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A B S T R A C T   

Lymphocytes constitute an essential and potent effector compartment of the immune system. Therefore, their 
development and functions must be strictly regulated to avoid inappropriate immune responses, such as auto-
immune reactions. Several lines of evidence from genetics (e.g. association with multiple sclerosis and primary 
biliary cirrhosis), human expression studies (e.g. increased expression in target tissues and draining lymph nodes 
of patients with autoimmune diseases), animal models (e.g. loss of functional protein protects animals from the 
development of collagen-induced arthritis, experimental autoimmune encephalomyelitis, type 1 diabetes, 
bleomycin-induced fibrosis) strongly support a causal link between the aberrant expression of the lymphocyte- 
restricted transcriptional regulator BOB.1 and the development of autoimmune diseases. In this review, we 
summarize the current knowledge of unusual structural and functional plasticity of BOB.1, stringent regulation of 
its expression, and the pivotal role that BOB.1 plays in shaping B- and T-cell responses. We discuss recent de-
velopments highlighting the significant contribution of BOB.1 to the pathogenesis of autoimmune diseases and 
how to leverage our knowledge to target this regulator to treat autoimmune tissue inflammation.   

1. Introduction 

Lymphocyte-specific transcriptional regulation is a central feature of 
the generation, development, differentiation, maturation and function 
of immune effector and regulatory cells. Given that, control of gene 
expression in various cells of the immune system at a transcriptional 
level is achieved by the complex protein machinery comprising tran-
scription factors, cofactors, chromatin regulators, and non-coding RNAs. 
Transcription factors bind to short recognition sites located in gene 
promoter or enhancer/silencer regions and recruit transcriptional co-
factors, which in turn recruit and activate RNA polymerase II at core- 
promoters to enable transcription. Transcription cofactors generally do 
not bind DNA, but rather mediate protein-protein interactions between 
regulatory transcription factors and the basal RNA polymerase II tran-
scription machinery. Some transcription factors and their associated 
cofactors are unique to certain immune cell lineages and their levels are 
determinative of whether their target genes are transcribed and to what 

extent. This implies that these regulators of gene expression must be 
tightly controlled. Failure to achieve appropriate transcriptional regu-
lation dramatically affects the development and function of immune 
cells and lies at the heart of the pathogenesis of many inflammatory and 
autoimmune disorders and cancers. Thus, a detailed characterization of 
transcriptional regulators of immune responses should advance our 
understanding of the molecular basis of these pathological conditions 
and may offer new therapeutic strategies. BOB.1/OCA-B/OBF.1 is a 
prototypic example of a lymphocyte-restricted transcriptional coac-
tivator. Extensive efforts over the past years have been made to elucidate 
its role in the regulation of adaptive immune responses in both, physi-
ological and pathological states. This review summarizes current 
knowledge and recent findings regarding the role of BOB.1 in the 
pathogenesis of autoimmune and chronic inflammatory diseases, as 
evidenced by genetic, animal model, and human ex vivo studies, as well 
as by the first evidence that targeting BOB.1 may offer new opportu-
nities and potential benefits for patients with autoimmune disorders. 
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2. The biology of BOB.1 

2.1. BOB.1/OCA-B/OBF-1 protein 

It has been nearly 30 years since Pierani and colleagues from the 
Robert G. Roeder’s laboratory at Rockefeller University discovered in 
fractionated B cell nuclear extracts a component crucial for optimal 
octamer-dependent transcription from an immunoglobulin heavy chain 
(IgH) promoter [1]. Subsequent research revealed that this component 
works in concert with the ubiquitous DNA-bound activator OCT1 (or 
lymphoid-restricted OCT2) by forming a ternary complex on the 
conserved octamer sequence motive (5′-ATGCAAAT-3′) [2,3] thereby 
contributing to the transcriptional activity of promoter and enhancer 
elements. Of interest, the interaction of this coactivator with either 
OCT1 or OCT2 activates transcription from promoter-proximal positions 
[3–6], whereas the activity from distal enhancer positions specifically 
requires the presence of OCT2 [7,8]. Shortly after, in 1995, POU2AF1 
(POU domain class 2-associating factor 1) gene encoding this novel 
factor was cloned based on biochemical and genetic screening by three 
research groups independently and variously termed BOB.1 (B cell Oct 
binding factor 1 [4], OCA-B (Octamer CoActivator from B cells) [5], or 
OBF-1 (Oct-Binding Factor 1) [3]. Besides, the murine homolog of 
human BOB.1 was isolated and characterized [6,9]. It has been shown 
that biochemically purified BOB.1/OCA-B/OBF-1 (hereafter referred to 
as BOB.1) is presented by two isoforms of 34 kDa and 35 kDa (translated 
from different translation initiation codons and designated as p34 and 
p35) that are expressed at similar levels and are equally able to stimulate 
octamer-dependent transcription in nuclear extracts [5]. However, 
further research revealed that p34 is much more potent than p35 on IgH 
promotors in vitro [10]. Moreover, in contrast to the p34 isoform, which 
is exclusively nuclear and functions as a transcriptional regulator, the 
p35 isoform may conceivably act as a signal transducer as it is post- 
translationally modified by myristoylation through the N-terminal 
glycine residue and can be found in both cytoplasmic/membrane and 
nuclear compartments [10]. Currently, there is limited knowledge on 
the exact role of cytoplasmic p35 isoform, though two studies suggested 
its involvement in the regulation of the B-cell receptor (BCR) signalling 
based on its direct interaction with the tyrosine kinase Syk [11] and 
Galectin-1 [12]. 

A detailed examination of BOB.1 protein structure and regulated 
gene transcription, thoroughly reviewed in [13–15] revealed a striking 
feature. This 256-residue polypeptide with unusually high proline con-
tent (16%) is intrinsically unstructured in solution and become partially 
structured upon recruitment into the ternary complex [16]. 

2.2. BOB.1 partnership with the POU-domain 

BOB.1 interacts with the sequence-specific DNA-binding POU tran-
scription factors (named after the founding family members PIT1, 
OCT1/2, and UNC86), the ubiquitously expressed OCT1 (POU2F1) and 
lymphoid-specific OCT2 (POU2F2). 

As a transcriptional co-activator, BOB.1 itself does not bind DNA but 
is rather recruited into transcriptional regulation via interaction with 
DNA-bound POU-domain transcription factors OCT1 and OCT2. The 
POU-domain is a unique bipartite structure allowing DNA recognition 
with remarkable flexibility (reviewed in [17,18]). This flexibility is 
largely inferred from the presence of two autonomous DNA-binding 
structures, the POU-specific (POUs) and POU-homeodomains (POUh), 
connected by a flexible linker (Fig. 1). Historically, BOB1 was first 
shown to interact with OCT1 or OCT2 bound to the octamer site (5′- 
ATGCAAAT-3′) as a monomer via simultaneous contacts with POUs, 
POUh and adenine at position five of the octamer thus acting as a mo-
lecular clamp that holds together three molecules [19–21] (Fig. 1A). 

