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Abstract: In response to increasingly stringent emissions regulations and the depletion of conven-
tional fuel sources, integrating carbon-free fuels into the transport sector has become imperative.
While hydrogen (H2) presents significant technical challenges, ammonia (NH3) could present a better
alternative offering ease of transport, storage, and distribution, with both ecological and economic
advantages. However, ammonia substitution leads to high emissions of unburned NH3, particularly
at high loads. Combustion chamber retrofitting has proven to be an effective approach to remedy this
problem. In order to overcome the problems associated with the difficult combustion of ammonia in
engines, this study aims to investigate the effect of the piston bowl shape of an ammonia/diesel dual
fuel engine on the combustion process. The primary objective is to determine the optimal configura-
tion that offers superior engine performance under high load conditions and with high ammonia rates.
In this study, a multi-objective optimization approach is used to control the creation of geometries
and the swirl rate under the CONVERGETM 3.1 code. To maximize indicated thermal efficiency and
demonstrate the influence of hydrogen enrichment on ammonia combustion in ammonia/diesel
dual fuel engines, a synergistic approach incorporating hydrogen enrichment of the primary fuel
was implemented. Notably, the optimum configuration, featuring an 85% energy contribution from
ammonia, outperforms others in terms of combustion efficiency and pollutant reduction. It achieves
over 43% reduction in unburned NH3 emissions and a substantial 31% improvement in indicated
thermal efficiency.

Keywords: dual fuel engine; ammonia-diesel; combustion process; multi-objective optimization;
emission performance; hydrogen enrichment

1. Introduction

The continuing reduction in available fossil fuels, and the severe environmental
impact of emissions from internal combustion engines (ICE) [1], have preoccupied the
global community for decades [2]; today, the need for action is more urgent than ever.
One of the most widely discussed solutions is the transition to carbon-free fuels such as
ammonia (NH3) [3]. Moreover, given the promising characteristics of dual fuel engine
technology [4], using this fuel in these engines is emerging as one of the best alternatives to
conventional combustion engines.

In general, ammonia has a well-established storage and distribution infrastructure [5],
high octane rating, and high ignition energy [6], which guarantees a high level of safety
regarding explosion risk. The real problem with this fuel is its low reactivity, which results
in relatively difficult combustion [7], penalizing engine efficiency and aggravating NOx
and N2O emissions [8]. It is a major problem that has captured the interest of various
researchers in the field.

The subject of exploring the use of ammonia as a primary fuel in ICE is approached in
the literature from two main angles: experimental and numerical.
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In a conducted experimental investigation, Reiter and King [9] explored the utilization
of ammonia as a fuel in a compression-ignition engine. They employed a dual-fuel strategy,
where ammonia was introduced into the intake manifold. The results show that an optimum
combination of diesel and ammonia achieves maximum engine torque, with an energy
replacement of up to 95%. The incorporation of ammonia consistently diminishes CO2
emissions. Furthermore, despite the existence of fuel-bound nitrogen, NOx emissions
remain at low levels, provided that the substitution of energy by ammonia does not
surpass 60%. In another work, the same authors extended their research using the same
experimental procedure [10]. They confirmed the existence of an optimum range of 40–60%
diesel energy with 60–40% ammonia energy for constant power and maximum energy
efficiency. According to their results, CO and hydrocarbon emissions are generally higher
compared to pure diesel, while NOx emissions vary with fuel combinations. This is in line
with the results of Guo et al. [11] and Ramachandran et al. [12].

Gross and Kong [13] used dimethyl ether (DME) and ammonia as pilot and primary
fuels, respectively. The results show that ammonia causes longer ignition delays, with
increased emissions of CO, HC, and NOx. Improvements are observed with increasing
injection pressure, and ammonia emissions remain reduced, with extremely low soot
emissions. The effect of the nature of the pilot fuel has been extensively explored, where
biodiesel is used [14]. The results indicate that 69.4% of the biodiesel’s energy can be
replaced by ammonia, although increasing the ammonia flow rate slightly reduces thermal
efficiency. Increased ammonia contribution reduces CO2, CO, and HC emissions, but
increases NO emissions. In addition, ammonia delays the onset of combustion due to low
temperature and resistance to auto-ignition, but combustion time is reduced compared to
biodiesel alone.

