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Abstract

In the challenging context of Knowledge Graph (KG) construction from text, traditional approaches often rely on Open Information
Extraction (OpenIE) pipelines. However, they are prone to generating many incorrect triplets. While domain specific Named Entity
Recognition (NER) is commonly used to enhance the results, it compromises the domain independence and misses crucial triplets.
To address these limitations, we introduce G-T2KG, a novel pipeline for KG construction that aims to preserve the domain inde-
pendence while reducing incorrect triplets, thus offering a cost-effective solution without the need for domain-specific adaptations.
Our pipeline utilizes state-of-the-art OpenIE combined with both a noun phrase-based cleaning and a LLMs based validation. It is
evaluated using gold standards in two distinct domains (i.e., computer science and music) that we have constructed in the context
of this study. On computer science corpus, the experimental results demonstrate a higher recall as compared to state-of-the-art
approaches, and a higher precision notably increased by the integration of LLMs. Experiments on the music corpus show good
performance, underscoring the versatility and effectiveness of G-T2KG in domain-independent KG construction.
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1. Introduction

The Semantic Web’s core objective is to facilitate the extraction and formalization of information into structured
formats, among which knowledge graphs (KGs) stand out as a cornerstone in various modern applications, including
question answering systems [25] and recommendation engines [22]. Stimulated by the exponential growth of textual
data, this paper adresses the challenging issue of KG construction from raw texts.
KGs organize information into triplets of (subject, predicate, object), linking entities through semantic relationships
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[10]. KG construction pipeline is composed of several stages : 1) Named Entity Recognition (NER), 2) Relation
Extraction (RE), 3) Entity and Predicate Mapping. Manual construction, while precise, is prohibitively expensive and
requires substantial expertise [12].
Recent improvements in NLP tasks make automatic KG construction an interesting alternative; however, it is limited
both by the complexity of natural language as well as the specificity of domain knowledge.

Firstly, in order to deal with language complexity, some approaches focus on domain-specific KGs [1], by spe-
cializing KG construction steps such as NER and RE among identified entities. However, these approaches often
miss many triplets and suffer from limited reusability due to the specialized adaptation they require, including the
need for domain-specific annotated data for effective NER and RE. Secondly, as an alternative, Open Information
Extraction (OpenIE) methods have been explored for their potential to extract domain-independent triplets. While
these capture a larger part of relevant triplets, they also deliver many irrelevant ones requiring post-filtering typically
by retaining only those triplets involving entities recognized by NER. This not only compromises OpenIE’s domain
independence, but also entails the risk of losing valuable information. In parallel, Large Language Models (LLMs)
like GPT-4 [2] and Llama [29], known for their generative capabilities, have been applied to KG construction. Despite
their domain-agnostic potential, they face challenges such as hallucination, which limits their reliability.

More precisely, in order to overcome these limitations, we propose a new domain independent approach, so called
General T2KG (G-T2KG), that incorporates both a noun phrase based cleaning and a LLMs based validation. The
remainder of the paper is structured as follows: Section 2 discusses state-of-the-art approaches for KG construction.
In Section 3, we introduce our approach, emphasizing its relevance. Section 4 presents the benchmarks in music and
computer science, along with evaluation and comparison results against other approaches (e.g., SciCero approach, and
GPT-4). Finally, the paper concludes with some closing remarks and outlines future work in Section 5.
We have made the source code of our approach, as well as the gold standards we developed, available to the scientific
community through a GitHub repository1.