Next level of BOB.1 functional diversity is provided by its selective 
interactions with POU-domain dimmers (Fig. 1B,C). Alternative ar-
rangements of the POUs and POUh sub-domain on DNA expose different 
surfaces for interaction with proteins partners, eventually resulting in 
different functional readouts. A striking illustration of this principle has 
been provided about 20 years ago during the studies of dimeric ar-
rangements of the POU-domain proteins on PORE- (Palindromic Oct- 
Recognition Element, 5’-ATTTGAAATGCAAAT-3′) and MORE-class 
DNA elements (More of PORE, 5’-ATGCATATGCAT-3′) [22–24]. It was 
found that PORE-type arrangement was highly permissive for this 
interaction (Fig. 1B), whereas MORE-type arrangement of OCT1 POU 
(POU1) dimer was refractory to BOB.1 interaction (Fig. 1C). Computer 
modelling and X-ray studies provided the structural rationale of this 
selectivity by showing that MORE-mediated dimerization and BOB.1 
binding are mutually exclusive as it turned out that BOB.1 interaction 
interfaces both in the POU-domain and DNA major groove were engaged 
in MORE-type POU1 dimerization [23]. MOREs have been found to 
mediate transcription of the number of genes, including the IgH genes. 
Ironically, the BCL1 VH promoter was the first regulatory DNA element 
reported to mediate interaction and synergism between OCT1 (OCT2) 
and BOB.1 [2]. This apparent discrepancy arose from a deletion in the 
DNA constructs of a subpart of MORE, resulted in the ablation of MORE- 
mediated dimerization of OCT1 (OCT2) with retention of BOB.1- 
permissive octamer site [2,5]. Although this deletion was crucial for 
BOB.1 discovery, it also led to the conclusion that this protein was 
involved in the regulation of IgH gene transcription via the octamer 

Fig. 1. Modes of BOB.1 interaction with the POU- 
domains. (A) BOB.1 is recruited via interaction with 
DNA-bound POU-domain transcription factor mono-
mer as described in [20]. Selective BOB.1 recruitment 
by POU-domain factor dimers formed on the POREs 
(B), but the MOREs which are refractory to BOB.1 
since BOB.1-interaction surface (square shapes) is 
used for dimerization. (D) A PORE-like configuration 
with altered linker connectivity, suggested by Lins 
et al. [26]; the POU-specific sub-domains (S1 and S2) 
are moved away from POU-homeodomains (H1 and 
H2), as it occurs on the PORE+1 [26], to emphasize 
alleviated requirements of PORE-specific protein- 
protein interaction interface (triangle shapes) for the 
ternary complex formation. See text for further 
details.   
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motif within the VH promoters, subsequently contravened by largely 
unaffected IgH expression in BOB.1 knockout mice [9,25]. 

The ability of BOB.1 to form a ternary complex with PORE-type 
OCT1 (OCT2) dimer is due to the fact that this dimer is present as 
two-fold repeated, however, unexpectedly, this complex includes only 
one molecule of BOB.1. Computer modelling showed altered geometric 
parameters of OCT1 monomer bound to the non-octamer half-site of the 
PORE, which is incompatible with BOB.1 interaction [24] (Fig. 1B). 

Perhaps the most intriguing and least understood molecular feature 
of BOB.1 resides in its ability to empower OCT-factors to bind to 
unfavourable non-consensus DNA motifs in murine and human promo-
tors. Lins and colleagues have shown that BOB.1 (1) stabilizes its com-
plex with OCT1 dimer on the PORE to a much greater extent than with 
OCT1 monomer on the octamer site, (2) compensates for the loss of the 
PORE-type dimerization interface that is caused by amino acid mutation 
or by nucleotide insertion, (3) alters sequence requirements of DNA 
recognition [26]. As an extreme example of the last statement, PORE- 
derived sequences that do not bind OCT1 either as a monomer or as a 
dimer, in the presence of BOB.1 become an efficient platform for ternary 
complex assembly, which includes two OCT1 and one BOB.1 molecule. 
These data prompted the idea that the PORE-type OCT1 or OCT2 dimers, 
rather than the monomers, are the primary targets of the cofactor BOB.1. 
Furthermore, altered connectivity of POUs and POUh sub-domains, 
when these sub-domains belonging to one molecule bind parallel to 
the DNA strand and clamped together by BOB.1, has been proposed [26] 
(Fig. 1D). 

These listed literature data show that BOB.1 functioning via POU 
dimers in certain configuration provides a unique level of the structural 
and functional plasticity of transcriptional regulation. Clearly, there are 
still many open questions with regard to molecular mechanisms of 
BOB.1 action, as well as to bona fide BOB.1/OCT1(OCT2) genomic tar-
gets. These questions await further answers, urged by the looming 
impact of BOB.1 on autoimmune diseases, which is in the focus of the 
current review. 

2.3. Role in B cells 

BOB.1 plays an essential role in B-cell ontogeny. It is expressed 
throughout all stages of the developing B lymphocyte axis, albeit at 
different levels. The highest BOB.1 expression is found in germinal 
centre (GC) B cells in both mouse [27] and man [28,29]. Accordingly, 
the key signals that regulate the formation of GCs, namely CD40-CD40L 
cross-talk in conjunctions with IL-4 or IL-21 cytokines, boost BOB.1 
expression in B cells in vitro and in vivo [27,28,30]. 

Probably the most striking feature of BOB.1 emerged from in vivo 
studies. In 1996, the laboratories of Roeder, Matthias and Schaffner 
simultaneously established its critical role for the development of T cell- 
dependent (TD) immune responses. They demonstrated that targeted 
BOB.1 knockouts in mice led to a complete lack of GCs in spleen and 
lymph nodes, as well as to a massive defect in the production of isotype- 
switched immunoglobulins [9,25,31], ultimately linking the function of 
BOB.1 to GC maturation and plasma cell differentiation. However, the 
interpretation of the BOB.1 knockout phenotype is complicated by the 
subsequent findings demonstrated that BOB.1 is required for B-cell 
development at multiple stages. First of all, BOB.1 plays a significant 
role at early stages of B cell development in bone marrow as the number 
of transitional B220+ IgMhigh B cells and mature recirculating IgDhigh B 
cells are dramatically reduced in the bone marrow of mice lacking BOB.1 
[32,33]. Furthermore, an increased number of apoptotic cells was 
detected in both the immature and mature B cell compartments [33], 
which was partially explained by the strong reduction of the expression 
of the anti-apoptotic protein Bcl2, a direct target of BOB.1 [34]. Besides, 
the marginal zone B cell compartment, crucial for mounting innate and 
adaptive responses, is affected in the absence of BOB.1 as both, the 
numbers and the function of marginal zone (MZ) B cells are dramatically 
reduced in BOB.1− /− animals [34,35]. Second, recent data 

