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43 ABSTRACT

44 The response of spinal motoneurons to synaptic input greatly depends on the activation of 

45 persistent inward currents (PICs), the contribution of which can be estimated through the paired 

46 motor unit technique. Yet, the intra-session test-retest reliability of this measurement remains 

47 to be fully established. Twenty males performed isometric triangular dorsiflexion contractions 

48 to 20 and 50% of maximal torque at baseline and after a 15-min resting period. High-density 

49 electromyographic signals (HD-EMG) of the tibialis anterior were recorded with a 64-electrode 

50 matrix. HD-EMG signals were decomposed, and motor units tracked across time points to 

51 estimate the contribution of PICs to motoneuron firing through quantification of motor unit 

52 recruitment-derecruitment hysteresis (ΔF). A good intraclass correlation coefficient (ICC = 

53 0.75 [0.63, 0.83]) and a large repeated measures correlation coefficient (R(rm) = 0.65 [0.49, 

54 0.77]; p<0.001) were found between ∆F values obtained at both time points for 20% MVC 

55 ramps. For 50% MVC ramps, a good ICC (0.77 [0.65, 0.85]) and a very large repeated measures 

56 correlation coefficient (R(rm) = 0.73 [0.63, 0.80]; p<0.001) were observed. Our data suggest that 

57 ΔF scores can be reliably investigated in tibialis anterior motor units during both low- and 

58 moderate-intensity contractions within a single experimental session. 

59

60 Keywords: neuromodulation, serotonin, noradrenaline, motor neurone, motor neuron
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61 INTRODUCTION

62 Human movement relies on the generation of force by skeletal muscles, a process intricately 

63 governed by the interplay between neural and muscular factors. The modulation of muscle force 

64 is achieved through modulation of the recruitment of motor units (MUs) and/or increases in 

65 their firing frequency. MU firing patterns depend on the synaptic integration occurring at the 

66 cell bodies of motoneurons. While voluntary commands from the motor cortex serve as the 

67 primary mean of activating alpha-motoneurons, multiple excitatory and inhibitory afferent 

68 inputs projecting onto motoneurons influence their activity. Moreover, motoneurons receive 

69 serotonergic (Bowker et al., 1981) and noradrenergic (Proudfit and Clark, 1991) inputs from 

70 the brainstem. The binding of these neuromodulators to metabotropic receptors initiates 

71 intracellular signalling cascades that modulate the properties of voltage-gated channels (i.e., 

72 intrinsic motoneuronal electrical properties) (Powers and Binder, 2001). The most evident 

73 neuromodulatory mechanism is the activation of persistent inward currents (PICs) (Heckman 

74 et al., 2005; 2009). PICs amplify and prolong the effects of the ionotropic system, introducing 

75 non-linearities to the relationship between the net synaptic input to a motoneuron pool and the 

76 resulting motor output (Binder et al., 2020).

77

78 The contribution of PICs to motoneuron firing cannot be directly measured in humans. 

79 Nonetheless, distinct MU firing patterns have been observed which are likely generated by PICs 

80 (Heckman et al., 2009, Heckmann et al., 2005). These firing patterns have been identified in 

81 vivo using decomposition of intramuscular electromyographic signals (e.g., Foley and Kalmar, 

82 2019, Marchand-Pauvert et al., 2019, Revill and Fuglevand, 2017) and, more recently, high-

83 density electromyographic signals (HD-EMG) (e.g., Hassan et al., 2021, Khurram et al., 2021, 

84 Orssatto et al., 2021). The paired MU technique (Gorassini et al., 2002, Gorassini et al., 1998) 

85 allows the estimation of the contribution of PICs to motoneuron firing in humans during 
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5

86 submaximal voluntary contractions. During a ramp contraction, the smoothed firing frequency 

87 of a lower-threshold control MU is used as a proxy of net synaptic input at the time of 

88 recruitment and derecruitment of a higher-threshold MU (test unit). The difference in the 

89 smoothed firing rate of the control unit at recruitment and derecruitment of the test unit 

90 constitutes the ΔF score (i.e., change in frequency). This method has been validated by 

91 intracellular direct PIC measurements in animal models (Bennett et al., 2001) and by computer 

92 simulations (Powers and Heckman, 2015). Yet, the test-retest reliability of such measurements 

93 has been only scarcely investigated with average scores per participant (Orssatto et al., 2023, 

94 Trajano et al., 2020). Using data from all extracted MUs while accounting for the nested 

95 structure of the data pertaining to PIC estimates is however imperative to provide a more 

96 accurate test of ΔF test-retest variability. Analytical approaches that consider the hierarchical 

97 nature of MU data without reducing data to averaged scores within individuals have already 

98 been used to assess effects of experimental interventions (e.g., Boccia et al., 2019, Mesquita et 

99 al., 2023).

