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Key Points

• A low frequency of
Vγ9Vδ2 T cells in AML
is an independent
predictor of poor
clinical outcome.

• These data provide a
strong rationale for the
development of
consolidation
protocols aimed at
enhancing Vγ9Vδ2
T-cell responses.
In several tumor subtypes, an increased infiltration of Vγ9Vδ2 T cells has been shown to

have the highest prognostic value compared with other immune subsets. In acute myeloid

leukemia (AML), similar findings have been based solely on the inference of transcriptomic

data and have not been assessed with respect to confounding factors. This study aimed at

determining, by immunophenotypic analysis (flow or mass cytometry) of peripheral blood

from patients with AML at diagnosis, the prognostic impact of Vγ9Vδ2 T-cell frequency. This

was adjusted for potential confounders (age at diagnosis, disease status, European

LeukemiaNet classification, leukocytosis, and allogeneic hematopoietic stem cell

transplantation as a time-dependent covariate). The cohort was composed of 198 patients

with newly diagnosed (ND) AML. By univariate analysis, patients with lower Vγ9Vδ2 T cells

at diagnosis had significantly lower 5-year overall and relapse-free survivals. These results

were confirmed in multivariate analysis (hazard ratio [HR], 1.55 [95% confidence interval

(CI), 1.04-2.30]; P = .030 and HR, 1.64 [95% CI, 1.06-2.53]; P = .025). Immunophenotypic

alterations observed in patients with lower Vγ9Vδ2 T cells included a loss of some cytotoxic

Vγ9Vδ2 T-cell subsets and a decreased expression of butyrophilin 3A on the surface of

blasts. Samples expanded regardless of their Vγ9Vδ2 T-cell levels and displayed similar

effector functions in vitro. This study confirms the prognostic value of elevated Vγ9Vδ2 T

cells among lymphocytes in patients with ND AML. These results provide a strong rationale

to consider consolidation protocols aiming at enhancing Vγ9Vδ2 T-cell responses.
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Introduction

The immune landscape of acute myeloid leukemia (AML) is
becoming better described, and there is increasing evidence that
immune features may modulate prognosis independently of genetic
markers.1-3 However, immune alterations in AML are broadly het-
erogeneous among patients in terms of immune infiltration and
expression of immune checkpoint receptors,4-6 suggesting distinct
immunoregulatory mechanisms and complicating the development
of immune signatures.4,7 This complexity also led to a slow clinical
translation of immunotherapeutic strategies in AML.3,8 Most
studies have so far focused on conventional T cells2,5,9 or natural
killer (NK) cells,10-12 but very little data are available on the impact
of γδ T-cell populations in AML.

The major role of γδ T cells has emerged in infectious diseases and
antitumoral immunity.13 These cells combine adaptive and innate
characteristics. Their activation is not restricted by the major histo-
compatibility complex14,15 and depends on ligand recognition by
their T-cell receptor (TCR) and other receptors such as DNAX
accessory molecule-1 (DNAM-1)16 or natural killer group 2 member
D (NKG2D).17 These unique recognition capabilities distinguish
them from other lymphocytes. Human γδ T cells represent 1% to
10% of circulating T cells.18 Based on the TCR δ-chain, they can be
classified into 4 major groups: Vδ1, Vδ2, Vδ3, and Vδ5. Vδ2+ is the
major subtype in peripheral blood (PB) and usually pairs with the Vγ9
chain. Vδ1+ accounts for 25% of PB γδ T cells and Vδ3+ for <1%.19

A direct rapid effector response is exhibited by γδ T cells, which have
the ability to activate other immune cells through cytokine release or
through their antigen presentation capabilities.20,21

The progressive discovery of the elusive mechanism of action of γδ T
cells and of their prognostic implications has evolved in parallel with
γδ T-cell–based immunotherapy approaches, with promising results.
The latter include allogeneic adoptive transfer of γδ T cells, from αβ
T-cell–depleted products, and of ex vivo expanded γδ T-cell infu-
sions, with optimized expansion strategies or genetic engineering.22

Adoptive transfer is currently at the forefront in AML, several studies
evaluating the efficacy of ex vivo expanded allogeneic γδ T cells in
refractory or relapsed (R/R) AML. In vivo stimulation strategies tar-
geting Vγ9Vδ2 T cells were initially based on the use of amino-
biphosphonates but have shown limited efficacy.23 However, new
methods of autologous Vγ9Vδ2 T-cell–based immunotherapy are
emerging, in particular with bispecific or monoclonal antibodies
(mAbs) targeting γδ TCRs directed against tumoral antigens such as
human epidermal growth factor receptor 2 (HER-2)24 or CD123.25