The percentage of energy replacement of pilot fuel by ammonia was pushed up to
84.2% as reported by Wang et al. [15] in their study. The authors showed that increas-
ing the energy content of ammonia changes the mode of combustion, influencing the
duration and auto-ignition delay. Although ammonia reduces CO2, CO, and particulate
emissions, it increases NOx and unburned ammonia emissions. The authors found that
the best compromise between reducing all emissions can be achieved by replacing diesel
with 35.9% ammonia, despite the production of N2O. To optimize the energy yield from
ammonia, Chen et al. [16] investigated the application of aqueous ammonia in a dual-fuel
engine. Three percentages of ammonia supplementation were studied, showing a reduction
in combustion pressure and heat release, but also a significant reduction in NOx (up to
61.75%) and soot (up to 51.04%) emissions due to the replacement of diesel by a carbon-free
fuel, despite a reduction in engine performance.

On the other hand, using numerical tools, Li et al. [17] assessed the impact of ammonia
as a fuel in ICE, highlighting the risk of increased NOx and N2O emissions. Simulations
indicate that high concentrations of N2O can occur during ignition, particularly with high
levels of ammonia energy. N2O emissions remain low in fully burned mixtures, with mini-
mal fuel dependence. The concentration of soot decreases as the carbon content in the fuel
decreases. Additionally, lower levels of NOx and N2O emissions are observed in fuel-rich
regimes and under conditions of complete combustion. According to Xu et al. [18], a 24% re-
placement by ammonia enabled efficient operation, significantly reducing greenhouse gas
emissions despite the challenges of ammonia’s flame propagation speed and increased
nitrogen oxide emissions. The recommendations proposed by the authors are focused on
enhancing operating conditions and injection strategies, leading to notable reductions in
CO emissions. The outcomes include a substantial 60% decrease in total greenhouse gas
emissions and an impressive 89% reduction in CO2 emissions when compared to a natural
gas/diesel dual fuel engine.

Aiming for higher ammonia utilization rates, numerical results from Xu and Bai [19]
show efficient operation where 50% of energy comes from ammonia, with slightly higher
NO emissions compared to diesel. The authors found that adding hydrogen improves
ammonia combustion, but worsens NO emissions. They also demonstrated that unburned
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ammonia comes mainly from areas near the cold wall, which is justified by flame extinc-
tion [20,21]. The trade-off between reducing all emissions for dual fuel operation with
ammonia is confirmed by Rodríguez et al. [22]. Within their study, a multi-criteria analysis
is suggested to identify the optimal proportion of ammonia, considering the environ-
mental impact stemming from various pollutants. Due to the substantial adverse effects
associated with NOx and N2O emissions, it is determined that a maximum proportion
of 20% ammonia in the fuel represents the most suitable choice to mitigate detrimental
environmental consequences.

The results confirm without exception the challenge of using ammonia as a primary
fuel in dual fuel engines. Its combustion nature, linked to its low flame propagation speed,
penalizes engine efficiency and affects emissions of NOx, N2O, and unburned NH3, which
are directly linked to incomplete combustion. Because of this obstacle, it is clear that most
of the presented work recommends the use of low percentages of ammonia to get around
the problems caused by difficult combustion [23].

In order to take advantage of decarbonized combustion with ammonia, other research
has tried to find solutions to improve ammonia combustion. Shafiq and Omar [24] em-
ployed hydrogen peroxide as an ignition promoter to facilitate the utilization of ammonia.
The results showed a significant increase in indicated engine power and torque, as well
as a dramatic reduction in NOx emissions. This approach holds the potential to expedite
the decarbonization of intensive applications, particularly in the case of trucks. However,
further research is necessary to thoroughly evaluate its feasibility and limitations.

The injection strategy for either pilot fuel or ammonia is widely considered in the
literature. In a study conducted by Tay et al. [25], primary and secondary heat release peaks
are observed with advancing injection timing, which is attributed to the combustion of fuel
residues near the cylinder. Replacing diesel with kerosene increases the primary peak of
heat release with advancing injection timing.