100  

101 The aim of the present study was to investigate the intra-session reliability of the contribution 

102 of PICs to recruitment-derecruitment firing hysteresis (∆F) using a linear mixed modelling 

103 approach that considers the nestedness typical of these types of data. As secondary objectives, 

104 we also investigated reliability of MU recruitment thresholds, derecruitment thresholds and 

105 firing rate, and examined whether ∆F scores varied across recruitment thresholds.

106

107

108 METHODS

109 Participants
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6

110 Twenty male participants volunteered to participate in this study (age: 30 ± 7 yrs, height: 177.9 

111 ± 7.0 cm, body mass: 76.5 ± 12.2 kg). Participants were asked to avoid caffeine and alcohol 

112 consumption as well as to abstain from strenuous exercise 24 h prior to the testing session. 

113 Participants provided written informed consent and this study conformed to the ethical 

114 standards set by the Declaration of Helsinki, except for registration in a database. The study 

115 was approved by the local research ethics committee (CPP SudEst I; 1408208-2015-A00036-

116 43).

117

118 Design

119 Data presented in this study were obtained from a previously published study where we 

120 investigated the ongoing and acute effects of local vibration on PICs contribution to 

121 motoneuron firing (Lapole et al., 2023). Data collection was performed in a single session, with 

122 participants seating on a dynamometer and high-density electromyography (HD-EMG) 

123 measurements performed on the tibialis anterior (TA) of the right leg. After a familiarisation 

124 period to the experimental procedures, participants performed at least two 3-s maximal 

125 isometric voluntary dorsiflexion contractions (MVCs) with a 60-s inter-trial passive rest. 

126 Additional MVCs were performed until the difference between the two best trials was less than 

127 5%. Participants then performed triangular isometric contractions at baseline (CON-1) and were 

128 retested after a 15-min resting period (CON-2) to investigate the reliability of estimates of PIC 

129 contribution to motoneuron firing. In each time point, three triangular contractions were 

130 performed to both 20 and 50% MVC, with the ascending and descending phase lasting 10 s 

131 each (i.e., 2% of MVC.s-1 and 5% of MVC.s-1, respectively). Triangular contractions to the 

132 same intensity were interspaced by a 30-s rest, and contraction intensities were randomly 

133 ordered and separated by 1 min of passive rest. 

134
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135 Torque and electromyographic recordings

136 Dorsiflexion torque was measured during voluntary contractions using a calibrated 

137 instrumented pedal (CS1060 300 Nm; FGP Sensors, Les Clayes Sous Bois, France). 

138 Participants were seated upright in a custom-built chair with hips at 90º of flexion (0º = neutral 

139 position), right knee at 120º of extension (180º = full extension) and right ankle in a neutral 

140 position. The foot was securely attached to the pedal with a custom-made hook and loop 

141 fastener. Participants were provided with real-time feedback of the torque trace displayed on a 

142 large screen. The peak isometric dorsiflexion torque was taken as the highest value during the 

143 MVCs and used to set the intensity of the ramp contractions.

144

145 The skin under the electrodes was shaved, abraded with sandpaper, and swabbed with alcohol. 

146 One flexible 64-electrode HD-EMG grid was placed on the TA muscle (13 rows x 5 columns). 

147 Electrodes had a 1-mm diameter and 8-mm inter-electrode distance (GR08MM1305; OT 

148 Bioelettronica, Turin, Italy). The location of the TA was identified through palpation before the 

149 array was placed on the muscle belly, with the grid covering most of the TA proximal area (Del 