Vγ9Vδ2 T cells are activated by phosphoantigens (pAgs), pro-
duced by infected or transformed cells, via the mevalonate pathway
during isoprenoid biosynthesis.26,27 The antitumoral activity of
Vγ9Vδ2 T cells is triggered by pAgs binding to the intracellular
domain of butyrophilins (BTNs) 3A1 and 2A1.28-32 Vγ9Vδ2 T cells
exert pleiotropic antitumoral potential against a wide range of
tumors, including hematological malignancies.33 A particular
activity of Vγ9Vδ2 in AML is suspected because they exhibit a
high cytotoxic potential against myeloid blasts both in vitro and
in vivo.34-38 Early clinical trials of Vγ9Vδ2 T-cell–based immuno-
therapy have indeed led to objective responses in AML.39,40 The
frequency of Vγ9Vδ2 T cells has also been observed to vary
according to induction chemotherapy responses.41,42
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Importantly, analysis of nearly 18 000 bulk transcriptomes from 39
human tumors has revealed the high prognostic value of high γδ T-
cell infiltration, which had the best prognostic value compared with
other immune subsets.43 Another study confirmed the association
between Vγ9Vδ2 T-cell infiltration and favorable outcomes in a
broad spectrum of cancers.44 Nevertheless, deconvolution of
bulk transcriptomes using the CIBERSORT algorithm raises the
issue of misclassification for some immune subsets. Besides,
conflicting data have been reported with a negative role of γδ T
cells in several solid tumors,45-47 possibly based on protumoral
properties for some γδ T-cell subsets depending on the tumoral
context.48

In AML, demonstration of the poor prognostic impact of a low
frequency of Vγ9Vδ2 T cells at diagnosis is based on results
extrapolated from bulk RNA sequencing analysis.44 Yet, the pres-
ence of potential confounding factors has not been assessed,
preventing any solid conclusion on this matter.

Therefore, the aim of this study was to determine the prognostic
impact of the PB frequency of Vγ9Vδ2 T cells, determined by
immunophenotypic analysis, in newly diagnosed (ND) treatment-
naïve patients with AML, adjusting for potential confounding
factors.

Methods

Study design

This study merged 4 different cohorts: 2 from the Hematology
Department of Institut Paoli-Calmettes (IPC), 1 retrospective (IPC
tumor bank, IPC16-007; n = 21) and 1 prospective (HEMATO-
BIO-IPC 2013-015, NCT02320656, ANSM 131368B-11;
n = 40); 2 cohorts from prospective multicenter randomized phase
3 trials from the French Innovative Leukemia Organization (FILO)
group, AML-2006-IR cohort (NCT00860639; n = 84) and LAM-SA
2007 cohort (NCT00590837; n = 53). Patients from the IPC
cohort were diagnosed between December 2002 and October
2018 and FILO patients between November 2007 and November
2012. PB mononuclear cells (PBMCs) from healthy volunteers
(HVs) were obtained from the Etablissement Français du Sang
(authorization number AC-2019-3428 issued by the Ministry of
Higher Education, Research and Innovation).

Patients were aged from 18 to 81 years and were treated with
conventional anthracycline-based induction chemotherapy. In the
AML-2006-IR cohort, patients were then randomly assigned to
receive a single dose of gemtuzumab ozogamicin in arm A. In the
LAM-SA 2007 cohort, patients were randomized to receive
lomustine or not during the induction and postinduction treatment
phases.

Patients were included if PB Vγ9Vδ2 T-cell frequency could be
assessed.

Patients with AML3, with unknown or adverse European Leuke-
miaNet (ELN) risk classification were excluded. Patient character-
istics are summarized in Table 1.

AML diagnosis was established according to the World Health
Organization classification.49 Cytogenetic and molecular analyses
were used for patient stratification. Response to treatment and
relapse were evaluated according to ELN 2010 recommendations.50
LOW Vγ9Vδ2 T CELLS PREDICT POOR OUTCOMES IN ND AML 4263



Table 1. Baseline patient and disease characteristics

All patients

N = 198

Age, y

Median (range) 56.0 (18.9-81.5)

>60, n (%) 75 (37.9)

Sex, n (%)

Male 109 (55.05)

Female 89 (44.95)

AML etiology, n (%)

De novo 185 (93.4)

Secondary 13 (6.6)

WBC, ×10⁹⁹/L

Median (range) 25.7 (0.6-191.3)

>50, n (%) 56 (28.3)

NA, n (%) 2 (1.0)

FAB category, n (%)

M0 4 (2.0)

M1 46 (23.2)

M2 43 (21.7)

M3 0 (0)

M4 51 (25.8)

M5 35 (17.7)

M6 4 (2.0)

M7 0 (0)

NA 15 (7.6)

PB blasts, %

Mean (SD) 50.4 (32.9)

ELN classification, n (%)

Favorable 79 (39.9)