demonstrated that BOB.1 together with OCT2 and MEF2B is required to 
drive expression of BCL6, the master regulator of the GC B cell state, by 
recruiting and concentrating transcription factors and cofactors, 
including chromatin/epigenetic factors that facilitate enhancer- 
promoter interactions [36]. As BOB.1 is expressed preferentially in GC 
B cells, the complete loss of these sites of cognate B and T cell interaction 
and expansion upon BOB.1 deletion is responsible for the lack of high 
titres of switched antibody isotypes and disturbed TD memory responses 
in BOB.1-deficient animals. Additionally, in vitro data revealed that the 
presence of functional BOB.1 is critical for the final stages of TD B cell 
differentiation as the loss of BOB.1 under these conditions blocks the 
genetic program of plasma cell differentiation [37]. Third, BOB.1 is 
essential for optimal BCR-derived signals as mature splenic B-cell pro-
liferative responses to BCR stimulation are reduced in BOB.1 knock-out 
animals [25]. Later, Siegel et al. proposed that BOB.1 has a dual function 
in B cell signalling, playing, on one hand, a role in early events in 
intracellular signalling by non-transcriptional regulation of SYK stability 
by the cytoplasmic form of BOB.1 and functioning, on the other hand, as 
a transcription coactivator of downstream target genes at later stages of 
B cell activation [11]. Finally, the complexity of the role of BOB.1 in TD 
GC formation is further highlighted by findings that it is not only crucial 
for the efficient transcription of immunoglobulin heavy-chain and V(D)J 
recombination of a subset of immunoglobulin kappa genes [38,39], but 
also is important for regulation of many B-cell essential genes that 
belong to multiple categories, including, cell survival and proliferation, 
metabolism, ion channel, cell adhesion, cytokines, and chemokines 
[34,40–45]. All these B-cell-intrinsic defects in the absence of BOB.1 
might be accountable for the absence of GC formation and impaired 
production of switched Ig in vivo. Last but not least, although studies of 
adoptive transfers of BOB.1-sufficient and deficient B and T cells to 
Rag1− /− mice demonstrated B-cell autonomous defect [27,29], one 
cannot formally exclude additive T-cell specific effects of BOB.1 loss on 
the absence of GCs and block of memory and plasma cell differentiation 
in the BOB.1 knockout mice. Indeed, its pivotal role in the differentia-
tion of T follicular helper (Tfh) and in the formation of memory T cells, 
important players in mounting a humoral response in GCs, has been 
demonstrated [46]. 

A couple of excellent reviews covering the role of BOB.1 in B-cell 
development and function in great detail have been published [45,47], 
therefore it will be not discussed here further. 

2.4. Role in T cells 

BOB.1 has long been considered a B cell-specific factor, however, 
emerging evidence that BOB.1 plays an indispensable role in the T-cell 
compartment led to a re-evaluation of the established paradigm. BOB.1 
is not expressed during T cell development or in naïve T cells, yet its 
expression can be induced in T cells upon TCR engagement or by the 
treatment with PMA/ionomycin [41,48,49]. It has been demonstrated 
that posttranslational modifications, such as phosphorylation at Ser184, 
are required for the inducible activation of OBF.1 [49]. Later it was 
noticed that BOB.1− /− mice are not able to control experimental leish-
maniasis, and detailed re-examination of T cell compartment revealed a 
reduction of both CD4-positive and CD8-positive subpopulations in 
lymph nodes and spleen in the absence of BOB.1 [50]. Further analysis 
demonstrated, that in contrast to unpolarised CD4-positive T cells, 
BOB.1 is expressed in Th1 and Th2 cells and that cytokine secretion of 
both subtypes of T helper cells was affected by the BOB.1 deficiency: the 
secretion of Th1 cytokines was reduced, whereas the secretion of Th2 
cytokines was increased [50]. Mechanistically, BOB.1 shapes the bal-
ance of Th1- versus Th2-mediated immunity through cooperative bind-
ing with OCT1 to the IFNγ and IL2 promoters. In the absence of BOB.1, 
this balance is shifted towards Th2 as another target of BOB.1, the 
transcriptional factor PU.1, is repressed, resulting in increased GATA3 
activity and consequently, increased Th2 cytokine release and suscep-
tibility to Leishmania major infection [50]. The consequent study 
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confirmed this concept by demonstrating that selective blockade of 
microRNA (miR)-126, a negative regulator of BOB.1, leads to an 
augmented expression of BOB.1, which activates PU.1 and thereby alters 
Th2 cell function via negative regulation of GATA3 expression [51]. 
BOB.1 is also required for the differentiation of Th17 cells [52], pre-
sumably via blockade of IL-2 production, a known endogenous repressor 
of Th17 polarization [53]. Accordingly, subsequent gene and protein 
analyses confirmed the expression of BOB.1 in Th1, Th2, and Th17 cells 
in human tonsils or peripheral blood [54]. However, within the T-cell 
compartment, the highest BOB.1 level was found in Tfh cells in human 
[55] and mouse [54,56], suggesting its role in the development and/or 
function of this cellular subset. It was suggested that BOB.1, in cooper-
ation with OCT1(OCT2), can directly bind Bcl6 and BTLA promoters to 
regulate their expression and, correspondingly, Tfh cell development 
[56]. Indeed, a strong reduction of Tfh cells frequency after immuni-
zation with TD antigen was observed in secondary lymphoid organs of 
mice lacking BOB.1 in the T cell compartment [56]. However, other 
studies contradicted these data, reporting either similar [57] or even 
increased [54] Tfh frequencies in the absence of BOB.1 in T cells. The 
latter study showed that (a) early processes accompanying Tfh cell dif-
ferentiation, including Bcl6 expression, occur normally in BOB.1- 
deficient animals and, (b) the overexpression of BOB.1 in primary 
human naïve CD4-positive T cells does not result in the expression of Tfh 
signature genes such as BCL-6, PD-1, IL-21, and CXCR5 [54], arguing 
against the notion that BOB.1 is critical for differentiation of Tfh cells. 
The authors proposed that the function of BOB.1 is to restrict the TCR- 
mediated expansion of Tfh [54]. Future research is needed to identify 
the exact role of BOB.1 in Tfh cells, yet a recent study has further 
stressed the importance of this transcriptional regulator in T-cell biology 
by demonstrating that BOB.1 together with OCT1 is selectively required 
for the in vivo generation of CD4-positive memory T cells [46] (discussed 
later in this review). Collectively, these findings indicate a pivotal role of 
BOB.1 in the biology of CD4-positive cells. As to CD8-positive cells, 
scarce data suggest that an elevated expression of BOB.1 is a hallmark of 
hypo-functional tumour-infiltrating CD8-positive T cells (WO/2017/ 
075451), yet the contribution of BOB.1 to exhaustion of these cells re-
mains to be investigated. 

2.5. Role in other cell types 

The expression of BOB.1 is considered to be lymphocyte restricted, 
however, Zhou et al. detected its expression in normal human airway 
epithelium [58]. Using a combination of RNA-seq analysis, immuno-
histochemistry, and analysis of differentiating single basal cell clones 
the authors confirmed that BOB.1 is increased upon differentiation of 
airway basal stem/progenitor cells, where it controls expression of its 
multiple known and novel target genes, related to a host defence [59]. 
Accordingly, another recent meta-analysis study of publicly available 
gene expression profiles in synovial tissue and single-cell RNA-seq data 
from isolated fibroblasts-like synoviocytes identified BOB.1 as a putative 
disease-related master regulator in RA fibroblasts [60]. However, 
experimental validation is required to confirm these in silico data. 