150 Vecchio et al., 2019). The array was attached to the skin by bi-adhesive foam and the skin-to-

151 electrode contact optimised by filling the wells of the adhesive foam with conductive cream 

152 (AC Cream, Spes Medica, Genoa, Italy). Strap electrodes dampened with water were placed 

153 around the ankle (ground electrode) and wrist (reference electrode). HD-EMG signals were 

154 amplified (150x), collected in monopolar mode, through a 16-bit A/D (Quattrocento; OT 

155 Bioelettronica, Torino, Italy), band-pass filtered (10-500 Hz) and digitised at a rate of 5120 Hz. 

156 EMG signals were recorded and visualised using OTBioLab+ software (version 1.4.2.0, OT 

157 Bioelettronica, Torino, Italy) throughout the protocol to ensure acceptable signal quality.

158

159 Data analysis
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160 Motor unit identification and tracking

161 HD-EMG signals and torque recordings were converted from the OT BioLab+ format into 

162 MATLAB-compatible data files (Version R2021B, MathWorks, Natick, USA). These files 

163 were then processed offline with the DEMUSE software tool (v5.01; The University of 

164 Maribor, Slovenia) that relies on the convolutive blind source separation method (Holobar and 

165 Zazula, 2007). Band-pass zero-phase (20-500 Hz), zero-phase 2nd order finite impulse response 

166 high-pass differential (230 Hz), and notch (50 Hz and their higher harmonics) filters were 

167 applied in DEMUSE. For each subject, the three channels with the lowest signal-to-noise ratio 

168 were automatically removed to optimise decomposition, and 50 sequential decomposition runs 

169 were conducted in each ramp contraction independently. For each time point and contraction 

170 intensity (20 and 50%), only the best ramp contraction was retained for analysis. Ramps were 

171 selected by the experimenter based on smoothness and adherence to the torque template, as well 

172 as the number of identified MUs.

173

174 For each contraction intensity, the selected ramps were concatenated and the same MUs were 

175 tentatively tracked over the different time points. MU duplicates were removed and spike trains 

176 visually inspected and manually edited by a trained investigator (Del Vecchio et al., 2020). 

177 After editing, only MUs that presented a global pulse-to-noise ratio greater than 30 dB were 

178 retained for further analysis (Holobar et al., 2014). 

179

180 Extraction of motor unit firing characteristics

181 After carefully editing the spike trains, firing events were converted into instantaneous firing 

182 rates and smoothed using a 5th order polynomial function, with additional MATLAB scripts 

183 and functions. All polynomials were visually inspected and if edge effects were observed at 

184 MU recruitment or derecruitment (i.e., a clear mismatch between the change in the smoothed 
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9

185 and instantaneous firing rate), the MU from that specific trial was not included in further 

186 analyses. MU maximal firing rate was considered as the maximal value obtained from the 

187 polynomial curve (i.e., smoothed peak firing rate). Recruitment and derecruitment thresholds 

188 were also computed as the torque level (% MVC) at the time when the MU started and stopped 

189 firing action potentials, respectively.

190

191 We then used the paired MU technique (Gorassini et al., 2002, Gorassini et al., 1998) to estimate 

192 the contribution of PICs to TA motoneuron firing (see Lapole et al. (2023), Figure 1). This 

193 technique quantifies MU recruitment-derecruitment hysteresis (i.e., ΔF). Lower-threshold MUs 

194 (i.e., control units) were paired with higher-threshold MUs (i.e., test units), with the smoothed 

195 firing frequency of control units being used as an estimate of changes in the net synaptic input. 

196 In each MU pair, the hysteresis of the test unit was quantified by calculating the difference 

197 between the smoothed firing rates of the control unit at recruitment and derecruitment of the 

198 test unit, which constitutes the ΔF (change in frequency) score (Gorassini et al., 2002). A MU 

199 pair was only considered for analysis if the test unit was derecruited before the control unit. 