2. Related Work

With the advances in NLP techniques and the introduction of multi-task models[8], approaches to KG generation
from texts can be divided into two main categories: 1) Pipeline approaches that decompose the KG generation process
into multiple sub-components and employ a specific model for each ; and 2) LLM based approaches that utilize a sin-
gle model (e.g., GPT, Llama)[29] for the whole process. Each approach differs from the others in the way it organizes
its components, its reliability and whether or not it is domain-dependent.
Domain-independent pipeline approaches. Text2KG [13] is designed for constructing KGs from Wikipedia sen-
tences. It is composed of 3 consecutive stages : a coreference resolution stage [16], a mapping stage with entities of an
external knowledge base (KB) (i.e. DBpedia) [19], and then a binary relation extraction stage with an OpenIE system,
OLLIE [27]. Another approach also relies on OpenIE for KG generation [18] that emphasize entity linking, utilizing
a collective intelligence from three distinct tools: TagMe [11], Spotlight [19], and Babelfy [21] to identify a set of
entities, then, these entities are associated with corresponding noun phrases (NPs) to enhance the coherence of the
represented facts in RDF format. The strength of domain-independent methods lies in their lack of domain knowledge
requirements, alongside their reusability and cost-effective adaptation to specific domains. However, being general in
nature and reliant on OpenIE for discovering a wide range of triplets without prior knowledge, these methods often
produce a significant number of incorrect triplets. For instance, in [13], if an object within a triplet is not mapped with
an entity in DBpedia, it is still retained as a literal. This can lead to incorrect object entities. Moreover, triplets filter-
ing based on KB mapping as in [18], exhibit another weakness: the potential to overlook many relevant triplets which
refer to entities or relationships not represented in the KB. These two examples are highlighting a critical challenge in
balancing comprehensiveness and accuracy.
Domain-dependent approaches. Doc2KG [28] creates KGs from administrative documents using a specialized ap-
proach rather than OpenIE. It employs Semantic Rule Labeling (SRL) to identify verb arguments [23], and identifies

1 https://github.com/OthmaneKabal/G-T2KG
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entities using a domain-specific NER system [4]. It retains only triplets which elements are named entities or proper
nouns part of the identified entities.

A recent sophisticated and comprehensive approach called SciCero[9] aims to construct a computer science knowl-
edge graph (KG) from paper abstracts and titles has been conducted in contrast to previously presented methods
[13, 18, 28]. This approach employs multiple techniques to detect entities [26, 30] and extract triplets using an Ope-
nIE system [17], the DygIEpp tool [30], and pattern based component,thereby avoiding information loss. A double
mapping for entities using external resources (wikidata and dbpedia) and transformer based method are performed
aiming to reduce the heterogeneity of entities. For the predicates, only a predefined dictionary of verbs was used.
Finally, a validation component verifies the correctness of the generated triplets using a classifier based on Sci-BERT
[5] that improve significantly the precision.
Domain-specific approaches yield precise KGs, yet their major limitation lies in reusability and adaptability to
other domains modifying each component for different applications proves challenging, resource-intensive, and time-
consuming. Additionally, systems such as NER, and RE necessitate annotated data, further compounding the resource
demands.
Large Language Models (LLMs). LLMs have demonstrated strong performance across various NLP tasks through
the use of relevant prompts including the field of Information Extraction [31]. We can distinguish two approaches in
prompting for KG construction: a single prompt to generate the final KG, or a distinct prompt for each sub-task. [20]
performs single prompt on Vicuna-13B and Alpaca-LoRA-13B that are fine-tuned based on Llama [29] and employ a
few-shot prompting technique. The prompt contains examples to enhance contextual understanding, and an ontology
to specify the concepts and relationships to be extracted from a given sentence. The main weakness of this method is
the limited scope of the ontologies used, coupled with the application of generative models for complex tasks where
hallucination can occur, impacting the quality of the graph by introducing incorrect facts. Moreover, performance
issues arise, especially in highly specific domains where LLMs, including GPT-3 and GPT-4, often err. This is ev-
idenced by research [32] employing various prompting techniques like zero-shot and one-shot for KG construction
tasks, which revealed that these models underperform in specialized domains (e.g., SciERC dataset) compared to fine-
tuned models. On another note, a study has employed GPT-3 in an iterative approach, breaking down the problem into
simpler tasks with different prompts based on OpenAI’s guidelines 2 which suggest that LLMs excel in simpler tasks.
This strategy, used by [7], maintains the connection between prompts by incorporating the context of previous steps
in each phase, highlighting a method to mitigate some limitations of LLMs in complex information extraction tasks
for KG construction.

