors (44), and
iii) by modulating the biophysical properties of plasma
membranes as constituents of lipid rafts nanodomains
controlling cellular signaling (45, 46). The exact mech-
anism by which EL regulate the expression of miRNA
should be explored.

It is tempting to speculate that if the synthesis of alkyl-
and alkenyl-ELs increases during tumor development
EL on SK3 currents. Whole-cell currents in HEK293T cells expressin
from −100 to 100 mV in 500 ms from a constant holding of 0 mV wi
after acute application of alkyl-EL (3 μM). Data are relativised to th
indicates the median, each point represents SK3 current fold chang
signed-rank test. E: representative whole-cell currents recorded afte
PC(O-16:0/22:6) (green trace, 3 μM, 7 min) and after addition of apam
Graphs showing a representative time course at 0 mV of whole-cell c
recorded at 0 mV after acute application of alkenyl-EL (3 μM). D
application. The black line indicates the median, each point repre
one cell; bars, median. Wilcoxon signed-rank test. H: Graphs showi
during application of vehicle, PC(P-16:0/C16:0), and apamin. AGPS
phosphatidylcholine; miRNA, micro RNA; PC, phosphatidylcholine;
polymerase chain reaction; RT-qPCR, reverse transcription quantiti
and progression, as initially shown by Snyder and Wood
(47), this would increase the expression of SK3 and the
development of metastases. This is in line with a study
showing that AGPS is overexpressed in breast cancer
tissues compared to noncancerous tissues (7) as well as
with our data showing that the expressions of SK3 and
AGPS is correlated in human breast tissues. Thus, an
increase in the expression of AGPS and/or PEDS1
would increase alkyl- and alkenyl-EL production, SK3
expression, and the formation of SK3–Orai1 complexes,
thus leading to CCE, cell migration, and the develop-
ment of bone metastasis (1). It is not surprising that
AGPS was expressed in these aggressive cell lines (MDA-
g recombinant human SK3 were generated by a ramp protocol
th a pCa 6. D: Graphs representing the current recorded at 0 mV
e current recorded before alkyl-EL application. The black line
e after alkyl-EL application to one cell; bars, median. Wilcoxon
r application of vehicle (black trace, 7 min), after application to
in (blue trace, 100 nM, less than 2 min) to inhibit SK3 currents. F:
urrents (same cell than in E). G: Graphs representing the current
ata are relativised to the current recorded before alkenyl-EL
sents SK3 current fold change after alkenyl-EL application to
ng a representative time course at 0 mV of whole-cell currents
, alkylglycerone phosphate synthase; EL, ether lipid; LPC, lyso-
PEDS1, plasmanylethanolamine desaturase 1; qPCR, quantitiative
ative polymerase chain reaction; siCTL, si control.
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MB-435s, PC3, A-673, C4-2) as Benjamin et al. (2013)
showed that this enzyme is overexpressed in various
aggressive cancer cell lines, including in the prostate,
breast, and melanomas. Interestingly, we found a posi-
tive correlation between SK3 and AGPS expression in
tissues other than tumorous ones (Supplemental
Fig. S8A) such as the brain and heart, where SK3 has
been found to control excitation-secretion/contraction
coupling (48, 49). This suggests that alkyl- and alkenyl-
EL could control the expression of SK3 within these
organs and could explain part of the neurodegenerative
and cardiovascular diseases observed when EL quantities
are decreased in these pathologies (5). In parallel, this
study on EL revealed the existence of a new and un-
known function for SK3, namely a nonpore function
that promotes cell adhesion and invasion through AGPS
and MMP9 expression. This nonconducting function of
SK3 could be explained by its gating currents induced
by its conformational changes such as those observed
for EAG-1 and Kv1.3 channels, leading to the activation
of partner enzymes such as p38 MAPK and Ca2+/
calmodulin-dependent protein kinase II (50–52) and/or
by physical interactions with kinases such as those
observed with intermediate calcium-activated potassium
channel that promote cell proliferation by regulating
the extracellular signal-regulated kinases 1/2 and JNK
signaling pathways. Furthermore, and more related to
adhesion and invasion processes, SK3 could interact with
transmembrane proteins that facilitate cell-cell and cell-
extracellular matrix interactions such as α5 integrin, as
already observed for Kv2.1 (53). Further research is
needed to explore this new function of SK3 regulated
by EL.