Intermediate 119 (60.1)

CBF mutation, n (%) 24 (12.1)

CEBPA mutation, n (%) 20 (13.5)

NPM1 mutation, n (%) 92 (53.8)

FLT3 mutation, n (%) 58 (34.1)

Vγ9Vδ2 (% of LC)

Mean (SD) 2.5 (4.3)

30-d mortality, n (%) 3 (1.5)

60-d mortality, n (%) 11 (5.6)

CR after induction, n (%) 161 (81.3)

HSCT, n (%) 32 (16.3)

CBF, core-bing factor; CEBPA, CCAAT enhancer binding protein alpha; FAB, French-
American-British classification; FLT3, fms-like tyrosine kinase 3; LC, lymphocyte; NPM1,
nucleophosmin 1; WBC, white blood cell; SD, standard deviation.
All participants provided written informed consent in accordance
with the Declaration of Helsinki.

Clinical samples

PBMCs obtained before induction chemotherapy or from HV were
isolated by density gradient (Lymphoprep, Stemcell Technologies,
4264 LE FLOCH et al
Vancouver, Canada) and cryopreserved in 90% fetal calf serum/
10% dimethyl sulfoxide (DMSO) (FILO), 90% albumin/10% DMSO
(HEMATOBIO and age-matched HV), or 80% RPMI/ or 10% fetal
calf serum/10% DMSO (IPC tumor bank).

Sample handling, conditioning, and storage were respectively
performed by the tumor banks of the FILO group (N◦ BB-
0033–00073) and the IPC tumor bank (AC-2007–33 granted by
the French Ministry of Research).

Flow and mass cytometry analysis

Samples were included if at least 1 000 000 viable cells could be
labeled. The proportion of Vγ9Vδ2 T cells among PB lymphocytes
was assessed by flow or mass cytometry. Supplemental Tables 2
and 3 provide the list of mAbs used, and supplemental Figure 9
describes the gating strategy.

For flow cytometry, PMBCs were washed and incubated with
human Fc Block (BD Biosciences, San Jose, CA) before immuno-
staining with a mix of extracellular antibodies (supplemental Table 2).
A fluorescence-activated cell sorter (FACS) LSR-Fortessa or a BD
FACSCanto II (BD Biosciences) were used for acquisition, and data
were analyzed using DIVA 8.0.1 software (BD Biosciences).

The mass cytometry experiments were performed as previously
described.51 Extracellular and intracellular antibodies are listed in
supplemental Table 3. Cells were acquired on a Helios mass
cytometer (Fluidigm), and samples were further analyzed using
FlowJo V10.6.2 (BD Biosciences). Statistical analyses of markers
expressed by Vγ9Vδ2 T cells were performed when >30 or >50
viable Vγ9Vδ2 T cells were analyzed in mass or flow cytometric
cytometry panels, respectively.

Vγ9Vδ2 T cells were manually gated and exported using FlowJo
V10.6.2. Consensus files were generated using the OMIQ software
from Dotmatics with a downsampling to a total number of 10 000
Vγ9Vδ2 T cells for each group. Vγ9Vδ2 T-cell subpopulations and
markers were described using the t-distributed stochastic neighbor
embedding (t-SNE) dimensionality reduction algorithm.

Generation of anti-human BTN3A mAbs

To generate anti-BTN3A 20.1 and anti-BTN3A 108.5 mAbs,
BALB/c mice were immunized with a soluble BT3.1-Ig fusion
protein, as previously described.52 The relative surface expression
of BTN3A (mAbs 20.1 and 108.5) on AML blasts was then
assessed by flow cytometry using calibrator beads, allowing for the
quantification of antigen density (Quantum Simply Cellular, Bangs
Laboratories, Fishers, IN). Cells were acquired on a BD FACS-
Canto II and analyzed using Flowjo V10.6.2.

Expansion of Vγ9Vδ2 T cells

For the establishment of allogeneic Vγ9Vδ2 T cells, fresh PBMCs
from HV were stimulated with zoledronate (ZOL) 1 μM (Sigma-
Aldrich, Saint Louis, MO) and recombinant human interleukin-2
(rhIL-2; Miltenyi Biotec, Bergisch Gladbach, Germany) at day 0.
From day 5, rhIL-2 (100 IU/mL) was renewed every 2 days, and
cells were kept at 1.5 × 106/mL until day 14. Only cell cultures that
reached >80% of Vγ9Vδ2 T-cell purity on day 14 were selected
and frozen until use. Allogeneic Vγ9Vδ2 T cells were thawed and
cultured with rhIL-2 (200 UI/mL) overnight before functional
assays.
27 AUGUST 2024 • VOLUME 8, NUMBER 16



For the establishment of autologous Vγ9Vδ2 T cells, thawed
PBMCs from patients with AML were treated similarly, but rhIL-15
(10 ng/mL) was also added to enhance their proliferative capac-
ities.53-55 Fresh autologous expanded cells were then used for
functional assays, depending on the quantity of Vγ9Vδ2 T cells.
Fold increases of viable Vɣ9Vδ2 T cells were calculated according
to the following formula: (day-14 %Vɣ9Vδ2 × day-14 total cell
number)/(day-0 %Vγ9Vδ2 × day-0 total cell number). Cells were
acquired on a BD FACSCanto II and analyzed using DIVA 8.0.1
software.