2.6. Regulation of BOB.1 expression 

A gene targeting in mice revealed that aberrant expression of BOB.1 
has serious functional consequences on the immune system. Thus, the 
absence of BOB.1 leads to a partial block of B-cell differentiation at 
multiple stages, lack of germinal centre formation, and severely reduced 
immune response to T cell-dependent antigens, as reviewed elsewhere 
[45,47]. Besides, overexpression of BOB.1 in B cells leads to impairment 
of early-stage differentiation of B cells in the bone marrow, and cells can 
only escape this block by post-transcriptional downregulation of the 
BOB.1 expression [33,61]. These findings suggest that aberrant 
expression of BOB.1 in B cells has major functional consequences and, 
therefore, has to be strictly controlled. As discussed above, BOB.1 

protein level is strongly increased in GC B cells and can also be induced 
to high levels by stimulation that mimics T-cell help or responses to 
bacterial or viral infections (TLR4-, TLR7-, or TLR9-triggering) 
[28,62,63]. Later, it has been demonstrated that canonical and nonca-
nonical NF-κB, as well as, to some extent, NFAT signalling pathways are 
involved in the activation of both constitutive and inducible BOB.1 
expression [64,65]. Also, TNF, a pro-inflammatory cytokine elevated in 
many chronic and autoimmune disorders can upregulate BOB.1. 
Consistently, analyses of BOB.1 proximal and B-cell specific distal pro-
moter regions [26] revealed the presence of TATA box, a binding site for 
the cAMP regulatory element-binding protein/activating transcription 
factor (CREB/ATF), NFAT-binding site, and three composite and 
consecutive NFAT/NF-κB sites [64,65] with different degrees of 
importance for constitutive and inducible BOB.1 expression. Further-
more, BOB.1 is induced in response to classical unfolded protein 
response (UPR) activation through spliced XBP-1 bound to conserved 
unfolded protein response element present in the promoter of BOB.1 
[66]. Also, microRNA miR-126 was shown to regulate expression of 
BOB.1, however, the mechanism of this regulation has to be elucidated 
as BOB.1 does not contain putative binding elements for miR-126 in the 
3′- or 5′-untranslated regions [51]. 

The expression level of BOB.1 is not only regulated at the level of 
transcription but also at the level of protein stability. It has been found 
that, in contrast to the protein level, which is increased in GC-B cells, the 
mRNA levels of BOB.1 are not different in GC- versus non-GC-B cells 
[67]. This phenomenon was explained by two research teams published 
back-to-back. They showed that BOB.1 interacts with the SIAH proteins 
1 and 2 and that this interaction leads to ubiquitin-proteasome- 
dependent degradation of BOB.1 [67,68]. However, the subsequent 
study argued the specific role of SIAH and the importance of ubiquiti-
nation in the degradation of BOB.1 in B cells [69]. Instead, the authors 
proposed that charged residues in the BOB⋅1C-terminus regulate its 
stability by showing that changes, which make the C-terminus more 
acidic, including tyrosine phosphorylation-mimetic mutations, stabilize 
otherwise unstable murine BOB.1 protein [69]. 

3. BOB.1-OCT1 axis in autoimmune and chronic inflammatory 
diseases autoimmune diseases 

3.1. Genetic association 

OCT1(2) and BOB.1 are highly conserved in humans and the evi-
dence accumulates that genetic variants either within genes encoding 
these factors or near their binding sites within the genome are associated 
with a variety of human autoimmune diseases (Table 1, Fig. 2). A 
comprehensive study by Maurano and colleagues performed to sys-
tematically localize common disease-associated variations in regulatory 
DNA revealed that a high proportion of SNPs repeatedly perturb 
recognition sequences of common transcription factors. Strikingly, 
polymorphisms within OCT1 binding sites confer a predisposition to 
celiac disease (CD), human systemic lupus erythematosus (SLE), rheu-
matoid arthritis (RA), type 1 diabetes (T1D), and primary biliary 
cirrhosis (PBC) [70] (Fig. 2). A role of OCT1 in autoimmune diseases is 
further supported by the genetic study that links HLA-C cell surface 
levels to a polymorphism in consensus OCT1 binding site located in the 
HLA-C promoter region [71]. This is particularly intriguing as high 
levels of HLA-C are associated with increased risk of developing Crohn’s 
disease (CRD) [72]. Similarly, − 857C/T SNP in the OCT1 binding site, 
which is located in the promoter of TNF and appears to alter constitutive 
TNF expression, is associated with susceptibility to inflammatory bowel 
disease [73]. The authors have proposed that OCT1 physically interacts 
with the proinflammatory nuclear factor kappa-B (NF-κB) at an adjacent 
binding site inhibiting its transactivating effects and affecting the sus-
ceptibility to IBD [73]. 

Also, a study based on the combination of high-density genotyping 
and epigenomic data found that CD-associated SNPs are enriched in 
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Table 1 
The evidence of involvement of BOB.1 in autoimmune and chronic inflammatory diseases.  

Disease Genetics Ex vivo In vivo 

Rheumatoid arthritis OCT1 binding site polymorphisms are 
associated with predisposition to RA (70). 

Expression of BOB.1 is decreased in PB of RA 
patients compared with HCs (97, 98). 
Expression of BOB.1 is 3-fold lower in 
citrulline-specific B cells isolated from RA PB 
than in influenza antigen hemagglutinin- 
specific B cells sorted from HC PB (99). 
BOB.1 levels are increased in RA as compared 
to SpA synovium (29). 
BOB.1 expression is increased in draining 
lymph nodes of RA patients in comparison to 
those of HCs (30). 
Expression of BOB.1 is elevated in synovial 
membranes obtained from patients with RA 
compared with that of patients with joint 
trauma (108). 

BOB.1-deficient mice failed to form GCs, produce anti- 
CII antibodies and are resistant to CIA (29). This 
protection was shown to be B-cell intrinsic (29). 

Lupus OCT1 binding site polymorphisms are 
associated with predisposition to SLE (70).  

Loss of BOB.1 prevented GC formation, production of 
autoantibodies and reversed severe “SLE”-like 
phenotype in mice lacking the zinc finger transcription 
factor Aiolos (82) 
The lack of BOB.1 protected MRL-lpr mice from the 
development of hypergammaglobulinemia, immune 
complex-mediated glomerulonephritis, and premature 
mortality (83). 

Type 1 diabetes OCT1 binding site polymorphisms are 
associated with predisposition to T1D (70). 

BOB.1 expression is strongly elevated in islet- 
reactive CD4+ T cells -infiltrating T1D 
pancreas (http://www.immgen.org/dat 
abrowser/index.html) 

BOB.1 T cell-deficient NOD mice are fully protected 
from the development of spontaneous T1D (89). 
Targeting BOB.1 with rationally-designed membrane- 
penetrating peptide inhibitors normalized glucose 
levels, reduced T-cell infiltration and proinflammatory 
cytokine expression and blocked T1D in NOD mice (89). 

Primary biliary 
cirrhosis 

OCT1 binding site polymorphisms are 
associated with predisposition to PBC (70). 
POU2AF1 is the significant susceptibility loci 
for PBC in the Japanese population (78).   

Multiple sclerosis POU2AF1 was identified by GWAS as a 
candidate gene for MS susceptibility in Belgian 
population (75). 
Meta-analysis study identified POU2AF1 as a 
susceptibility gene for MS in Europeans (76).  

Deletion of BOB.1 protected mice from the development 
of EAE (91). A decrease in EAE score in BOB.1 knockout 
animals challenged with MOG35–55 peptide was 
paralleled by a reduction in infiltrating cells, lesser 
demyelination in spinal cords and a decline in the 
proportion of IL-17A-producing CD4-positive T cells. 