In a study performed by Shin et al. [26], the impact of ammonia and diesel injection
timing was investigated. The results demonstrated that an injection timing of −7 ◦CA for
ammonia and −15 ◦CA and −10 ◦CA for diesel led to an 8% improvement in efficiency, a
reduction of up to 13.5% in NO emissions, and a decrease of approximately 91% in green-
house gas emissions compared to conventional diesel operation. Furthermore, the level of
unburned ammonia was reduced by 58.4%, indicating a significant enhancement over pre-
mixed ammonia combustion. The same authors implemented a similar study [27] to explore
diesel injection timing alone, considering ammonia energy fractions from 40% to 90%. Ad-
vancing injection timing showed up to 11% more efficient combustion compared with diesel
operation, although nitrogen oxide emissions increased with increasing ammonia energy
fraction and advancing injection timing. In an alternative approach, Liu et al. [28] studied
the possibility of improving ammonia/diesel dual fuel engine efficiency by incorporating a
precombustion chamber. The study revealed a notable improvement in thermal efficiency
by 7.2% compared to the basic configuration, accompanied by low ammonia emissions.

The presented results still confirm the necessity of using low ammonia levels to avoid
any problems linked to the flame propagation speed which characterizes ammonia com-
bustion. In addition, most research focuses on exploring the injection law to improve
combustion, utilizing engine configurations very close to the conventional diesel configura-
tion, which has an insufficient effect given the difficult nature of ammonia combustion.

With its significant decarbonization potential, particularly in large engines, ammo-
nia emerges as a promising alternative fuel. However, harnessing its benefits presents
challenges due to its unique properties that make combustion difficult. For this reason, a
multi-objective approach is essential to optimize the combustion chamber of large dual fuel
engines running on high concentrations of ammonia.

The present work aims to adapt the shape of the combustion chamber bowl and
the swirl rate in the cylinder to improve internal turbulence, which has a more direct
effect on flame propagation speed. This approach is controlled by the creation of an
ANN meta-model, linking driving performance and emissions with the swirl rate and
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geometric parameters controlling the bowl shape, and multi-objective optimization in a
parallel fashion, aimed at maximizing indicated thermal efficiency, maximizing combustion
efficiency, and minimizing NOx emissions. The various numerical results were used to
characterize turbulence in the combustion chamber and explain its influence on combustion
enhancement. Once the optimum geometry has been obtained, the influence of enriching
the air-ammonia mixture with small percentages of hydrogen is tested, to understand the
phenomenology of combustion under these conditions, and consider ways of boosting the
ammonia/diesel dual fuel engine to its most optimal operation.

Consequently, the main contributions of the present study can be summarized as follows:

1. The implementation of a new configuration for a combustion chamber dedicated to
large ammonia/diesel dual fuel engines, featuring high ammonia participation rates.
This optimal configuration is the result of a multi-objective optimization aimed at
improving engine performance and reducing emissions, while ensuring meticulous
control of internal turbulence in the cylinder.

2. Demonstrating the effect of hydrogen enrichment on ammonia combustion in am-
monia/diesel dual fuel engines, with the aim of exploring the trade-off between
improving combustion efficiency with this strategy and controlling NOx emissions.

The sections of this paper first present the characteristics of the engine studied, then
describe the proposed modeling and optimization method in general terms and their
application to the engine case studied. At the end, the various results are presented and
discussed, followed by the main conclusions and outlook.

2. Model Setup
2.1. Test Engine

In this work, a modified CAT 3401 atmospherically aspirated engine [29], originally
designed for trucks, is used for both validation purposes and optimization study. It is
a single-cylinder, four-stroke, CI diesel engine. The original Caterpillar engine has been
modified to enable dual fuel combustion with ammonia and diesel. This was achieved by
integrating a gaseous fuel injector block into the intake manifold to introduce ammonia into
the engine. Table 1 outlines the primary geometrical characteristics and operational conditions.

Table 1. Engine features [29].

Engine Model Caterpillar 3401

Number of cylinders 1
Bore × Stroke (mm × mm) 137.2 × 165.1
Connecting rod (mm) 261.62
Compression ratio 16.25
Speed (RPM) 1100
Displacement (L) 2.44
No. diesel injector holes 5
Diameter of injector hole (mm) 0.21

Inlet Valve
Open −358.3◦ After TDC
Close −169.7◦ After TDC

Exhaust Valve
Open 145.3◦ After TDC
Close 348.3◦ After TDC

In all cases studied, the engine operates in dual fuel mode at full load. The primary fuel
(ammonia) and the pilot fuel (diesel) provide 85% and 15% of the total energy developed,
respectively. Ammonia is introduced in gaseous form through the intake port, while diesel
is injected directly into the cylinder.