Degranulation assays

To analyze CD107 expression, autologous Vγ9Vδ2 T cells and
primary AML blasts were cocultured in an effector-to-target ratio of
1:1 with anti-CD107a, anti-CD107b, GolgiStop, and anti-BTN3A
20.1 agonist mAb or isotype control (1 μg/mL). Primary AML
blasts preincubated overnight with zoledronate (45 μM) were used
as positive control. After 4 hours, cells were collected and analyzed
by flow cytometry. Cells were acquired on a BD FACSCanto II and
analyzed using DIVA 8.0.1 software.

Statistics

Statistical analyses were carried out using GraphPad Prism 5.0
(GraphPad Software, San Diego, CA), Statistical Package for the
Social Sciences (SPSS software, Chicago, IL), and R software
(www.rproject.org).

Normality of distributions was assessed using the d’Agostino-
Pearson normality test.

Comparisons of categorial variables were performed using χ2 or
Fisher exact tests. For continuous variables, comparisons between
2 groups used 2-tailed Mann-Whitney U test or unpaired t test. For
multiple comparisons of paired values, a Friedman test was per-
formed followed by a Dunn’s test. For multiple comparisons of
independent samples, a Kruskal-Wallis test was performed fol-
lowed by a Dunn’s test. Patient groups were defined according to
the frequency of Vγ9Vδ2 T cells among lymphocytes. The threshold
was defined based on optimized cutoff using maximally selected
log-rank statistics (maxstat package, R software V 3.6.2).56

A multivariate Cox regression model was used to assess the
prognostic value of Vγ9Vδ2 T-cell frequency, adjusting for other
prognostic factors: age at diagnosis, disease status, ELN classifi-
cation, and allogeneic hematopoietic stem cell transplantation
(HSCT) as time-dependent covariate.

Results

Patients with AML with a low frequency of Vγ9Vδ2 T

cells have poorer survival

A total of 198 patients were included. Their mean age was 56
years (range, 18.9-81.5); 79 (39.9%) had favorable ELN risk and
119 (60.1%) an intermediate ELN risk. The mean complete
remission (CR) rate was 81.3% (Table 1). Analysis of overall sur-
vival (OS) and relapse-free survival (RFS), based on the frequency
of Vγ9Vδ2 T cells, showed the 0.75% threshold to be the most
significantly discriminant (Figure 1A-B) and identified the high and
low frequencies referred to thereupon.
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As summarized in Table 2, patients with AML with lower Vγ9Vδ2 T
cells tended to be older (56.9 vs 54.5 years; P = .058). No dif-
ference was observed in Vγ9Vδ2 T-cell frequency group according
to the French-American-British classification,49 response to
induction in all cohorts (Table 1; supplemental Figure 1A); how-
ever, patients with favorable ELN risk had a lower Vγ9Vδ2 T-cell
frequency (supplemental Figure 1B). In the FILO cohorts, patients
who received lomustine in the LAM-SA 2007 trial (n = 21) were
more often in the low Vγ9Vδ2 T cells group (supplemental Table 1).
As Vγ9Vδ2 T cells are also critical effectors against infection,57 the
proportion of infectious complications was compared after induc-
tion in the FILO cohorts depending on Vγ9Vδ2 T cells, but no
difference was observed in terms of incidence of septic shock nor
G3/4 infectious adverse events.

In univariate analysis, patients with a low frequency of Vγ9Vδ2 T
cells had significantly lower 5-year OS and 5-year RFS (43.1% vs
64%; hazard ratio [HR], 1.54 [95% confidence interval (CI), 1.03-
2.31]; P = .028 and 42.3% vs 67.2%; HR, 1.69 [95% CI, 1.09-
2.62]; P = .015, respectively). These results were confirmed in
multivariate analyses (HR, 1.55 [95% CI, 1.04-2.30]; P = .030 and
HR, 1.64 [95% CI, 1.06, 2.53]; P = .025; Table 3). CR and early
mortality rates were similar in both groups of Vγ9Vδ2 T-cell fre-
quency (Table 2).