Celiac disease CD-associated SNPs are enriched in OCT2 
binding sites (74). 
Fine mapping of common immune-mediated 
diseases-associated variants previously 
identified by GWAS using dense resequencing 
data from the 1000 Genomes Project found 
POU2AF1 as a new loci for CD (77). 

Gluten-specific CD4+ PD-1+ICOS+CXCR5−

cells present in PB and intestines of CD 
patients with celiac disease express high levels 
of BOB.1 (109).  

Sjogren’s syndrome  BOB.1 mRNA levels are increased in salivary 
glands of SS patients as compared to sicca 
controls (29).  

Disease Genetics Ex vivo In vivo 
Inflammatory bowel 

disease 
OCT1 binding site polymorphism in the HLA-C 
promoter is associated with HLA-C cell surface 
levels (18), which is an increased risk for 
developing CRD (72) 
− 857C/T polymorphic SNP in the OCT1 
binding site in the promoter of TNF appears to 
alter constitutive TNF expression and 
associated with susceptibility to IBD (73). 

BOB.1 mRNA is elevated in mesenteric 
adipose tissue located near the affected 
intestinal area in CRD patients (112)  

Chronic 
inflammatory 
diseases of lungs 
and kidney 

A meta-analysis of GWAS data found 
nominally significant association of rs2282637 
SNP annotated to POU2AF1 with a COPD (79). 
An intergenic region of POU2AF1 
polymorphism is associated with serum urea 
and kidney function (80) 
The 3’ UTR region of POU2AF1 polymorphism 
is associated with increased risk of kidney 
stones (81). 

The downregulation of POU2AF1 can predict 
the development of BOS, the main 
manifestation of chronic lung allograft 
dysfunction at least 6 months before the onset 
(100). 
The decrease in BOB.1 expression levels in PB 
was observed in patients with cystic fibrosis, 
IPF and pulmonary hypertension 
(100,102,103). 
BOB.1 levels are specifically increased in B 
cells infiltrating the lungs of patients with IPF 
(96). 
BOB.1 is a key regulator of profibrotic 
transcriptional program in IPF lung (96) 
BOB.1 expression is increased in emphysema 
(111). 

Mice lacking BOB.1 revealed suppressed CI expression, 
reduced hydroxyproline content and morphological 
changes in the lungs in responses to bleomycin and were 
protected from bleomycin-induced lung injury as 
compared to wild-type littermates (96). 
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OCT2 binding sites [74]. Moreover, other studies implicate poly-
morphisms in or near POU2AF1 locus itself into autoimmune and 
immune-mediated diseases. Thus, the whole-genome screen for associ-
ation with Multiple sclerosis (MS) in a Belgian population identified 
potential susceptibility loci including POU2AF1 [75]. Subsequently, the 
meta-analysis study of all available data from the Genetic Analysis of MS 
in Europeans (GAMES) project followed by the individual genotyping of 
the most promising markers confirmed previous data and implicated 
POU2AF1 as an MS susceptibility gene in Europeans [76]. Several years 
later, fine mapping of common immune-mediated disease-associated 
variants by GWAS of dense resequencing data from the 1000 Genomes 
Project identified 13 new loci for CD including POU2AF1 [77]. Another 
study based on genome-wide association analysis of 512 cases and 500 
controls identified POU2AF1 as significant susceptibility loci for PBS in 
the Japanese population [78], further supporting the notion that genetic 
variants in BOB.1 contribute to human autoimmune disorders. Some-
what surprising that no association with PBC was observed for POU2AF1 
in a Han Chinese Population [58] despite the close relationship of these 
two East Asian groups. Besides, accumulating data indicate that poly-
morphisms at loci encoding transcriptional regulator BOB.1 may confer 
susceptibility to chronic inflammatory and metabolic diseases of lungs 
and kidney. In particular, the meta-analysis of genome-wide association 
study data from several cohorts found a nominally significant associa-
tion of rs2282637 SNP in POU2AF1 with a chronic obstructive pulmo-
nary disease [79]. Additionally, two novel associations, one in an 

intergenic region of POU2AF1 with serum urea and kidney function 
[80], and the other in the 3’ UTR region of POU2AF1 with increased risk 
of kidney stones [81] have been reported recently. 

3.2. Insights from experimental animal models of autoimmunity and 
chronic inflammation 

The exact role of BOB.1 in the pathogenesis of autoimmune and 
chronic inflammatory diseases is not precisely understood. Up-to-date, 
multiple animal models of human autoimmune and inflammatory dis-
eases have been generated to investigate the function of BOB.1. How-
ever, most of these studies have been focused on conventional BOB.1- 
knockout mice that exhibit multiple defects in B cell lineage since 
ablation of BOB.1 compromises B cell development [33]. Moreover, it is 
hard to discriminate between the contribution of B and T-cell intrinsic 
effects in these mice, because, although BOB.1 is not expressed along the 
developing T lymphocyte axis or in naive T cells, its expression is 
induced upon T cell activation [48,49,65] and plays a crucial role in the 
memory development [46] and the Tfh cell differentiation [56]. These 
factors hamper direct interpretation of the BOB.1 role in autoimmune 
tissue inflammation, and further studies evaluating conditional and 
inducible models of selective BOB.1 knockout or overexpression in B or 
T cells are needed to advance our knowledge. Yet, the data from 
experimental animal models so far provide substantial evidence that 
BOB.1 plays a key role in the pathogenesis of the autoimmune disease 

RA, rheumatoid arthritis; PB, peripheral blood, HCs, healthy controls; SpA, spondyloarthritis; CIA, collagen-induced arthritis; SLE, systemic lupus erythematosus; T1D, 
type 1 diabetes; NOD, non-obese diabetic; MS, multiple sclerosis; CD, celiac disease; SS, Sjogren’s syndrome; GCs, germinal centres; CII, collagen type II; CI, collagen 
type I; PBC, primary biliary cirrhosis; EAE, experimental autoimmune encephalomyelitis; CRD, Crohn’s disease; IBD, inflammatory bowel disease; BOS, bronchiolitis 
obliterans syndrome; IPF, idiopathic pulmonary fibrosis. 