Energies 2024, 17, 1231 5 of 19

2.2. Numerical Model

The study utilizes the CFD solver CONVERGETM 3.1 [30] to simulate the complete
engine geometry with intake and exhaust sections, as shown in Figure 1. Once the complete
cycle has been simulated, the conditions in the combustion chamber at BDC (Bottom Dead
Center) will be used to initiate calculations of closed combustion cycles, where the intake
and exhaust phases are not calculated.
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For the closed cycles, the code uses a structured cartesian grid with a base cell size
of 2 mm and adaptive mesh refinement (AMR). In Figure 2, the different grid refinements
using the AMR tool at −14.3, −3.9, and +10.0 ◦ATDC are illustrated. Local grid refinement
has been applied to the piston bowl, cylinder head, cylinder wall, and diesel jet outlet in
the combustion chamber to accurately resolve velocity and temperature gradients.
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(c) +10.0 ◦ATDC.

The simulation of the injected primary gas employs the Droplet Discrete Model
(DDM) [31], while the KH-RT model is used for the atomization and spray breakup of
diesel. For combustion modeling, Heptane (C7H16) represents the physical properties of
diesel. The different sub-models used are presented in Table 2.



Energies 2024, 17, 1231 6 of 19

Table 2. Sub-models used in the simulation [4].

Injector model KH-RT [32]

Combustion model SAGE [33]

Reaction mechanism CHEMKIN-II (5 elements, 76 species, 464 reactions) [34]

Turbulence model RNG k-ε [33]

Collision model No-Time-Counter (NTC) method [35]

Emission model Extended Zeldovitch NOx model [31] and Hyroyasu soot model [36]

2.3. Mesh Study

As a first step, a meshing study is carried out. The engine speed for this section is set
at 910 RPM based on available results [29]. As shown in Figure 3, this study is based on the
convergence of the relative error on indicated work and NOx emissions. This relative error
is calculated as the error of the numerical model compared with the experimental results.
According to these results, this convergence is achieved for a cell number of 4 × 104, where
the error on both parameters is deemed acceptable, taking into consideration its effect on
calculation time (8.26% and 6.53% on indicated work and NOx, respectively).
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2.4. Model Validation

After the meshing study, validation of the numerical tool is essential in this work. For
the validation case, the engine operates in dual fuel mode at 80% of the full load and a
speed of 910 RPM. The primary fuel (ammonia) and the pilot fuel (diesel) provide 85% and
15% of the total energy developed, respectively. Figure 4a shows a comparison between
the numerical and experimental pressure signals [29], where agreement between the two is
considered acceptable with an error of 4.28%. Figure 4b shows a comparison in terms of
indicated thermal efficiency, combustion time, maximum pressure and NOx emissions. The
combustion time (or combustion duration) is represented by CA10-CA90, which refers to
the crank angle duration between 10% and 90% of the cumulative heat release during the
combustion process. The minor differences observed are mainly due to the uncertainties of
the physical-chemical models used, which strongly validates the global CFD model used in
this work.



Energies 2024, 17, 1231 7 of 19Energies 2024, 17, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 4. CFD model validation; (a) in-cylinder pressure profile and (b) engine performance and 

emissions [29]. 

3. Approach Description 

3.1. Multi-Objective Optimization Technique 

Multi-objective optimization is an essential discipline in the field of operations re-

search. This type of optimization aims to find a set of optimal solutions for problems with 

several conflicting objectives, which asserts the non-existence of a single solution that 

maximizes or minimizes all objective functions simultaneously. The Non-dominated Sort-

ing Genetic Algorithm II (NSGA-II), used in the present work, is emerging as a powerful 

method for solving these types of problems, exploiting the principles of genetic evolution. 

NSGA-II, developed by Deb et al. [37], extends its predecessor NSGA by incorporat-

ing significant improvements for solving problems related to dominated solutions and 

convergence to the Pareto front encompassing all dominant optimal solutions, as illus-

trated in Figure 5 for a problem with two objective functions. 

 

Figure 5. Bi-objective Pareto front. 

A key feature of NSGA-II is its use of non-dominated sorting [38] to rank candidate 

solutions according to their dominance over other solutions. This creates Pareto fronts, 

Figure 4. CFD model validation; (a) in-cylinder pressure profile and (b) engine performance and
emissions [29].