Relapsed patients were found to have a significantly lower fre-
quency of Vγ9Vδ2 T cells than those with sustained CR
(supplemental Figure 2A). However, the proportions of NK cells
and other lymphocyte subsets were similar regardless of outcome
in the FILO cohorts (supplemental Figure 2B-C), as well as CD4+

and CD8+ T cells in the HEMATOBIO cohort (supplemental
Figure 2D-E). Additionally, Vγ9Vδ2 T cells were found to
contribute the most to the prognostic effect of γδ T cells, sug-
gesting that Vδ1 subtype predominance is not involved
(supplemental Figure 2F-I).

Interestingly, the impact of a low frequency of Vγ9Vδ2 T cells was
independent of ELN risk (supplemental Figure 3), allogeneic HSCT
(supplemental Figure 4), or age (supplemental Figure 5).

Hence, a low frequency of Vγ9Vδ2 T cells was independently
associated with poor outcomes. This adverse impact was likely
related to an increased risk of relapse, as evidenced by the similar
CR or early mortality rates.

Low Vγ9Vδ2 T-cell levels are associated with

immunophenotypic shifts of the Vγ9Vδ2 T-cell

compartment

The immunophenotype of Vγ9Vδ2 T cells was then examined
according to their frequency. In the FILO cohorts, we observed a
great heterogeneity in the expression of Vγ9Vδ2 T-cell coactivating
receptors, with a significant decrease in the expression of NKG2A,
CD57, and DNAM-1 in patients with low Vγ9Vδ2 T-cell fre-
quencies. At variance, there was no difference in NKG2D or CD56
levels (Figure 2A). Moreover, no association was observed
between the expression of these 5 molecules and clinical out-
comes (supplemental Figure 6).

In mass cytometry, a much broader panel was used to detect the
various differentiation states and cytotoxic T-cell subsets in a
LOW Vγ9Vδ2 T CELLS PREDICT POOR OUTCOMES IN ND AML 4265
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Figure 1. Univariate survival analysis according to the frequency of Vγ9Vδ2 T cells. (A-B) Threshold determination of Vγ9Vδ2 T cells among viable lymphocytes is

determined using the optimal cut points, performed using the maximally selected log-rank statistics using the maxstat R package. For a given prognostic parameter, maxstat

identifies the optimal cut point that best discriminates 2 patient groups (https://cran.r-project.org/web/packages/maxstat/index.html). The threshold of 0.75 % of Vγ9Vδ2 T cells

among viable lymphocytes was selected for this study. (C-D) 5-y OS and 5-y RFS (n = 198 and 161, respectively) were estimated using the Kaplan-Meier method and compared

between groups using the log-rank test.
subgroup of patients from the HEMATOBIO cohort and HVs. This
disclosed no difference between patients with a high frequency of
Vγ9Vδ2 T cells and HVs (Figure 2B-H). In this cohort, we confirm
decreased levels of NKG2A and DNAM-1 in patients with low
Vγ9Vδ2 T-cell frequencies (Figure 2C). Patients with low Vγ9Vδ2
T-cell frequencies expressed lower levels of CD69 and CD16 than
HVs and patients with high Vγ9Vδ2 T-cell frequencies (Figure 2D),
indicating a less activated TCR state and a lower antibody-
dependent cell cytotoxicity potential.58 In contrast to the FILO
cohorts, we observed higher CD56 levels and similar CD57
expression in patients with low Vγ9Vδ2 T-cell frequencies. These
discrepancies are relative, because CD56 and CD57 levels fol-
lowed the same trend in both cohorts, and could be related to the
heterogeneity of these markers on Vγ9Vδ2 T cells.59-61 We did not
find any differences in terms of maturation states (Figure 2E) or
expression of triggering or coinhibiting molecules (Figure 2F-H),
apart from a lower expression of inducible T-cell costimulator
(ICOS) in patients with low Vγ9Vδ2 T-cell frequencies than HVs
and patients with high Vγ9Vδ2 T-cell frequencies.
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Analysis of surface ligand expression on the surface of AML blasts
disclosed that patients with fewer Vγ9Vδ2 T cells had a lower
expression of the BTN3A molecule (Figure 2I-J).

Altogether, these findings revealed that a “low Vγ9Vδ2 T-cell pro-
file” is related to a loss of mature and cytotoxic subsets. This finding
could explain the poor prognostic influence of a low frequency of
Vγ9Vδ2 T cells, related to a loss of the most immunocompetent
Vγ9Vδ2 T cells. This also suggests an important role for BTN3A in
modulating the maturation and the proliferation of Vγ9Vδ2 T cells.