Fig. 2. Genetics, ex vivo and in vivo evidence of involvement of BOB.1 in autoimmune and chronic inflammatory diseases. 
MS, multiple sclerosis; EAE, experimental autoimmune encephalomyelitis; T1D, type 1 diabetes; NOD, non-obese diabetic; CD, celiac disease; PB, peripheral blood; 
CRD, Crohn’s disease; SS, Sjogren’s syndrome; BOS, bronchiolitis obliterans syndrome; IPF, idiopathic pulmonary fibrosis; SLE, systemic lupus erythematosus; IBD, 
inflammatory bowel disease; RA, rheumatoid arthritis; CIA, collagen-induced arthritis. 
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(Table 1, Fig. 2). Studies in 2003 and 2005 showed that BOB.1 is 
essential for the development of an autoimmune disorder that resembles 
human SLE in two different animal models: (1) in mice lacking the zinc 
finger transcription factor Aiolos [82] and (2) in MRL-lpr mouse strain 
[83]. In the first model, loss of functional BOB.1 protein prevented GC 
formation and production of autoantibodies including anti-dsDNA an-
tibodies and reversed severe phenotype characterized by immune 
complex-mediated glomerulonephritis and tissue injury, eventually 
leading to chronic renal failure [82]. Since the combined loss of Aiolos 
and BOB.1 proteins blocks the transition from small pre-BII cells to 
immature B cells and significantly impairs immunoglobulin light chain 
DNA rearrangement, resulting in a severe reduction of the immature B 
cell pool in the bone marrow of double-knockout mice [84], the absence 
of autoantibodies in Aiolos/BOB.1 double-deficient mice was explained 
by block or deletion of autoreactive B cells at the stage of the immature B 
cells in this model [82]. A subsequent examination of the spontaneous 
murine lupus model MRL-lpr by the same group demonstrated that lack 
of BOB.1 completely abolished production of multiple pathological au-
toantibodies, including lupus-specific anti-dsDNA and anti-Sm anti-
bodies, and consequently protected the animals from the development 
of hypergammaglobulinemia, immune complex-mediated glomerulo-
nephritis, and premature mortality [83]. However, in contrast to Aiolos/ 
BOB.1 double-deficient mice, loss of BOB.1 on the MRL background did 
not impair the differentiation of immature and mature B cells. There-
fore, the failure to produce antibodies against nuclear antigens in MRL- 
lpr mouse lacking BOB.1 was explained by the absence of GC formation 
and a dramatic reduction in IgG-secreting cells rather than by defects in 
B-cell development [83]. Similar to the lupus models, BOB.1 is a critical 
factor influencing resistance to collagen-induced arthritis (CIA), an 
experimental model for RA, as BOB.1 deficiency completely abrogated 
GC formation, production of pathogenic anti-collagen type II antibodies 
and arthritis development [29]. As it has been shown that loss of BOB.1 
during T-cell dependent immune responses prevent GC formation, as 
well as resulted in the significant reduction of Tfh cell numbers [57], the 
observed resistance to CIA could reflect either a B-cell-intrinsic failure to 
stimulate Tfh formation or T-cell-intrinsic defects. Importantly, an 
adoptive transfer of B and T cells from wild-type (WT) or BOB.1− /−

animals to RAG null mice lacking endogenous B and T cell compart-
ments revealed that a marked protection of BOB.1-deficient mice from 
the development of CIA was dependent on B cells as the presence of 
functional BOB.1 in B cells regardless of its expression in T cells was 
crucial for the GC formation, production of autoantibodies and devel-
opment of clinical disease [29]. Similarly, B cell-inherent inability to 
generate a robust T cell-dependent immune response, including defec-
tive GC formation and reduced Tfh cell development in the absence of 
functional BOB.1 was demonstrated during influenza infection [57]. 
This study demonstrated that IL-6 induction in B cells, which is neces-
sary for IL-21-dependent differentiation of activated CD4-positive T cells 
into Tfh cells and GC formation during an antiviral immune response, is 
dependent on the presence of BOB.1 and its transcriptional partner 
OCT2 in B cells [57]. In contrast, BOB.1-deficient T cells were not 
impaired in their ability to differentiate into Tfh cells and to provide 
sufficient help for GC B cell development in response to viral infection in 
vivo [57] and during autoimmune response [29]. However, the function 
of BOB.1 is more complex and is not limited to the regulation of GC 
formation as deletion of BOB.1 can result in antibody-mediated auto-
immune disease in the absence of high-affinity IgG, as revealed evalu-
ation of sanroque mice [85]. Since in sanroque background constitutive 
signalling through co-stimulatory receptor ICOS caused by expression of 
the modified version of Roquin1 protein results in spontaneous T-cell 
activation, GC formation, production of high levels of autoreactive an-
tibodies of all isotypes leading to hypergammaglobulinemia and im-
mune complex-mediated glomerulonephritis [86], it was reasoned that 
loss of BOB.1 would prevent GC formation and therefore the over- 
reactive GC responses. Indeed, the previous study demonstrated that 
reduction of GCs due to the loss of just one allele of BCL6, a master 

regulator of GC formation, substantially reduced disease prevalence in 
sanroque mice [87]. However, unexpectedly and in sharp contrast to 
described above lupus models and to sanroque/Bcl6+/− mice, the dele-
tion of BOB.1 from sanroque phenotype did not prevent but even exac-
erbated autoimmune glomerulonephritis [85]. The detailed evaluation 
revealed that this autoimmune disease was GC-independent and medi-
ated by autoreactive IgM [85]. Since BCR repertoire is skewed in BOB.1- 
deficient B cells [38,88], it was proposed that the autoreactive IgM was 
derived from inappropriately selected and therefore autoreactive san-
roque/BOB.1− /− B cells, in response to either exuberant activity of san-
roque CD4-positive T cells or B cell-intrinsic defects resulting from the 
combination of BOB.1 and sanroque mutations. Although many ques-
tions still have to be answered to elucidate the complex role of BOB.1, 
cumulatively, these studies indicate the crucial impact of BOB.1 in 
autoimmune antibody responses and development of B-cell-driven 
autoimmune disorders. 

In 2015 Shakya and colleagues demonstrated that in CD4-positive T 
cells, BOB.1 together with OCT1 regulates a set of multiple immuno-
modulatory target genes, including IL-2, IFNγ, IL-17A, and IL-21 [46]. 
The authors proposed that, mechanistically, BOB.1 removes inhibitory 
chromatin modifications by recruiting the histone lysine demethylase 
Jmjd1a/Kdm3a to prevent stable repression of target genes and to 
maintain thereby transcriptionally poised states associated with immu-
nological memory. Accordingly, in the absence of BOB.1, hardly any 
memory cells were generated and those which were formed responded 
poorly to the antigen re-encounter [46]. As a persistent antigen exposure 
is a typical feature of autoimmune responses, and because memory T 
cells can promote autoimmune disease, the recognition that BOB.1 is 
indispensable for the formation of T cell memory and response to re- 
challenge, steered re-evaluation of its role in T-cell-mediated autoim-
munity. Since BOB.1 levels are strongly elevated in CD4-positive T cells 
infiltrating pancreas of T1D mice (http://www.immgen.org/dat 
abrowser/index.html), it was hypothesised that T cell-specific BOB.1 
deletion would protect mice from T1D. 