3. Approach Description
3.1. Multi-Objective Optimization Technique

Multi-objective optimization is an essential discipline in the field of operations research.
This type of optimization aims to find a set of optimal solutions for problems with several
conflicting objectives, which asserts the non-existence of a single solution that maximizes
or minimizes all objective functions simultaneously. The Non-dominated Sorting Genetic
Algorithm II (NSGA-II), used in the present work, is emerging as a powerful method for
solving these types of problems, exploiting the principles of genetic evolution.

NSGA-II, developed by Deb et al. [37], extends its predecessor NSGA by incorporating
significant improvements for solving problems related to dominated solutions and conver-
gence to the Pareto front encompassing all dominant optimal solutions, as illustrated in
Figure 5 for a problem with two objective functions.
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A key feature of NSGA-II is its use of non-dominated sorting [38] to rank candidate
solutions according to their dominance over other solutions. This creates Pareto fronts,
where no solution can be improved in all objectives without degradation in at least one
other objective.

NSGA-II also introduces the concept of “crowding distance” [39] to measure the den-
sity of solutions in a Pareto front. This helps to promote solution diversity by encouraging
the selection of solutions that cover a wider objective space.

The algorithm uses standard genetic operators such as reproduction, crossover, and
mutation to create a new generation of candidate solutions [38]. These operators are applied
with a probability determined by their impact on solution diversity and quality.

3.2. Adapting the Shape of the Piston

The study presented in this work is based on a parallel optimization algorithm, as
shown in Figure 6. In this type of optimization, the model linking the decision variables
with the objective functions is created in parallel with the optimization process.
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The objective functions and decision variables governing this optimization problem
are presented in Table 3.

Table 3. Optimization problem definition parameters.

Objective Functions Decision Variables

• Maximizing indicated thermal efficiency ηth.
• Maximizing indicated thermal efficiency e f f comb.
• NOx reduction.

• Bowl shape.
• Swirl rate (S).

At the end of this optimization, a case belonging to the Pareto front is chosen to test
the influence of hydrogen enrichment on engine performance and pollutant emissions.

To control the shape of the bowl illustrated in Figure 7a, three geometric parameters
have been set (P, b, and d), as shown in Figure 7b. Table 4 summarizes the permitted ranges
of variation for the parameters controlling bowl shape and swirl rate.
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Table 4. Variation ranges for bowl geometry control parameters.

P (mm) b (mm) d (mm) Swirl (S)

0–10 2–12 0–10 0.2–8

The optimizer controls the three parameters (P, b, and d), ensuring that geometries
can be achieved with the same compression ratio, and controls the swirl rate (S) limited
by mechanical conditions directly linked to the creation of the swirl aspect. The final
goal is to minimize the NOx rate according to the first objective function, and maximize a
weighting between indicated thermal efficiency and combustion efficiency according to a
second objective function as defined by Equation (1), ensuring fixed energy input for all
optimization cases. 

Min : F1, F2
F1(g/kwh) = NOx

F2(%) = 2
3 ηth + 1

3 e f f comb

(1)

In this optimization problem, the optimizer is controlled by precision variables directly
linked to environmental constraints represented by limitations on the allowed rates of CO
and HC set at 1.5 g/kWh and 0.13 g/kWh, respectively [29]. These limits represent the
emission rates captured when running the same engine in natural gas/diesel dual fuel
mode at full load and 1100 RPM.

According to the flowchart proposed in Figure 6, this optimization problem mainly
takes place in three essential stages. These stages are based on existing techniques and
tools, and are outlined as follows:

• Experimental design generation:

The design of the initial experiment holds significant importance in the field of research.
In this investigation, the Latin Hypercube Sampling (LHS) technique is utilized [40]. The
principle of this method is based on subdividing the input variable space into n subspaces,
with the parameter n representing the size of the experimental design. The main interest of
LHS is to address the trade-off between scanning the input variable space and minimizing
correlations among these variables [40]. Several optimization algorithms for LHS have been
investigated in the literature, underscoring its significance in generating a near-random
sample of values [41].