The nonproliferating low Vγ9Vδ2 T-cell

immunophenotype can be reversed

The expansion capacities of Vγ9Vδ2 T cells were then explored
with respect to their frequency. Using ZOL-stimulation combined to
IL-2 plus IL-15 for 14 days, Vγ9Vδ2 T cells from PBMCs of 43
patients with AML at diagnosis were expanded. Cells from patients
with a lower frequency of Vγ9Vδ2 T cells tended to expand better
(low vs high Vγ9Vδ2 T cells; P = .072; Figure 3A).
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Table 2. Baseline patient and disease characteristics according to the frequency of Vγ9Vδ2 T cells

Low Vγ9Vδ2 T cells (≤0.75%/LC) High Vγ9Vδ2 T cells (> 0.75%/LC)

P valuen = 75 (37.9%) n = 123 (62.1%)

Age, y

Median (range) 56.9 (22.4-80.4) 54.5 (18.9-81.5) .058

>60 30 (40) 45 (36.6) .652

Sex, n (%)

Male 38 (50.7) 71 (57.7) .378

Female 37 (49.3) 52 (42.3)

AML etiology, n (%)

De novo 69 (92) 116 (94.3) .562

Secondary 6 (8) 7 (5.7)

WBC, ×10⁹⁹/L

Median (range) 30.2 (0.6-191.3) 24.6 (1.1-154.9) .451

>50, n (%) 23 (31.1) 33 (26.8) .423

NA, n (%) 1 (1.3) 1 (0.8)

FAB category, n (%)

M0 2 (2.7) 2 (1.6) .397

M1 15 (20.0) 31 (25.2)

M2 14 (18.7) 29 (23.6)

M3 0 (0) 0 (0)

M4 22 (29.3) 29 (23.6)

M5 16 (21.3) 19 (15.4)

M6 0 (0) 4 (3.3)

M7 0 (0) 0 (0)

NA 6 (8.0) 9 (7.3)

PB blasts, %

Mean (SD) 49.5 (31.1) 50.9 (34.1) .828

ELN classification, n (%)

Favorable 33 (44.0) 46 (37.4) .373

Intermediate 42 (56.0) 77 (62.6)

CBF mutation, n (%) 10 (13.3) 14 (11.4) .823

CEBPA mutation, n (%) 7 (13.0) 13 (13.8) >.999

NPM1 mutation, n (%) 37 (56.9) 55 (51.9) .532

FLT3 mutation, n (%) 22 (34.4) 36 (34.0) >.999

Vγ9Vδ2 T cells among LC, %

Mean (SD) 0.4 (0.2) 3.9 (5.1) <.0001

30-d mortality, n (%) 1 (1.3) 2 (1.6) >.999

60-d mortality, n (%) 6 (8.0) 5 (4.1) .339

CR after induction, n (%) 64 (85.3) 97 (78.9) .347

HSCT, n (%) 12 (16.0) 20 (16.5) >.999

CBF, core-bing factor; CEBPA, CCAAT enhancer binding protein alpha; FAB, French-American-British; FLT3, fms-like tyrosine kinase 3; LC, lymphocyte; NPM1, nucleophosmin 1; WBC,
white blood cell; SD, standard deviation.
Some of the samples were also functionally tested by measuring
the degranulation of Vγ9Vδ2 T cells. Surprisingly, there was no
difference in degranulation capacities between Vγ9Vδ2 T-cell fre-
quency groups whatever the tested conditions. As previously
described by our team, pAg-stimulation resulted in an increased
degranulation of expanded autologous Vγ9Vδ2 T cells.34
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Furthermore, BTN3A targeting with the 20.1 agonist mAb led to
an increase in degranulation compared with controls.

This demonstrated that the use of an anti-BTN3A agonists
empower degranulation capacities of autologous Vγ9Vδ2 T cells
against primary AML blasts, confirming results that had only been
LOW Vγ9Vδ2 T CELLS PREDICT POOR OUTCOMES IN ND AML 4267



Table 3. Univariate and multivariate analysis of factors influencing survival

Variable

5-y OS 5-y RFS

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value HR 95% CI P value HR 95% CI P value

Age, y

>60 vs ≤60 2.21 (1.46-3.34) <.0001 1.90 (1.27-2.83) .002 1.98 (1.25-3.13) .001 1.57 (1.01-2.46) .045

WBC, ×10⁹⁹/L

>50 vs ≤50 0.64 (0.4-1.01) .093 NE* 0.99 (0.6-1.59) .977 NE*

ELN classification

Intermediate vs favorable 1.80 (1.22-2.67) .005 1.95 (1.26-3.00) .003 1.77 (1.15-2.71) .012 2.04 (1.28-3.25) .003

Status

Secondary vs de novo 1.35 (0.62-2.92) .393 NE* 1.67 (0.71-3.92) .142 1.21 (0.59-2.47) .595

Vγ9Vδ2 T cells among LC, %

≤0.75 vs >0.75 1.54 (1.03-2.31) .028 1.55 (1.04-2.30) .030 1.69 (1.09-2.62) .015 1.64 (1.06-2.53) .025