To address this, BOB.1 conditional allele was developed and back-
crossed onto a diabetes-prone NOD background [89]. This elegant study 
demonstrated that while prediabetic BOB.1 T cell-deficient NOD mice 
have a normal T cell number and similar TCR specificities in their lymph 
nodes, they are fully protected from spontaneous T1D [89]. This pro-
tection was associated with a reduction of T cells and macrophage 
infiltration in the pancreas and a decrease of the expression of proin-
flammatory cytokines and chemokines, including IFNγ and CCL1, pre-
viously identified as direct targets of BOB.1 [46]. Interestingly, 
prediabetic NOD mice lacking BOB.1 in T cells harboured more Tregs, 
however, they were still protected from T1D after Tregs depletion, albeit 
to a lesser extent, suggesting that Tregs only partly contributed to the 
T1D protection. Strikingly, loss of BOB.1 significantly modified the 
landscape of islet effector/memory T cells, in particular CD8-positive T 
cells, towards anti-diabetogenic clonotypes [89]. CD4-positive clones 
associated with diabetes were present, however, exhibited anergic 
phenotype. These results are concordant with previous results of gene 
expression profiling showing that genes associated with anergy, such as 
Ctla4, are overexpressed in CD4-positive cells lacking functional BOB.1 
[46]. Remarkably, protection from T1D conferred by the loss of BOB.1 
varied among different TCR transgenic and monoclonal antigen models 
and was highest in polyclonal ones [89]. Notably, BOB.1 ablation also 
attenuates the development of age-induced glucose intolerance, fat 
accumulation and insulin resistance in the diet-induced murine model of 
type 2 diabetes [90]. The authors suggested that reduction of B-cell 
maturation together with an impediment of B2 cell activity and Ig 
production, particularly IgG2c, induced by loss of BOB.1 underlay 
tolerance to glucose and sensitivity to insulin in diet-induced obesity 
model. This study was performed using conventional knockout mice and 
therefore, contribution of T cell-specific BOB.1 loss to the development 
of age-induced fat accumulation and insulin resistance has to be further 
assessed in tissue-specific and inducible models. 

N. Yeremenko et al.                                                                                                                                                                                                                            

http://www.immgen.org/databrowser/index.html
http://www.immgen.org/databrowser/index.html


Autoimmunity Reviews 20 (2021) 102833

8

Another contribution to the concept that BOB.1 is a potent autoim-
mune regulator was made by Japanese researchers, who have demon-
strated its pivotal role in Th17-mediated autoimmune response as loss of 
BOB.1 protected mice from the development of experimental autoim-
mune encephalomyelitis (EAE), an animal model of multiple sclerosis 
[91]. A decrease of EAE score in BOB.1 knockout animals challenged 
with MOG35–55 peptide was paralleled by a reduction in infiltrating cells, 
lesser demyelination in spinal cords and a decline in the proportion of IL- 
17A-producing CD4-positive T cells. The authors have proposed that the 
formation of a ternary DNA-OCT1-BOB.1 complex and interaction of 
BOB.1 with the ligand-binding domain of the retinoic acid receptor- 
related orphan receptor (ROR) gamma t (RORgt) is necessary for suffi-
cient for the disease induction IL-17A expression by T cells [91]. This is 
consistent with the previous study, which identified BOB.1 and OCT1 as 
positive regulators of Th17 differentiation by a combination of tran-
scriptional profiling, computational algorithms and a gene knockdown 
screen in silico and in vitro [52]. Accordingly, another study supported 
the notion that OCT1 can control the threshold of IL-17 induction in 
activated Th17 effectors in cooperation with BOB.1 [92]. Cumulatively, 
these studies provide evidence that BOB.1 may be involved in Th17 cell- 
mediated disease by modulating IL-17A induction in vivo, yet the 
drawback of the work of Ikegami and colleagues is that the study is 
based on conventional BOB.1 knockout, which precludes unbiased 
conclusions. Although B cells have shown to be dispensable for disease 
progression in a model of acute EAE, induced by MOG peptide [93,94], 
in contrast to EAE induced by MOG protein, where the antigen- 
presentation function of B cells is critical for the disease induction 
[95], further investigation utilizing T cell-specific BOB.1-deficient mice 
that retain intact B cell compartment is required to elucidate the exact 
impact of T-cell specific BOB.1 loss on Th17 cell-mediated autoimmune 
disease. 

Beyond its role in the prototypic autoimmune diseases, BOB.1 con-
tributes to bleomycin-induced lung injury, an experimental model for 
lung fibrosis [96]. This study demonstrated that in response to this 
damage, mice lacking BOB.1 exhibited suppressed type I collagen 
expression, reduced hydroxyproline content and morphological changes 
in the lungs and were protected from fibrotic development as compared 
to WT littermates [96]. 

Cumulatively, these studies demonstrate that BOB.1 is emerging as 
an essential factor in the pathogenesis of many autoimmune and chronic 
inflammatory diseases. 

3.3. Human expression studies 

The most abundant information emphasizing the importance of 
BOB.1 in the development of autoimmune responses came from murine 
models, however, whether these findings apply to human autoimmune 
diseases remains to be determined. Yet, corroborating evidence con-
tinues to accumulate that BOB.1 expression is altered in the peripheral 
blood and target tissue of patients with autoimmune and chronic in-
flammatory diseases. 

3.3.1. Peripheral blood 
We and others have reported that expression of BOB.1 is significantly 

decreased in peripheral blood of patients with RA compared with 
healthy controls (HCs) [97,98] (Table 1, Fig. 2). In addition, BOB.1 
mRNA levels in the blood were found to inversely correlate with the 
onset of clinical symptoms and RA disease progression [98]. Further-
more, a recent study utilizing a comprehensive gene expression profiling 
of antigen-specific B cells revealed that expression of BOB.1 is 3-fold 
lower in citrulline-specific autoreactive B cells isolated from the pe-
ripheral blood of RA patients than in influenza antigen hemagglutinin- 
specific B cells sorted from the blood of healthy individuals [99]. 
However, the results of this study may be biased as citrulline-specific B 
cells were obtained from RA patients, who received anti-TNF therapy 
and other disease-modifying anti-rheumatic drugs. Another evidence of 

the association of a reduced POU2AF1 mRNA expression levels in the 
blood with pathological immune-related mechanisms in the tissue has 
been reported [100]. In that study, transcription profiling of whole 
blood of lung transplant recipients was applied to identify early bio-
markers of bronchiolitis obliterans syndrome (BOS), the main manifes-
tation of chronic lung allograft dysfunction (CLAD). Downregulation of 
POU2AF1 along with two other genes, TCL1A and BLK, predicts BOS at 
least 6 months before the onset of its manifestation [100]. A decrease in 
the frequency of CD24hiCD38hi transitional B cells harbouring regula-
tory properties was described in the same patients before BOS appear-
ance [101], however, whereas BOB.1 decreased expression is associated 
to the diminution of such regulatory B cells remain to be investigated. A 
decrease in BOB.1 expression level in the blood has also been reported in 
patients with cystic fibrosis, idiopathic pulmonary fibrosis (IPF), pul-
monary hypertension [100,102,103], end-stage chronic respiratory 
diseases that share common pathogenic mechanisms with BOS [104]. 
These transcriptomic studies the rationale for investigating the role of 
BOB.1 in pathological processes leading to respiratory dysfunction. 