Of note, silencing PEDS1 in this study resulted in an
unexpected outcome as alkyl-ELs were also reduced.
While we were able to show that this was due to a down-
regulation of fatty acyl-coA reductase 1 expression, this
result remains contradictory to what is described in the
literature. This contradiction could be due to the fact
PEDS1 silencing was only transitory in our study
compared to the stable extinctions described in the liter-
ature (10), which could lead to different compensations.

With regard to the canonical function of SK3, its
channel function and the production of a potassium
current, we observed that all tested alkyl-ELs, including
lyso-alkyl-EL, with some also promoting SK3 expression
(PC(O-16/22:6), LPC(O-16:0)), increased the amplitude of
SK3 currents. This effect was not observed with the EL
PC(16:0/20:4) when compared to its alkyl-EL analog
PC(O-16:0/20:4), suggesting that the sn-1 ether bond
plays an essential role in alkyl-EL effect on SK3 activity.
The essential role of the ether bond on SK3 has already
been observed with the synthetic alkyl-EL ohmline or
with the well-studied endogenous alkyl-EL PAF (2). The
acute effect of these lipids on SK3 currents could not
be explained by the inverted conical shape of the lipids
as observed for TREK/TRAAK channels (54) because
alkyl-EL (which have a nonconical shape) and lyso-
16 J. Lipid Res. (2024) 65(5) 100544
alkyl-EL (inverted conical shape) both increase SK3
activity. We believe that alkyl-EL may act on SK3
channels by modifying the biophysical properties of
their membranes, as already observed with the
synthetic-alkyl-EL ohmline that induced a reorganiza-
tion of the lipid domains of membranes (46). Never-
theless, we cannot exclude other mechanisms such as
specific lipid-protein interactions as observed for in-
termediate calcium-activated potassium channel (55).

Interestingly, unlike alkyl-EL, alkenyl-ELs had no
effect or decreased (for the lyso alkenyl-EL) SK3 cur-
rents. The differential effects of alkyl- and alkenyl-ELs
could be explained by their different biophysical
properties when inserted into a membrane, as the vinyl-
ether bond would increase the membrane thickness (56)
compared to an ether bond; alternatively, this differ-
ence could be explained by the antioxidant role of
alkenyl-EL, which is not observed for alkyl-EL (57).
Moreover, the fact that lyso-alkyl-ELs could retain their
effects suggests that alkyl-ELs could still exert their
effect on SK3 activity as well as on its expression in
pathophysiological conditions, where PLA2 is activated
such as hypoxia, ischemia, and inflammation; indeed,
our results suggest that LPC(O-16:0) was also able to
promote SK3 expression. This would be particularly
important in neurodegenerative and cardiovascular
diseases, where EL quantities are reduced and associ-
ated with an increased excitability. Maintaining the SK3
activating activity of lyso-alkyl-EL could limit the
severity of the disease. In contrast, the reduction of SK3
activity by lyso-alkenyl-EL could increase the severity
of the pathology by increasing nervous and cardiac
excitabilities. Future studies on EL should therefore
focus not only on alkenyl-EL (as is the case today) but
also on alkyl-EL.

It would also be of major interest to conduct a
comprehensive study on the amount of alkyl-EL and of
alkenyl-EL in benign and malignant tumorous tissues
fromvarious cancers compared to adjacent nontumorous
tissues and corresponding tissues from healthy donors, as
the existing studies performed somewhat differ in terms
of both results and experimental plans. Undertaking such
a thorough study could contribute reaching a consensus
on the variation of EL in cancer and could provide more
insights into the specific roles playedbyalkyl and alkenyl-
EL in the pathogenesis of this pathology.

Moreover, in addition to cancer, variations of EL
production may occur in neurodegenerative and car-
diovascular diseases, leading to the dysfunction of
excitation-coupling responses. These results could be
used to develop therapies aiming to address ion channel
dysfunction by modifying alkyl- and alkenyl-EL com-
positions. In addition, alkyl/alkenyl-EL, some of which
belong to a new class of SK3 modulators, could be used
in clinical applications as inhibitors of bone metastases
and the peripheral neuropathic effect of chemothera-
peutic agents in cancer or for specific neurodegenera-
tive and cardiovascular diseases.
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