HSCT

Yes vs no 0.46 (0.28-0.76) .017 0.59 (0.30-1.16) .127 0.53 (0.31-0.88) .045 0.38 (0.17-0.86) .019

5-y OS and 5-y RFS were estimated using the Kaplan-Meier method and compared between groups using the log-rank test (n = 198 and 161, respectively). Among the usual AML prognostic
factors (age, WBC, ELN 2010 risk category, de novo vs secondary AML, and HSCT), those with a P value <.15 were included in the multivariate logistic regression, with HSCT as a time-
dependent covariate (n = 196 and 159 respectively for 5-y OS and 5-y RFS).
LC, lymphocyte; NE, not entered; WBC, white blood cell.
*Not entered in the model.
obtained by using allogeneic Vγ9Vδ2 T cells expanded from HVs.36

Interestingly, it was also observed that ages of patients with AML
did not influence the ability of Vγ9Vδ2 T cells to expand and
degranulate (supplemental Figure 7).

Overall, these expansion and degranulation experiments demon-
strated that the functional impact of the immunophenotype asso-
ciated with a low frequency of Vγ9Vδ2 T cells was reversible
in vitro, even in older patients.

Discussion

Probably because of their major histocompatibility complex–
unrestricted mechanism of activation, the prognostic impact of γδ
T cells in AML has been mostly studied after HSCT. Here, a
reduced frequency of circulating Vγ9Vδ2 T cells at AML diagnosis
was shown to be independently associated with worse outcome.

These findings support results suggesting the prognostic role of
Vγ9Vδ2 T-cell abundance assessed by deconvolution of bulk tumor
transcriptomes using algorithms such as CIBERSORT-LM2243 or
CIBERSORT-LM7.44 However, such approaches based on bulk
transcriptomic data carry a risk of erroneous results, especially
when the analysis is focused on such a rare immune subset as that
of Vγ9Vδ2 T cells, in particular at AML diagnosis. In addition,
transcriptome analysis is difficult to apply in clinical routine. More-
over, the presence of confounding factors had not been tested in
these studies, thus preventing solid conclusions regarding the
prognostic value of PB Vγ9Vδ2 T-cell frequency in AML.

The results reported here are also consistent with studies evalu-
ating the good prognostic impact of reconstitution of a high fre-
quency of γδ T cells on OS and RFS after HSCT.62-64 However,
the distinction between Vδ2+ and other γδ T-cell subsets had only
been occasionally analyzed, and the prognostic value of this
reconstitution in AML remained controversial.64,65
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In contrast to the many immunomonitoring studies available after
HSCT,66 immunophenotypic approaches to evaluate Vγ9Vδ2 T
cells at diagnosis have been limited to very small cohorts42,67 and
evidenced no impact of Vγ9Vδ2 T-cell immunophenotype accord-
ing to clinical outcomes. It was shown that the PB frequency of
Vγ9Vδ2 T cells varies according to the quality of the response to
induction41 and is lower after induction in R/R patients than
patients in sustained CR.42 By contrast, in the study reported here,
patients with lower Vγ9Vδ2 T cells at diagnosis responded similarly
to induction but had a higher risk of relapse. Therefore, it could be
hypothesized that the frequency of Vγ9Vδ2 T cells at diagnosis
rather represents their proliferative capabilities, which could be
further inhibited in R/R patients.

Importantly, a decreased frequency of Vγ9Vδ2 T cells was associ-
ated with pronounced immunophenotypic alterations that affect
predominantly a decreased expression of cytotoxicity and/or acti-
vation markers, including NKG2A, CD57, DNAM-1, and CD16. Our
results are consistent with previous natural killer receptor blockade
assays of autologous Vγ9Vδ2 T cells from patients with AML that
showed that masking of DNAM-1 decreased the cytotoxic functions
of Vγ9Vδ2 T cells against autologous blasts, whereas masking of
NKG2D did not.34 In addition, CD16 plays a key role in effector
functions of Vγ9Vδ2 T-cell functions,58,68 including against acute
lymphoblastic leukemia or chronic lymphocytic leukemia cells.69,70

Meanwhile, downregulation of NKG2A was also demonstrated on
Vγ9Vδ2 T cells from patients with AML with lower Vγ9Vδ2 T cells,
and NKG2A has recently been reported to characterize a subset of
“educated” circulating Vγ9Vδ2 T cells that exert great antitumor
functions.71 CD57 is thought to be a marker of replicative senes-
cence in αβT cells,72 but its significance in Vγ9Vδ2 T cells is
debated.73 Indeed, CD57+ Vγ9Vδ2 T cells proliferate less74 but do
not accumulate with age.59-61 Regarding coinhibitory molecules, a
low frequency of Vγ9Vδ2 T cells was only associated with an
27 AUGUST 2024 • VOLUME 8, NUMBER 16
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upregulation of ICOS on Vγ9Vδ2 T cells, suggesting that these
Vγ9Vδ2 T cells are neither exhausted nor senescent at diagnosis, in
contrast to the signature of terminal senescence often observed in
αβ T cells of patients with ND AML.42 Interestingly, ICOS/ICOS-
ligand (ICOS-L) pathway has been involved in NK-cell activation
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by pAg–activated Vγ9Vδ2 T cells and may lead to the acquisition of
DC editing function by NK cells.75