200 Furthermore, criteria were used to test the assumption that the control unit was a suitable proxy 

201 for net synaptic input. Pairs were included if rate-to-rate Pearson’s correlation coefficients 

202 between the smoothed firing rate polynomials of the test and control units (calculated from 

203 5120 data points per second on Excel, Version 2019, Microsoft Corporation, USA) were r > 0.7 

204 (Stephenson and Maluf, 2011), so as to ensure that control and test MUs likely shared a common 

205 synaptic drive. The first 500 ms of the test unit were excluded from the correlation analysis to 

206 minimise contamination of a non-linear firing rate acceleration at the time of recruitment 

207 (Mottram et al., 2009). Moreover, only pairs with a recruitment time difference greater than 1 

208 s were considered to meet the assumption that PICs in the control unit were fully activated when 

209 the test unit was recruited, avoiding the contamination of the aforementioned non-linear firing 
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10

210 rate acceleration (Hassan et al., 2020). Finally, a saturation criterion was used, excluding pairs 

211 in which the control unit did not increase its firing rate more than 0.5 Hz after the recruitment 

212 of the test unit, as the control unit would not be sensitive to changes in synaptic drive 

213 (Stephenson and Maluf, 2011).

214

215 The quantification of the variables that were needed for the ΔF calculation, as well as the 

216 identification of suitable pairs and calculation of ΔF values were conducted in Excel (Version 

217 2019, Microsoft Corporation, Redmond, USA). Data were compared between CON-1 and 

218 CON-2 to investigate the reliability of ΔF measurements. Only pairs identified at the two time 

219 points were used for ΔF calculation. Importantly, ΔF scores were calculated for individual test 

220 units as the average value obtained when the units were paired with multiple suitable control 

221 units, as previously conducted (Trajano et al., 2020).

222

223 Statistical analysis

224 Analyses of MU variables were conducted in R (version 4.0.5), using RStudio environment 

225 (version 1.4.1106). Reliability analyses from the entire set of MUs were conducted by 

226 computing intraclass correlation coefficients (ICCs) and repeated measures correlations 

227 coefficients for ΔF scores, recruitment thresholds, derecruitment thresholds, and peak smoothed 

228 firing rates. To calculate ICCs, a linear mixed-effect model with random intercepts was 

229 computed (lmerTest package; Bates et al. (2015)). The model included a fixed intercept term 

230 and ‘motor unit’ nested within ‘participant’ were specified as random factors (Variable ~ 1 + 

231 (1|Participant/Motor_unit). ICCs were calculated by dividing the variance of interest by the 

232 total variance of the model (Nakagawa et al., 2017). Confidence intervals (95%) for ICCs were 

233 calculated by bootstrapping. Values between 0 and 0.50 were considered as poor, 0.50 and 0.75 

234 as moderate, 0.75 and 0.90 as good, and > 0.90 as excellent (Koo and Li, 2016). Repeated-
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235 measures correlations coefficients (R(rm)) were also computed between CON-1 and CON-2 

236 values using the rmcorr package (Bakdash and Marusich, 2017). Correlation magnitude was 

237 interpreted based on Cohen’s criteria (Cohen, 2013): trivial, R(rm) < 0.1; weak, R(m) = 0.1–0.3; 

238 moderate, R(rm) = 0.3–0.5; large, R(rm) = 0.5–0.7; very large, R(rm) = 0.7–0.9; and nearly perfect, 

239 R(rm) > 0.9. Furthermore, average scores per participant and per time point were also computed 

240 to calculate coefficients of variation (CVs) as the ratio between the standard deviation and the 

241 mean of individual measurements. This process was repeated for each participant, resulting in 

242 individual CV values for each MU variable during both 20% and 50% ramp contractions. To 

243 obtain an aggregated measure of the CV across participants, the mean of these individual CVs 

244 was then calculated for each parameter (Knutson et al., 1994). 

245

246 Separate linear mixed-effects models were also used to examine whether ΔF scores, MU 

247 recruitment thresholds, MU derecruitment thresholds, and peak smoothed firing rates were 

248 significantly different between CON-1 and CON-2 (Boccia et al., 2019). Variables were 

249 analysed with a random intercept (parallel slopes) model using ‘time point’ as a fixed effect, 

250 and ‘‘motor unit’ nested in ‘participant’ as random effects (Variable ~ time_point + (1 | 

251 Participant/Motor_Unit). Residuals were plotted against fitted values to assess whether 

252 variance was consistent across the fitted range and Q-Q plot inspection was used to assess the 

253 assumption of normality of residuals. Estimated marginal means (with 95% confidence 

254 intervals [CI]) were quantified (emmeans package; Lenth and Lenth (2018)). Significance was 

255 set at p<0.05.