In comparison, our pipeline approach General-T2KG addresses the aforementioned challenges through a hybrid,
domain-independent approach that performs well across various domains. It leverages the capability of OpenIE to
discover a wide range of triplets without prior knowledge, tackling issues such as noisy or lost triplets through NP-
based syntactic cleaning of entities. Additionally, it mitigates the problem of incorrect triplets by incorporating a
validation component that utilizes the GPT-4 model.

3. Proposed method

General T2KG (G-T2KG) is a pipeline approach that is structured in five components presented in figure 1. Text
preprocessing (C1) is an initial stage for preparing the corpora by cleaning and resolving coreferences, as well as
performing sentence segmentation to facilitate the subsequent component. Information Extraction (C2) utilizes two
tools for triplets extraction. The first one, Open Information Extraction system(C2.1), is state-of-the-art OpenIE 6
[14], which embeds a deep neural networks providing a balance between speed and accuracy. Additionally, it fea-
tures an advanced coordination analyzer that efficiently processes conjunctive sentences, extracting multiple triplets
when conjunctives are present which improves recall and reduces information loss. The second tool, pattern-based
Hypernym Relation Extractor (C2.2), is designed to extract hypernym relationships to enrich our graph with ”is-a”
relationships that are not explicitly mentioned in the text, using a set of predefined patterns [24]. Post-processing com-
ponent (C3) focuses on cleaning and integrating the extracted triplets through a syntactic rule-based approach (C3.1).

2 https://platform.openai.com/docs/guides/prompt-engineering
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Fig. 1. General T2KG Architecture

It is followed by triplets validation component (C4) ensures the correctness of triplets by comparing them with the
source sentences using GPT-4. Finally, the mapping component (C5), which includes the mapping of entities (C5.1)
and predicates (C5.2) to reduce the heterogeneity (e.i., the same entity/predicate can be referenced by different labels).
The mapping approach proposed by SciCero[9] is adopted in the pipeline.
It should be noted that we did not perform the mapping before validation by GPT because if an entity or predicate is
mapped to another that does not exist in the sentence, it would complicate the verification task for the model.

In the following, we focus on two sub-components ”Rule-Based Noun Phrase Cleaning” (C3.1) and ”Triplets
Validation” (C4.1), which stress the main contributions of this paper, in addition to the proposal of the G-T2KG
architecture.

3.1. Rule-Based Noun phrase Cleaning

This sub-component C3.1 aims to enhance the quality of the triplets extracted from OpenIE 6 in 3 steps, ensuring
they represent real-world entities by removing irrelevant adjectives, stop words, and reducing excessive length (Fig.
2).
Step 1. Predicate rectification: if the action preposition belongs to the object (e.g., ”Computer networks; consist; of
several assets such as Hardware”) and this preposition is directly followed by a verb, then it is added to the predicate.
Step 2. Stopword Removal and Lemmatization: Cleanse each element of the triplet by removing stopwords using
a predefined list and applying lemmatization to streamline and standardize the data ensuring that no part of the triplet
remains empty after this process, else the triplet is removed.
Step 3. Subject and Object Cleaning: represents the critical step, begins by checking that both the subject and
object must contain a noun phrase. If this condition is met, we propose two options for cleaning, noting that we treat
the subject and object independently, else the triplet is removed.

• Option 1: Dependency Tree Analysis
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Fig. 2. Algorithm Cleaning Example

1. Determine the root (most crucial word) of the subject or object using the dependency tree from Stanford
CoreNLP 3.

2. Extract the smallest noun phrase (NP) that includes this root.
3. If this NP is followed by a prepositional phrase using ’of,’ a common structure in English, we append it to

the extracted NP (e.g ”motivation of attacker”).
4. Exclude Subordinate Clauses (SBAR) and other prepositional phrases (PPs).

• Option 2: GPT-4 Head Identification

1. Employ GPT-4 to identify the head (most important word) of the subject or the object using a “zero-shot”
approach, bypassing the need for training examples.