• Meta-model construction using Artificial Neural Network (ANN):

The ANN modeling tool has proven its wide-ranging ability to predict real-time
performance and emissions in internal combustion engine applications [42–44]. ANN
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is a computational model inspired by the structure of the human brain, consisting of
interconnected nodes called artificial neurons. These neurons are organized in layers and
transmit signals through weighted connections. The architecture of an ANN is defined by
its layers, the neurons embedded within those layers, the training algorithm employed,
and the activation function applied to each layer. These elements collectively contribute to
the formation of network architectures [45], as illustrated in Figure 8.
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A prevalent form of artificial neural network (ANN) is the multi-layer perceptron
(MLP), categorized as a subset within the realm of feed-forward artificial neural networks
(FFNN). The designation “feed-forward” denotes that interconnection amid layers pro-
gresses from input layers to output layers. MLPs commonly comprise an input layer, an
output layer, and one or two concealed layers. It is imperative, nonetheless, to meticulously
ascertain the appropriate count of hidden layers and neurons, as this plays a pivotal role in
mitigating the risks of overfitting or underfitting [46].

In an ANN model, signals are transmitted between layers using an activation function,
which can be linear or nonlinear. Activation functions commonly utilized include pure-
linear, log-sigmoid, and tan-sigmoid, as stipulated by Equations (2) and (3) which define
the output (a) of the activation function. The training process for MLP-FFNN is frequently
accomplished through backpropagation, with the Levenberg-Marquardt algorithm (LM)
being extensively utilized for adjusting weights and biases within the layers [47].

a =
1

1 + e−n (2)

a =
2

1 + e−2n − 1 (3)

While artificial neural networks (ANN) have showcased considerable prowess in
diverse applications, including real-time prediction, it is crucial to acknowledge their
limitations, such as their susceptibility to getting trapped in a local optimum. Numerous
strategies have been put forth to tackle these constraints and augment the efficacy of
conventional ANNs [45].

• Selection of refinement points:

The incorporation of the “experiment space refinement (ESR)” methodology stands
as a pivotal phase in guaranteeing the precision of the model. This procedure entails
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the selection of a refinement point (Pr) through the application of the “max-min distance”
criterion, as outlined in Equation (4). The purpose is to systematically investigate uncharted
territories within the experimental design. Afterward, the identified refinement point is
evaluated using the constructed meta-model and CFD to determine the relative error. If
this error (Err) exceeds a critical threshold (eps), the point is reconsidered in the creation of
the meta-model via an iterative loop. Otherwise, or if the cost (Cost) reaches its maximum
(Cost_max), the iterative loop stops and provides the optimal solution [48].

Pr = max
xj∈X∗

Front

[
min

xl∈DOE

∥∥∥x∗j − xl

∥∥∥] (4)

The vectors x1, . . . , xn ∈ DOE and x*
1, . . . , x*

PopSize ∈ X*
Front denote the sets correspond-

ing to the experimental design space and the current Pareto front, respectively.

4. Results and Discussion
4.1. Optimization of Bowl Shape and Swirl Rate

Figure 9 shows a history of the last four Pareto fronts according to the global optimiza-
tion loop presented by the flowchart in Figure 6 which satisfies the two objective functions
(F1 and F2) defined by Equation (1).
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According to these results, the last three Pareto fronts are relatively close to the final
one. This implies that the maximum perturbations allowed relative to the final front are
relatively large, as shown by the results in Table 5. In other words, if perturbations are
applied to the decision variables (P, b, d, and S), the objective functions will be shifted to
local optimums that are close to the global optimum represented by the final Pareto front,
which confirms the robustness of this model.

Table 5. Maximum perturbation of the last Pareto fronts to the final front.

Perturbation Pareto-1 Pareto-2 Pareto-3

Max/Pareto (%) 1.73 2.16 2.94
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Figure 10 shows the final Pareto front summarizing all non-dominated cases according
to this optimization, where the two limiting cases of this front are indicated as follows:
Case 1, for which the optimizer focuses on maximizing indicated thermal efficiency and
combustion efficiency. Case 2, for which the optimizer focuses on minimizing NOx emissions.
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Table 6 compares four reference cases defined as follows:

• Case 1 and Case 2: the two extreme cases of the Pareto front, where the optimizer
fully favors maximizing the weighting between indicated thermal efficiency and
combustion efficiency for Case 1, and fully favors minimizing NOx emissions for
Case 2.

• Base case: this case represents operation with the original geometry of the combustion
chamber (without bowl modification).