256

257 Finally, repeated measures correlations were also computed (rmcorr package; Bakdash and 

258 Marusich (2017)) to investigate an association between the magnitude of ΔF and MU 

259 recruitment threshold during both time points. 
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260 RESULTS

261 Motor unit identification

262 MUs could not be identified in two out of 20 participants. Additionally, MUs could not be 

263 identified during 20% MVC ramps in two additional participants, and during 50% MVC ramps 

264 in two others. Therefore, data presented below are from 16 participants for both 20 and 50% 

265 MVC ramps. A total of 260 (16.2 ± 9.4 per participant) and 256 (15.8 ± 8.6 per participant) 

266 MUs were tracked during 20 and 50% MVC ramps, respectively, across both CON-1 and CON-

267 2. Of those MUs, a total of 27 (1.7 ± 2.0 per participant) and 20 (1.3 ± 1.5 per participant) MUs 

268 exhibited edge effects and were excluded from analysis.

269

270 Reliability of ΔF measurements 

271 A total of 84 test units (5.6 ± 3.6 per participant) and 468 pairs (31.2 ± 44.9 per participant) 

272 were successfully tracked during both ramp contractions (CON-1 and CON-2) performed at 

273 20% MVC. In one participant, we were unable to track any pairs between CON-1 and CON-2 

274 (n = 15). During 50% MVC ramps, we successfully tracked 141 test units (8.4 ± 5.9 per 

275 participant) and 794 pairs (55.8 ± 68.9 per participant) during both contractions (CON-1 and 

276 CON-2).

277

278 ICCs of ΔF values obtained at CON-1 and CON-2 were good with values of 0.75 [0.63, 0.83] 

279 and 0.77 [0.65, 0.85] for 20% and 50% ramps, respectively. There was also a large repeated 

280 measures correlation for 20% MVC ramps (R(rm) = 0.65 [0.49, 0.77]; p<0.001; Figure 1A), and 

281 a very large repeated measures correlation for 50% MVC ramps (R(rm) = 0.73 [0.63, 0.80]; 

282 p<0.001; Figure 1B). CVs were 13.4 ± 10.0% and 15.9 ± 8.4% for 20% and 50% MVC ramps, 

283 respectively.

284
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285 There was no significant change of ΔF from CON-1 to CON-2 for both 20% (F(1,83) = 3.0; 

286 p=0.08) and 50% MVC ramps (F(1,140) = 0.07; p=0.80) (Table 1). In 20% ramps, a mean 

287 difference of +0.2 Hz [-0.03, 0.4] was observed. The mean difference in 50% ramps was +0.03 

288 Hz [-0.2, 0.3]. 

289

290 Reliability of motor units’ thresholds and firing rate 

291 When considering recruitment threshold values obtained in CON-1 and CON-2 for all the 

292 identified MUs, ICC was good (i.e., 0.86 [0.82, 0.89]) for 20% MVC ramps and excellent (i.e., 

293 0.95 [0.94, 0.96]) for 50% MVC ramps. Moreover, we observed a nearly perfect repeated-

294 measures correlation between recruitment threshold values obtained in CON-1 and CON-2 for 

295 both 20% (R(rm) = 0.93 [0.91, 0.95]; p<0.001) and 50% MVC ramps (R(rm) = 0.98 [0.97, 0.98]; 

296 p<0.001). Yet, recruitment threshold values were significantly decreased from CON-1 to CON-

297 2 for 20% (F(1,233) = 16.8; p<0.001) and were significantly increased from CON-1 to CON-2 for 

298 50% MVC ramp contractions (F(1,233) = 20.0; p<0.001) (Table 1). Estimated mean differences 

299 from CON-1 to CON-2 were -0.6% MVC [-0.3, -0.9] and +1.1% MVC [0.6, 1.6], respectively. 