2. Follow steps 2, 3, and 4 of Option 1.

After cleaning the triplets from OpenIE, we merge them with the hypernym triplets.

3.2. Triplets Validator

Triplets Validator (TV) component is designed to filter out erroneous triplets resulting from the information ex-
traction process while maintaining domain independence of the approach. To achieve this, we employ an LLM-based
validation using the GPT-4 model, ensuring that the meaning of each triplet accurately reflects the source sentence.
utilizing a zero-shot prompting technique, the task is simplified by converting the triplet into an affirmation, which
GPT-4 then verify it’s corresponding against the source sentence. Figure 3 illustrates the used prompt.

4. Evaluation

Evaluating our approach presents a challenge because of the absence of universal gold standards (GSs) for associ-
ating texts with extracted triplets without relying on a specific ontology. Since our approach is domain-independent,
we employ two GSs about distinct domains (i.e., computer science and music).
Computer Science gold standard(CS-GS) enables us to compare our approach with others specifically tailored to do-
mains like SciCero [9] and with state of the art LLM (GPT-4). Music GS allows us to evaluate the adaptability of our
approach and its potential applicability across varied fields without the need for domain-specific adjustments.

3 https://stanfordnlp.github.io/CoreNLP/depparse.html
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Fig. 3. Triplets Validation prompt

4.1. Gold Standard Creation

To create the CS-GS, we selected 12 abstracts of computer science articles from the Web of Science dataset pro-
vided by [15], comprising a total of 108 sentences. Abstracts were chosen based on their topics, recognizing the
significant role topics play in influencing terms and writing style. Carefully selecting two abstracts for each topic,
ensured content diversity. These abstracts were segmented into sentences, and corresponding triplets were extracted.
Subsequently, three annotators reviewed the triplets, with inclusion determined by majority vote, resulting in a GS
containing 180 triplets, including 247 unique entities and 100 unique predicates. The Music GS was derived from
the corpus provided by [6]. From this corpus, we randomly selected the document titled ”20th Century Music”, com-
prising 100 sentences. Employing the same methodology used for creating the CS-GS, we extracted and annotated
triplets. The Music GS ultimately contained 410 triplets, including 488 unique entities and 155 unique predicates.

4.2. Evaluation Method

For evaluating the performance of our approach, we conducted manual matching by three annotators, employing a
majority vote to associate each extracted triplet with its equivalent in the GS. Notably, during this phase, if a triplet is
deemed correct but is not present in the GS, it is added to ensure comprehensiveness. Three conventional metrics are
used: Precision (P), Recall (R), and F1 scores, comparing the extracted triplets to the GS triplets.

To examine the effects of the component TV, we reconducted the evaluation after its removal from the G-T2KG
pipeline. We followed the same evaluation procedure for SciCero, additionally, we conducted two experiments with
ChatGPT-4:

• ”GPT-4-Exp 1” involved using a few-shot prompting approach (four examples) while providing the paragraph
as context, and then asking the model to extract triplets from a sentence.
• ”GPT-4-Exp 2” incorporated more detailed instructions based on the errors identified in the first experiment,

such as addressing coreferences and excluding pronouns from triplets, handling multiple triples in cases of
conjunctions, and utilizing a set of mentions for extraction.

The results are illustrated in Table 1.
In addition, we extended our evaluation methodology to the music corpus to assess the adaptability and perfor-

mance of our approach across different domains. However, it’s important to note that we focused solely on evaluating
our approach rather than comparing it to other methods in the music domain. Table 2 summarizes these results.
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Table 1. Evaluation results on computer science corpus

Corpus Approaches Precision Recall F1-score

Computer Science

G T2KG Opt1 without TV 58.50% 47.77% 52.59%
G T2KG Opt1 72.07% 44.44% 54.98%
G T2KG Opt2 without TV 50.00% 44.44% 47.05%
G T2KG Opt2 75.00% 41.66% 53.56%
SciCero 72.09% 17.22% 27.50%
GPT-4-Exp 1 25.65% 32.77% 28.77%
GPT-4-Exp 2 27.81% 43.88% 34.04%