However, further investigations are needed to understand the
respective qualitative42,67,76 vs quantitative41,43,44 contribution of
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Vγ9Vδ2 T cells in ND AML, as well as the associated alterations in
other immune subtypes and their dynamic changes over the course
of treatment. Interestingly, although phenotypically altered and/or
nonproliferating, Vγ9Vδ2 T cells retained their ability to kill autolo-
gous blasts, as we have recently shown in acute lymphoblastic
leukemia.77 These data confirm the persistent functional plasticity
of Vγ9Vδ2 T cells leading to an adaptive response in leukemia.

Finally, it was shown here that surface BTN3A levels on AML blasts
could influence the frequency of Vγ9Vδ2 T cells. We were limited
by the number of cells needed to perform other coculture assays,
but it could be hypothesized that more BTN3A molecules on the
blast surface might make them more “visible” to Vγ9Vδ2 T cells,
with a subsequent impact on their proliferation. This is consistent
with a recent transcriptomic study showing a positive association
between γδ T-cell infiltration and BTN3A expression in head and
neck squamous cell carcinoma.78 Alternatively, Vγ9Vδ2 T-cell
proliferation could be inhibited by a specific mechanism such as
defective mevalonate metabolism in AML blasts38 or by more
general immune escape processes such as enhanced inhibitory
ligand expression, reduced expression, or shedding of activating
ligands.3 For instance, baseline plasmatic levels of soluble BTN3A
and BTN2A1 have been associated with outcomes in several solid
tumors.79-81 The underlying mechanisms of BTN3A level expres-
sion are still unknown but have been investigated in a recent
CRISPR screen that showed a multilayered regulation dependent
on a metabolic crisis in tumor cells,82 and further studies are
warranted to understand BTN3A-specific regulation in AML blasts.
In addition, targeting BTN3A on AML blasts improved the cytotoxic
functions of autologous Vγ9Vδ2 T cells, demonstrating that BTN3A
could be a reliable target to “awaken” Vγ9Vδ2 T cells from patients
with AML who have decreased frequency of this subset. These
observations warrant further investigation of the efficacy of anti-
BTN3A agonist antibodies in AML, such as ICT01, which is
currently being evaluated in the multicenter phase 1/2 EVICTION
trial.83

Age-related immune alterations in AML are closely associated with
poor clinical outcomes with a higher proportion of late effector T
cells,4 limiting the individualization of an independent effect of
immune alterations in older patients with AML. In the present
cohorts, age-related changes appeared to be similar to the
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previously described decreased frequency of circulating Vγ9Vδ2 T
cells in older patients.84-86 Interestingly, a low PB Vγ9Vδ2 T-cell
frequency was found to yield a similar prognostic impact whatever
the age of the patients. Moreover, older patients had similar
expansion and degranulation capacities as younger ones, indi-
cating a persistent Vγ9Vδ2 T-cell plasticity with aging, as already
described in HVs.60,74 Similarly, it was confirmed that Vγ9Vδ2 T
cells adopt a more resilient behavior and are more resistant to
senescence than most immune effectors.60,74,85,87 Collectively,
these results demonstrate that Vγ9Vδ2 T-cell levels retain a prog-
nostic impact in older patients, and immunotherapeutic
approaches to harness their functions in this population could be
developed to reduce the risk of relapse. In this regard, recent
findings suggest that the use of 5-azacitidine or venetoclax may
potentiate the antileukemic functions of Vγ9Vδ2 T cells, as
demonstrated by encouraging results in combination with ICT01.88

It would be also interesting to evaluate the prognostic contribution
of Vγ9Vδ2 T cells in a cohort of patients with AML treated with
hypomethylating agents and/or venetoclax.

In summary, evidence is reported here that a low PB frequency of
Vγ9Vδ2 T cells in ND AML is independently associated with poor
prognosis. Although this reduced frequency of Vγ9Vδ2 T cells is
associated with major phenotypic alterations, the remaining
Vγ9Vδ2 T cells can proliferate and exert cytotoxic functions against
autologous blasts. Altogether, these findings confirm that
Vγ9Vδ2 T cells act as critical stress-sensors in AML and provide a
strong rationale for harnessing and potentiating these immune
effectors in the early treatment of AML.
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