300 CVs were 31.3 ± 15.1% and 16.6 ± 15.6% for 20% and 50% MVC ramps, respectively.

301

302 Similar results were observed for derecruitment threshold (Table 1). ICCs were 0.84 [0.80, 

303 0.87] and 0.96 [0.94, 0.97] for 20 and 50% MVC ramps, suggesting good and excellent 

304 reliability, respectively. Moreover, nearly perfect repeated-measures correlation coefficients 

305 were observed between values obtained in CON-1 and CON-2 for both 20% (R(rm) = 0.92 [0.90, 

306 0.94]; p<0.001) and 50% MVC ramps (R(rm) = 0.98 [0.97, 0.98]; p < 0.001). However, values 

307 were significantly increased between the two time points for both 20% (F(1,233) = 4.7; p=0.03) 

308 and 50% MVC ramp contractions (F(1,233) = 27.2; p<0.001). Estimated mean differences from 
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309 CON-1 to CON-2 were +0.3% MVC [0.03, 0.5] and +1.2% MVC [0.7, 1.6], respectively. CVs 

310 were 19.8 ± 8.1% and 12.0 ± 10.5% for 20 and 50% MVC ramps, respectively.

311

312 For smoothed peak firing rate (Table 1), ICCs were excellent (i.e., 0.92 [0.85, 0.94]) and good 

313 (i.e., 0.83 [0.73, 0.89]) for 20 and 50% MVC ramps, respectively. There was a nearly perfect 

314 correlation between values obtained in CON-1 and CON-2 for 20% MVC ramps (R(rm) = 0.92 

315 [0.89, 0.94]; p<0.001) while it was very large for 50% MVC ramps (R(rm) = 0.88 [0.84, 0.91]; 

316 p<0.001). Values were significantly decreased between the two time points for 50% MVC 

317 contractions (F(1,233) = 15.7; p<0.001) with an estimated mean difference from CON-1 to CON-2 

318 of -0.4 Hz [-0.2, -0.7]. No difference was observed for 20% MVC contractions (F(1,233) = 0.3; -

319 0.04 Hz [-0.2, 0.09]; p=0.56). CVs were 3.6 ± 2.0% and 5.0 ± 4.3% for 20% and 50% MVC 

320 ramps, respectively.

321

322 Correlations between recruitment threshold of test units and ΔF values 

323 In 20% MVC ramps, ΔF was moderately associated with the recruitment threshold of test units 

324 in both CON-1 (R(rm) = 0.42 [0.21, 0.60]; p<0.001) and CON-2 (R(m) = 0.47 [0.26, 0.64]; 

325 p<0.001) (Figure 2). In 50% MVC ramps, a small correlation was observed in CON-2 (R(rm) = 

326 0.22 [0.05, 0.38]; p=0.01) but not in CON-1 (R(rm) = 0.05 [-0.13, 0.22]; p=0.61) (Figure 2).

327

328 DISCUSSION

329 Our results showed good ICC values and large to very large repeated-measures correlations 

330 between ΔF values obtained at two time points separated by 15 min of rest. Similarly, good to 

331 excellent ICC values and very large to nearly perfect correlations were observed for MU firing 

332 rate and both recruitment and derecruitment thresholds, despite a significant difference between 
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333 the two time points. These results indicate that ΔF can be reliably investigated in TA 

334 motoneurons during both low- and moderate-intensity contractions. These findings hold 

335 particular importance given that (1) ∆F scores from a single contraction are often used in 

336 comparisons between control and experimental conditions (e.g., Goodlich et al., 2023a, 

337 Orssatto et al., 2022), and (2) decomposition of HD-EMG signals from the tibialis anterior are 

338 commonly used to compute ∆F scores (e.g., Beauchamp et al., 2023, Goodlich et al., 2023a, 

339 Goreau et al., 2024, Jenz et al., 2023, Orssatto et al., 2022, Trajano et al., 2023).

340

341 Few studies previously investigated intra-session (Goodlich et al., 2023b, Hoshizaki et al., 

342 2020, Martinez-Valdes et al., 2016, Trajano et al., 2020) and inter-session (e.g., Colquhoun et 

343 al., 2018, Goodlich et al., 2023b, Hoshizaki et al., 2020, Martinez-Valdes et al., 2017) reliability 

344 of MU variables computed from HD-EMG decomposition. To the best of our knowledge, only 