Table 2. Evaluation results on music corpus

Corpus Approaches Precision Recall F1-score

Music

G T2KG Opt1 without TV 47.75% 36.34% 41.27%
G T2KG Opt1 64.88% 35.12% 45.57%
G T2KG Opt2 without TV 46.97% 37.56% 41.74%
G T2KG Opt2 63.97% 36.60% 46.56%

4.3. Results Analysis

Experimental results shown at table 1 demonstrate in comparison to domain-specific methods, G-T2KG outper-
forms in recall, particularly against SciCero in the CS corpus. SciCero’s lower recall, resulting from its ontology-based
approach, limits extractions to domain-specific triplets, thereby enhancing its precision. Upon examining the overlap
between the two approaches, it is observed that our method identifies 23% of the triplets extracted by SciCero. This is
noteworthy considering that 97% of SciCero’s triplets are also captured by DyGIEPP [30], which extracts predefined
relations that may not be explicitly mentioned in the text. Furthermore, no SciCero triplet comes from their OpenIE
[3] which underscores the importance of syntactic cleaning in our method to prevent information loss. For instance,
G-T2KG detects some domain triplets missed by SciCero, such as (network administrator; prioritize; vulnerability)
and (domain ontology; define; concept).
On the other hand, compared to the triplets extracted by ChatGPT in both Experiment 1 and Experiment 2, G-T2KG
also excels in both recall and precision. This is explained by the fact that the ChatGPT triplets contain common er-
rors, such as poor handling of conjunctions leading to missed triplets, and errors arising from including ”and” or
”or” within a triplet, which are considered incorrect even though Experiment 2’s prompt explicitly requested man-
aging conjunctions with an example, yet the errors persisted. Additionally, the triplets extracted by GTP-4 at times
result in nonsensical segmentations of sentences, such as using verbs as objects or having ”with” or ”to” as predicates
(i.e.,(tutorials for computer programming; can be; tedious to create) and (Severe consequences; such as; large black-
out) ), which is consistent with findings from a [32] study indicating that GPT-4’s performance is significantly weaker
when dealing with a domain specific corpus.
Looking at the results shown in Table 2, the generalizability of G-T2KG is evident through consistent metrics across
various domains , achieving satisfactory results in the Music corpus as well. This demonstrates the method’s wide
applicability in different fields without needing significant adaptation, and the possibility of extending it by using
domain-specific models such as NER to target more specific entities in order to achieve results that meet specific
needs.
Lastly the integration of GPT-4 as a validation tool significantly improves precision by 14% to 25%, with a minimal
impact on recall (reduction of up to 3.3%), highlighting the effectiveness of LLMs in maintaining quality and rele-
vance in KG construction while ensuring domain independence. The use of GPT-4 to verify the correspondence of
triples with their source sentences is relevant, especially since there are cases where tools like OpenIE might ignore
negation, for example, resulting in a completely incorrect triplet. Table 3 illustrates examples of using GPT-4 as a
validation tool.
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Table 3. Examples of valid and discarded triples according to the validation performed by GPT-4

Sentences Triplets Validator

Considering the limited budget, the network administra-
tor should analyze and prioritize vulnerabilities which
can be exploited by attackers that violate security poli-
cies to be able to efficiently protect a network by mitigat-
ing the most risky ones.

(attacker; protect; computer net-
work)

False

Unless the developer is creating its own programming
language, data structure, or describing the formal back-
ground of an existing one, he will not need to dive deep
into formal languages, grammar or automaton theory.

(developer; to dive; formal lan-
guage theory) and (developer; to
dive; grammar)

False

In this paper, the attacker’s motivation is considered in
the process of security risk analysis, so network adminis-
trators are able to analyze security risks more accurately.

(attacker’s motivation network ad-
ministrator; be-in; process of secu-
rity risk analysis)

False

Computer networks consist of several assets such as hard-
ware, software, and data sources.