• NG/D case: this case represents operation with the basic geometry, using natural gas
as the primary fuel instead of ammonia. It should be noted that the natural gas energy
share in this case is 85%, similar to the other cases.

Table 6. Comparison of reference operation cases.

Case
Decision Variables Emissions and Performance

P b d S NOx
(g/kWh)

ηth
(%)

effcomb
(%)

NG/D case - - - 4.5 7.92 34.8 93.4

Base case - - - 4.5 4.85 29.8 67.3

Case 1 9.857 11.208 3.319 7.842 8.34 38.7 95.8

Case 2 8.466 8.317 6.758 2.951 3.08 30.6 65.3

According to these results, Case 1 represents an indicated thermal efficiency improve-
ment of 30% and 12% compared with the base case and NG/D case, respectively. This
improvement had a direct impact on NOx levels in this case (Case 1), which increased
by 65% and 5% compared with the base case and NG/D case, respectively. These results
confirm that the choice of a good compromise between objective functions is necessary for
driving performance according to need.
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To better analyze the results and the effect of bowl shape and swirl rate on combustion
development in the cylinder, the flame front is illustrated in Figure 11 for the base case and
Case 1 as a function of crank angle. The combustion rate (τcomb), defined by Equation (5),
is also shown, as well as the enhancement in combustion rate for Case 1 compared to the
Basic case for different crank angle.

τcomb =
Cumulative Heat Realease

Fuel Energy
(5)
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Figure 11. Effect of geometry and swirl rate on combustion development.

According to these results, Case 1 is characterized by better mixture preparation,
which is explained by the considerable improvement in start-up combustion. In Case 1,
flame advancement is more structured, which means that all zones in the cylinder are
swept, unlike the Basic case, where the flame remains trapped in the bowl due to its shape.
The effect of the swirl is seen on the flame front at the end of combustion (50 ◦ATDC),
where the flame propagates away from the revolution axis in Case 1.

Figure 12 shows the velocity field perpendicular to the revolution axis of the cylinder
at 2 ◦ATDC in Case 1 and the Basic case, giving an idea of the Squish intensity. According to
the analysis of the results, the Squish is greater in Case 1, implying faster flame propagation.
The Squish is directed towards the side walls in Case 1, which explains the uniform
propagation of the combustion flame towards the outside of the revolution axis.

According to the results found, the bowl shape affects the Squish in the cylinder, further
improving ammonia combustion. The optimizer seeks to find an optimum combination
of swirl and squish via the bowl shape for better combustion efficiency by pushing the
flame outside the injector towards the side walls and bringing the unburnt ammonia inside
the bowl.
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4.2. Effect of Hydrogen Addition

The main aim of this section is to demonstrate the effectiveness of hydrogen enrich-
ment on ammonia combustion in an ammonia/diesel dual fuel engine. This improved
combustion is guaranteed by the enhanced reactivity of the gas mixture in the combus-
tion chamber.

In this section, Case 2 is chosen for testing the influence of hydrogen enrichment
because of its lower efficiency, which justifies its relatively low NOx level compared with
the other operating cases.

In this analysis, different fractions of the energy supplied by ammonia are provided
by hydrogen addition, namely: 5%, 10%, and 15%. This implies a distribution of the energy
shared (Esh) for each fuel, as shown in Table 7.

Table 7. Distribution of energy shared.

H2 Enrichment Esh (Diesel) % Esh (NH3) % Esh (H2) %

0% 15 85 0
5% 15 80.75 4.25
10% 15 76.5 8.5
15% 15 72.25 12.75

Figure 13a illustrates the distribution of total energy between indicated work, exhaust
losses, heat transfer, and incomplete combustion for the different cases studied. Figure 13b
illustrates the influence of hydrogen enrichment on NOx emissions.
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According to the results, the addition of hydrogen offers major advantages in terms
of combustion efficiency due to the increase in pressure (Figure 14a) and temperature
(Figure 14b), which is explained by the decrease in the energy of incomplete combustion
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as shown in Figure 13a. These conditions directly affect indicated thermal efficiency,
and for this reason, the indicated work increases by around 25% between the case with
15% hydrogen enrichment and the case without enrichment.
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According to Figure 13b, the increase in hydrogen content is accompanied by an
increase in NOx rate as a result of improved combustion and higher temperatures.