345 two studies have examined intra-session (Trajano et al., 2020) and inter-session (Orssatto et al., 

346 2023) reliability outcomes (i.e., ICC) of ΔF measurements. In an effort to address limitations 

347 of the statistical approaches employed in previous MU studies, our reliability analyses utilised 

348 the entire set of computed scores (i.e., rather than an average score per participant), thereby 

349 enhancing statistical power while taking into consideration the nested structure of the data (i.e., 

350 multiple MUs per participant) (Galbraith et al., 2010, Moen et al., 2016). This is particularly 

351 crucial given that MU firing values are highly correlated within a participant, even across 

352 testing days (Tenan et al., 2014), and given the significant variability in the number of extracted 

353 MUs among participants (Oliveira et al., 2022). To this end, ICCs, calculated as the between-

354 observation variance as a proportion of the total variance from a mixed model approach were 

355 calculated (Nakagawa et al., 2017), and repeated-measures correlations (Bakdash and 

356 Marusich, 2017) used for the examination of reliability levels. Moreover, CV values, a widely 

357 accepted reliability index within the scientific community, were reported. However, a note of 
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358 caution is due here, as average scores per participant were used to compute CVs, adhering to a 

359 reduced data approach to maintain the assumption of independence between observations.

360

361 As ΔF computation depends on MU firing characteristics, intra-session reliability of other 

362 variables was also calculated. Recruitment and derecruitment thresholds and smoothed firing 

363 rate obtained in CON-1 and CON-2 presented good to excellent ICC values, and repeated-

364 measures correlations were very large to nearly perfect for both low (i.e., 20% MVC) and 

365 moderate (i.e., 50% MVC) triangular ramp contractions. To the best of our knowledge, this is 

366 the first study to report reliability indices of threshold values. Moreover, the reliability levels 

367 for smoothed peak firing rate in this study align consistently with previous research, which has 

368 demonstrated good to excellent intra-session reliability (Hoshizaki et al., 2020, Martinez-

369 Valdes et al., 2016, Trajano et al., 2020). Despite good reliability, our results showed significant 

370 differences between threshold and firing rates values recorded at both control time points, 

371 except for smoothed peak firing rate during 20% MVC ramps. The observed differences in MU 

372 characteristics between contractions of similar characteristics is not unexpected considering 

373 that the same task can be accomplished by multiple combinations of muscle activation patterns, 

374 i.e., muscle redundancy (Latash et al., 2010), leading to variability in the recruitment and firing 

375 patterns of MUs. This inherent variability may explain the small estimated mean differences 

376 between time points, a phenomenon also noted in prior studies (Martinez-Valdes et al., 2016, 

377 Trajano et al., 2020).

378

379 Interestingly, while there were some significant differences in MUs’ thresholds as well as 

380 smoothed peak firing rate, such differences were not observed for ΔF, which exhibited 

381 relatively low estimated mean differences between control time points (+0.2 Hz and +0.03 Hz 

382 for 20% and 50% MVC ramps, respectively). Accordingly, our reliability examinations 
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383 revealed good ICC values, a large repeated-measures correlation between CON-1 and CON-2 

384 ΔF values during 20% MVC ramps, and very large during 50% MVC ramps. Although different 

385 statistical approaches were used, these results for the TA muscle are consistent with the high 

386 ICC values previously reported for the soleus and gastrocnemius medialis muscles in an intra-

387 session design (Trajano et al., 2020), as well as for the TA in an inter-session examination 

388 (Orssatto et al., 2023). Collectively, these outcomes suggest that estimates of PICs can be 

389 reliably investigated through the paired MU technique during both low- and moderate-intensity 

390 contractions. This holds significance as ΔF as small as 0.58 Hz have recently been associated 

391 with large increases in peak firing rates and with moderate to very large improvements in motor 

392 function (Orssatto et al., 2023). It is important to acknowledge, however, that our focus was 

393 only on the intra-session reliability of ΔF scores. Future studies should then investigate its inter-

394 session reliability while taking advantage of the large samples of MU data provided by HD-