3.3.2. Target tissue 
Recent evidence indicates that, in contrast to peripheral blood, levels 

of BOB.1 are aberrantly increased in the target tissue of patients with 
autoimmune and chronic inflammatory diseases (Table 1, Fig. 2). Gene 
expression analysis study comparing synovial biopsies from RA and 
spondyloarthritis (SpA) identified BOB.1 as one of the top hits in the 
genes overexpressed in RA synovium, where its expression levels 
correlated strongly with the presence of ectopic GCs [29]. Interestingly, 
elevated expression of BOB.1 has been also detected in lymph nodes that 
drain inflamed joints of RA patients [30]. Analysis at single-cell reso-
lution has to determine whether the increased transcript levels of BOB.1 
reflect a shift in the cellular composition of target tissues or it is a result 
of changes in gene expression underlying activation of specific molec-
ular and cellular pathways. However, a similar degree of synovial 
infiltration with T, B, and plasma cells, as well as the presence of equal 
amounts of lymphocyte aggregates and ectopic lymphoid neogenesis in 
RA and SpA synovitis [105–107], and comparable numbers of GC re-
actions between RA and healthy lymph nodes [30] advocate for the 
second scenario. Significant overexpression of BOB.1 in RA synovitis 
was also revealed by an integrative meta-analysis of multiple gene 
expression profiles in synovial membrane obtained from patients with 
RA compared with that of patients with joint trauma [108]. Although 
the relationship between lymphocytes in the blood versus those in target 
tissues is unknown, these data may indicate that during the onset/ 
development of the disease the population of BOB.1-expressing lym-
phocytes relocate from the bloodstream to target tissue, where they may 
drive autoimmune tissue inflammation. This notion is supported by 
recent data demonstrating that autoreactive T cells express high levels of 
BOB.1. The comprehensive study combining HLA-DQ–gluten tetramers 
with mass cytometry and RNA sequencing analysis identified a popu-
lation of gluten-specific CD4-positive T cells with distinct and relatively 
rare phenotype expressing aberrantly high levels of BOB.1 in the blood 
and intestines of CD patients [109]. Strikingly, cells with similar 
phenotype are also elevated in systemic sclerosis, SLE [109] and RA 
[110]. These studies suggest that this subset is not only present in 
multiple autoimmune disorders, but also that these cells might be the 
key disease-driving T cells in these pathological conditions. 

Furthermore, several seminal studies provide evidence that high 
levels of BOB.1 are detected in B cells infiltrating the target tissue. Thus, 
while the data on BOB.1 expression in lung transplants with relation to 
BOS development is still lacking, a recent study reported that BOB.1 
level is specifically increased in B cells infiltrating lungs of patients with 
idiopathic pulmonary fibrosis (IPF) [96], a chronic scarring lung disease 
where mechanisms leading to the fibrotic processes exhibit striking 
similarities to those in the engrafted lung [104]. Importantly, the 
comprehensive dynamic regulatory model of human IPF based on mRNA 
and microRNA expression profiles of affected microenvironments of IPF 
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lungs combined with immunohistochemistry, single-cell RNA 
sequencing and animal model found that BOB.1 is a key regulator of a 
profibrotic transcriptional program [96]. Increased BOB.1 expression 
was also shown to be a signature of emphysema, where B cells play a key 
mediator role in the immune response against foreign or self-antigens 
[111]. Additionally, elevated BOB.1 transcription is also observed in 
mesenteric adipose tissue located near the affected intestinal area in 
patients with CRD [112] and in salivary glands of patients with primary 
Sjogren’s syndrome [29]. The exact role of lymphocytes expressing high 
levels of BOB.1 remains to be investigated. Given that BOB.1 plays an 
indispensable role in the establishment of immunological memory in 
both, B and T-cell compartments, future work has to elucidate the role of 
BOB.1 in the autoimmune tissue inflammation and transplant graft 
rejection where constant exposure to (self)antigens may reinforce 
pathogenic memory responses. 

3.4. Human in vitro models 

Experimental in vitro models indicate that overexpression of BOB.1 in 
B cells in the conditions that mimic TD immune responses (CD40L-L +
IL-21) resulted in the suppression of plasma cell differentiation and 
promoted the generation of cells characterized by increased expression 
of costimulatory molecules and an increased BCR signal strength 
mirrored by an enhanced costimulatory capacity, phenotypically and 
functionally resembling memory B cells [30]. Although in vivo validation 
is required, these results indicate that BOB.1 plays important role in 
determining cell-fate decision during TD immune responses and suggest 
that increased expression of BOB.1 in inflamed tissues may lead to 
pathologic accumulation of activated memory B cells. 

3.5. Targeting BOB.1 in disease 

During the last decade, important findings emerged from studies of 
animal models of autoimmunity, which positioned BOB.1 as a promising 
therapeutic target for human autoimmune diseases. Recent advances in 
the field of small-molecule inhibitors of protein-protein interactions and 
availability of the co-crystal structure of BOB.1-N-terminus/OCT1 DNA 
binding domain/octamer binding DNA complex allowed designing 
drugs that exploited vulnerable unique interface not present in other 
proteins and, enabled the generation of a membrane-permeable 
competitive peptide inhibitor of the interaction between BOB.1 and a 
downstream effector, Jmjd1a/Kdm3a [89]. As discussed above, BOB.1 
interacts with Jmjd1a/Kdm3a, a histone lysine demethylase that 
removes inhibitory histone H3 lysine 9 methyl marks to establish 
permissive chromatin environments and poised gene expression state of 
previously activated targets to be robustly re-activated upon antigen-re- 
encounter [46]. The authors postulated that this property becomes 
damaging due to the persistent response to self-antigen(s), such as in 
T1D, and tested the effect of this inhibitor, termed JumOCA (OCA-B is an 
alias name for BOB.1), on T1D onset and severity [89]. Indeed, strik-
ingly, peptide administration into NOD mice significantly reduced islet- 
infiltrating T cell numbers and proinflammatory IFNγ and IL-17A cyto-
kine production, reversed elevated blood glucose levels and protected 
animals from newly-arisen T1D [89] (Table 1, Fig. 2). Although future 
research is needed to investigate how interference with BOB.1 would 
affect B cell axis, these data provide first proof-of-concept evidence that 
targeting BOB.1 is a promising therapeutic approach to treat emerging 
T1D effects and potentially other T-cell dependent autoimmune dis-
eases, where BOB.1 plays a prominent role. 

4. Conclusions and perspectives 

Since the discovery of the OCT1-BOB.1 axis three decades ago, im-
munologists, molecular and structural biologists around the globe have 
extensively worked to understand its role in mice and man, yet there are 
still novel aspects of its biology being uncovered in healthy and diseased 

conditions. In this review, we summarised cumulative evidence from 
genetics, in vitro models, human expression studies, and animal models 
that all link BOB.1-OCT1(OCT2) axis to the pathogenesis of autoimmune 
and chronic inflammatory disorders. This strong albeit circumstantial 
evidence has recently been confirmed by the proof that targeting BOB.1 
suppresses autoimmune conditions. These promising results certainly 
open new avenues, however, many fundamental and clinical questions 
remain to be answered. Key aspects to be considered during the pre-
clinical validation of the interference with the ternary OCT1-BOB.1- 
DNA complex include (1) detailed characterization of BOB.1 target 
genes in B, T, and other cellular sources, (2) a better understanding 
whether and how interference with BOB.1 may affect functions of OCT1 
(OCT2) transcription factors, (3) identification of other, potentially 
targetable, components of this pathway, (4) the definition of the ther-
apeutic window for maintenance of the delicate balance between the 
proper response to pathogens and formation of pathogenic memory 
directed towards self-antigens, allowing impediment of autoimmunity 
while keeping normal immune homeostasis intact. Strikingly, elevated 
expression of BOB.1 is a hallmark of dysfunctional CD8-positive T cells 
incapable of efficient combating tumour cells. Given that BOB.1 is a 
promising target for pharmaceutical inhibition in autoimmune condi-
tions, targeting this factor in the context of the tumour environment may 
rescue T cell dysfunction, promoting/enhancing anti-tumour immunity 
without inducing autoimmune side effects [113]. 
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