Figure 15 shows the flame front for Case 2 and Case 2 with 15% hydrogen enrichment
(Case 2/15%H2) as a function of crank angle.
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Figure 15. Effect of hydrogen enrichment on combustion development.

Based on the findings, the flame propagation speed demonstrates an increase as
hydrogen enrichment increases. This observation justifies the evolution of the flame front
as a function of crank angle in Figure 15. The introduction of hydrogen makes the mixture
less resistant to ignition, attributable to the distinctive flame propagation velocity associated
with hydrogen, as detailed in Table 8. This suggests that an NH3-H2 mixture is marked by
a relatively high flame propagation velocity.
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Table 8. Fuels properties.

Fuel Flame Speed (m/s) Ignition Energy (mJ)

Diesel 0.80 0.23
Gasoline 0.41 1.35

Ammonia 0.67 680
Hydrogen 3.25 0.016

Table 9 shows the characteristics of Case 2 with 15% hydrogen enrichment (Case 2/15%H2).

Table 9. Performance and emissions specific to Case 2 with hydrogen enrichment.

Case NOx (g/kWh) ηth (%) effcomb (%)

Case 2/15%H2 6.13 39.2 97.7

A comparison of the results in Table 9 with Table 6 reveals that Case 2/15%H2 offers
an indicated thermal efficiency improvement of 32% and 13% compared with the base case
and NG/D case, respectively. This efficiency improvement is accompanied by an increase
in NOx of around 26% compared with the base case, and a reduction of over 22% compared
with the NG/D case.

The results show that with hydrogen enrichment, the trade-off between improved
performance and combustion efficiency and NOx reduction is achieved.

5. Conclusions

The study presented in this paper represents a qualitative advance in the field of large
dual fuel engines running on ammonia as the primary fuel. In this context, a multi-objective
optimization coupled with parallel meta-modeling is applied to the engine, characterized
by an energy participation rate of 85% for ammonia. This approach aims to develop an
engine dedicated to ammonia diesel dual fuel operation. The main points raised by this
work are as follows:

1. Using multi-objective optimization techniques, this work targets the search for an
optimal piston bowl shape and Swirl rate that collectively enhance indicated thermal
efficiency, combustion efficiency, and minimize NOx emissions for ammonia/diesel
dual fuel operation. This approach confirms the significant impact of piston shape and
Swirl rate on combustion dynamics, shaping flow fields within the combustion cham-
ber to promote efficient flame development and facilitate the complete consumption
of introduced ammonia, thereby advancing overall engine performance.

2. The optimum configuration outperformed the others in terms of combustion efficiency
and reduction of pollutants emitted, with a reduction of over 43% in unburned NH3
and a significant improvement in indicated thermal efficiency of over 31%.

3. Enhancing fuel reactivity by incorporating small proportions of hydrogen is crucial
for ensuring the smooth operation of the ammonia/diesel dual fuel engine, especially
under limiting operating conditions in terms of high load and significant ammonia
percentage. A 15% hydrogen enrichment on the non-adapted ammonia/diesel dual
fuel engine improves indicated thermal efficiency and combustion efficiency by 28%
and 50%, respectively.

Given the influence of the pilot fuel injection timing on the combustion process in dual
fuel engines in general, optimizing the pilot injection law for the new bowl configuration,
dedicated to operation with ammonia, is a promising avenue for further work. This will
allow the exploration of the effect of the interaction of the injection law with the new bowl
shape on engine performance and emissions, in the search for the optimal ammonia/diesel
dual fuel engine configuration.
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Nomenclature

AMR adaptive mesh refinement
ATDC after top dead center
ANN artificial neural network
BDC bottom dead center
e f f comb combustion efficiency
τcomb combustion rate
CFD computational fluid dynamics
D diesel
DME dimethyl ether
DDM droplet discrete model
Esh energy shared
ESR experiment space refinement
FFNN feed-forward artificial neural networks
ICE internal combustion engine
LHS latin hypercube sampling
LM levenberg-Marquardt
MLP multi-layer perceptron
NG natural gas
NSGA non-dominated sorting genetic algorithm
NTC no-time-counter
Fi objective function
Pr refinement point
ηth indicated thermal efficiency
TDC top dead center
VEL_W velocity parallel to cylinder’s axis of revolution
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