(computer network; consist-of; as-
set)

True

Despite the advantages and the problems our approach resolves, like others, it has certain limitations, notably its
pipeline structure. Errors in one component can affect subsequent components, leading to cumulative inaccuracies.
Additionally, the use of multiple separate models based on deep learning architectures can also represent a limitation
in terms of execution time and resources for large corpora. Finally, the use of GPT-4 for validation makes this approach
unsuitable for contexts involving confidential data, such as in medical or economic domains.

5. Conclusion and future work

In this paper, we introduced the G-T2KG pipeline for constructing knowledge graphs independently of the domain
from text. This pipeline extracts triplets using two different methods: the first utilizes an OpenIE system, and the
second is specifically designed for is-a relationships to enrich semantic relations. We also introduced a new syntactic
cleaning component to remove noise from OpenIE triplets, based on the fact that entities are noun phrases. Addi-
tionally, we proposed a new way to validate triplets without the need for domain-specific classifiers by leveraging
the capabilities of the LLM GPT-4. To evaluate our approach, we constructed gold standards in two different do-
mains (computer science and music), which contain sentences as well as the extracted triplets. The evaluation of our
approach demonstrated the crucial role of syntactic cleaning and LLM validation in improving the precision of our
method, surpassing other approaches. This highlights the potential of using LLMs in the graph construction process.

In future works, we aim to utilize open-source LLMs (e.g., Llama[29]) to allow the application of our approach
on confidential data and apply them at other stages of the process. We also plan to further enrich our graphs by
incorporating entity typing.
Lastly, we have made the source code for G-T2KG publicly available to ensure our results are reproducible and to
support the scientific community.

References

[1] Abu-Salih, B., 2021. Domain-specific knowledge graphs: A survey. Journal of Network and Computer Applications 185, 103076.
[2] Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., et al., 2023.

Gpt-4 technical report. arXiv preprint arXiv:2303.08774 .
[3] Angeli, G., Johnson Premkumar, M.J., Manning, C.D., 2015. Leveraging linguistic structure for open domain information extraction, in: Zong,

C., Strube, M. (Eds.), Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International

https://github.com/OthmaneKabal/G-T2KG


O. KABAL et al. / Procedia Computer Science 00 (2024) 000–000 9

Joint Conference on Natural Language Processing (Volume 1: Long Papers), Association for Computational Linguistics, Beijing, China. pp.
344–354. URL: https://aclanthology.org/P15-1034, doi:10.3115/v1/P15-1034.

[4] Baevski, A., Edunov, S., Liu, Y., Zettlemoyer, L., Auli, M., 2019. Cloze-driven pretraining of self-attention networks, in: Inui, K., Jiang, J.,
Ng, V., Wan, X. (Eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong, China. pp.
5360–5369. URL: https://aclanthology.org/D19-1539, doi:10.18653/v1/D19-1539.

[5] Beltagy, I., Lo, K., Cohan, A., 2019. SciBERT: A pretrained language model for scientific text, in: Inui, K., Jiang, J., Ng, V., Wan, X.
(Eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong, China. pp. 3615–3620. URL:
https://aclanthology.org/D19-1371, doi:10.18653/v1/D19-1371.

[6] Camacho-Collados, J., Delli Bovi, C., Espinosa-Anke, L., Oramas, S., Pasini, T., Santus, E., Shwartz, V., Navigli, R., Saggion, H., 2018.
SemEval-2018 task 9: Hypernym discovery. URL: https://aclanthology.org/S18-1115, doi:10.18653/v1/S18-1115.

[7] Carta, S., Giuliani, A., Piano, L., Podda, A.S., Pompianu, L., Tiddia, S.G., 2023. Iterative zero-shot llm prompting for knowledge graph
construction. arXiv preprint arXiv:2307.01128 .

[8] Chen, S., Zhang, Y., Yang, Q., 2021. Multi-task learning in natural language processing: An overview. arXiv preprint arXiv:2109.09138 .
[9] Dessı́, D., Osborne, F., Recupero, D.R., Buscaldi, D., Motta, E., 2022. Scicero: A deep learning and nlp approach for generating scientific

knowledge graphs in the computer science domain. Knowledge-Based Systems 258, 109945.
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