395 EMG decomposition and concurrently considering the nested structure of these large datasets.

396

397 Finally, we provide evidence that ΔF scores may depend on the recruitment threshold of the 

398 MU. Correlations between ΔF scores and the recruitment threshold of test units was only 

399 evident (i.e., moderate correlation) in 20% MVC ramps (Figures 2A and 2B), with this 

400 correlation being either small or absent for 50% MVC ramps (Figures 2C and 2D). Our findings 

401 partly suggest that there is a tendency for greater magnitudes of suprathreshold PICs in 

402 motoneurons of larger sizes (Henneman, 1957). This possibility is consistent with animal 

403 studies (Huh et al., 2017, Lee and Heckman, 1998, Sharples and Miles, 2021), one human study 

404 in which MUs were identified from intramuscular recordings (Stephenson and Maluf, 2011), 

405 and another human study in which multiple MUs were identified from HD-EMG signals 

406 (Beauchamp et al., 2023). However, it is contrary to three studies of multiple human MUs 

407 identified from HD-EMG signals (Afsharipour et al., 2020, Mesquita et al., 2023, Mesquita et 
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408 al., 2022) and some animal evidence (Li et al., 2004). Future studies should continue to explore 

409 whether contribution of PICs to motoneuron firing varies with human motoneuron size and 

410 respective implications in motor output.

411

412 CONCLUSION

413 The present study showed that the contribution of PICs to motoneuron firing (ΔF) can be 

414 reliably investigated within the same experimental session in TA motoneurons during both low- 

415 and moderate-intensity contractions. Moreover, our data suggests that motoneurons recruited 

416 at low levels of force may exhibit less recruitment-derecruitment hysteresis in triangular 

417 contractions, in comparison with motoneurons recruited at higher levels of force. 

418
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589 Table 1. Motor units’ characteristics recorded during ramp contractions performed to 20% and 50% of maximal voluntary force in both control 

590 time points (i.e., CON-1 and CON-2). Data are presented as estimated marginal mean with 95% confidence intervals [CI].

CON-1 CON-2 p value

ΔF score (Hz) 4.6 [4.0, 5.1] 4.8 [4.2, 5.3] 0.08

Recruitment threshold (% MVC) 6.8 [5.6, 8.1] 6.2 [5.0, 7.4] <0.001

Derecruitment threshold (% MVC) 6.8 [6.0, 7.5] 7.0 [6.3, 7.8] 0.03
20%

Smoothed peak firing rate (Hz) 15.1 [14.1, 16.1] 15.0 [14.1, 16.0] 0.56

ΔF score (Hz) 5.4 [4.7, 6.1] 5.4 [4.7, 6.1] 0.80

Recruitment threshold (% MVC) 23.6 [19.6, 27.5] 24.6 [20.7, 28.6] <0.001

Derecruitment threshold (% MVC) 24.4 [20.7, 28.2] 25.6 [21.9, 29.3] <0.001
50%

Smoothed peak firing rate (Hz) 20.2 [18.9, 21.6] 19.8 [18.4, 21.1] <0.001
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592 CAPTIONS TO ILLUSTRATIONS

593

594 Figure 1. Repeated-measures correlation (R(rm)) plots illustrating the association between 

595 ΔF scores in both CON-1 and CON-2. Left panel (A) shows data from ramp contractions 

596 performed to 20% of maximal voluntary contraction (MVC) torque and right panel (B) shows 

597 data from ramp contractions performed to 50% MVC. Each colour represents a single 

598 participant and parallel lines are fitted to test units from each participant. ΔF scores present a 

599 large correlation between time points in the 20% MVC ramps, and a very large correlation in 

600 the 50% MVC ramps. 

601

602 Figure 2. Repeated-measures correlation (R(rm)) plots illustrating the association between 

603 recruitment threshold of test units and ΔF values. CON-1 is presented in panels A and B. 

604 CON-2 is presented in panels B and D. Values during ramp contractions performed to 20% of 

605 maximal voluntary contraction (MVC) are presented in panels A and B. Values during ramp 

606 contractions to 50% MVC are presented in panels C and D. Each colour represents a single 

607 participant and parallel lines are fitted to test units from each participant. Except for 50% MVC 

608 ramps in CON-1, weak to moderate positive correlations were observed, suggesting greater ΔF 

609 scores in test units with higher recruitment-thresholds.

610
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