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H I G H L I G H T S  

• An overview of microgrids and their fundamentals is offered. 
• A comprehensive analysis of the classifications and applications of microgrids. 
• An in-depth analysis is conducted on the challenges related to the installation of microgrids. 
• An overview of potential future study topics that are worth investigating in the field of microgrids.  
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A B S T R A C T   

Recently, the intent to use microgrid (MG) technology for urban, residential, and industrial applications has 
significantly increased. Thanks to the integration of shared storage technologies, these power systems allow for 
higher penetration of distributed renewable generation (DGs) and better mitigation of imbalances between de
mand and generation. This responds to social and environmental requirements in terms of decarbonizing energy 
and also contributes to strengthening smart cities. DC (Direct Current) microgrids offer several advantages 
compared to AC (Alternating Current) type microgrids, like superior efficiency, better control, stability, 
compatibility with the DC nature of renewables and storage sources, and the absence of reactive and synchro
nization problems. However, before fully exploiting the potential of microgrids in renewable-powered smart 
grids, it is necessary to conduct further research and discussion on critical technical and socio-economic chal
lenges. This paper presents a review of the existing state-of-the-art research in DC microgrid development, 
relevant challenges related to security, communication, power quality, and operation, as well as the appropriate 
control and energy management strategies to handle them. As control and energy management strategies 
considerably impact other performance indicators such as operating cost, emissions, and power system safety, 
this paper offers a perspective on the potential improvement of such management solutions.   

1. Introduction 

The excessive use of fossil fuels for electricity generation is causing 
global environmental concerns. Developing and developed countries 
recognize the need to protect the planet from climate change and are 
working together to reduce CO2 emissions to 1000 billion equivalents by 
2100, aiming to stabilize global warming at 1.5–2 ◦C. For doing so, a set 

of actions and measures are expected to be achieved in the coming years 
in energy, forests, housing, transport, industry, and waste [1]. These 
programs aim to reach energy decarbonization, mitigate climate change, 
promote smart cities, and sustain economic development. Indeed, the 
transition to clean alternative energy generates, in the long run, deep 
structural changes that lead to the prevention of upcoming environ
mental and economic crises [2,3]. It’s well established in the literature 
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that promoting renewable energy is the best way to fight against climate 
change and reach sustainable development [4,5]. Otherwise, the tran
sition to clean alternative energy is mandatory to prevent upcoming 
environmental and economic crises. The new energy model is tran
sitioning from the existing power system’s reliance on classical fossil- 
based power resources to an energy mix based mainly on renewable 
energy resources (RESs) [6]. In this context, smart grid decentralization 
via management and coordination of local energy systems is an 
emerging trend in the energy landscape. 

The decentralized coordination of distributed energy resources can 
be achieved through various models, the microgrids (MG) being a 
relevant example. They enable more localized control and coordination 
of RES and efficient energy management while operating autonomously 
or in coordination with the primary grid [7]. Wind, solar, hydro, 
biomass, geothermal, and marine energy are some examples of RESs 
characterized as cleaner, smarter, closer, and potentially limitless [8]. 
These local sources can be integrated at different power and voltage 
scales into the primary grid through power electronic converters, where 
they can be defined as distributed generation (DG) systems. In addition, 
smart cities, representing the next generation of urban cities, require 
microgrid technology. Smart cities use this technology to increase the 
effectiveness of various services, including communication, energy, and 
transportation [9]. On the other hand, microgrids are small-scale energy 
systems that may function separately or in tandem with the primary grid 
[10]. Integrating modern control technologies, storage systems, and 
renewable energy sources enhances the resilience and sustainability of 
smart cities. They provide environmental sustainability, dependability, 
and energy efficiency in urban settings [11,12]. However, incorporating 
new generation sources into the old traditional power grids brings 
technical and economic challenges to maintaining stability and maxi
mizing financial profitability. 

Based on advanced communication and management facilities, the 
smart grid concept is one of the most promising solutions to these ob
jectives [13]. This technology provides extra options for effective elec
tric power generation, transport, and distribution [14]. Microgrids are 
becoming more attractive for self-production and self-consumption fa
cilities as a fundamental brick of smart grids. Indeed, MGs based on RESs 
are installed near final consumers and participate in greenhouse gas 
emission reduction, minimize transportation losses, and secure the 
power supply in case of a primary grid fault. Furthermore, this kind of 
generation, which provides an uninterrupted power supply (UPS), is 
suitable for rural and isolated areas, islands, military applications, etc. 
For these reasons, the global microgrid market is expected to rise from 
$24.6 billion in 2021 to $42.3 billion by 2026, at a compound annual 
growth rate of 11.4% over 2021–2026 [15]. The prominent market 
leaders in the microgrids field are ABB (Switzerland), Siemens (Ger
many), General Electric Company (US), Schneider Electric (France), 
Bosch (Germany), Honeywell (US), and Eaton Corporation (Ireland). 

COVID-19 has significantly influenced the operations of microgrid 
manufacturers, as well as their suppliers and distributors. Compared to 
pre-COVID-19 levels, a drop in export shipments, project delays, and 
poor domestic demand for microgrid hardware are projected to nega
tively impact and somewhat stagnate demand for the microgrid industry 
in the short term due to quarantine limitations and the degradation of 
fund sources [15]. On the other hand, the worldwide recovery process 
made cleaner electricity systems mandatory following this epidemic. 
The European Union (EU) emphasized this tendency with the Green Deal 
program [16]. Furthermore, the United Nations is paving the road for 
these goals to be met worldwide with goals 7 and 11 of the Sustainable 
Development Goals (SDG) [17,18]. 

Indeed, DCMGs have various benefits over AC types. However, it is 
essential to note that there are several obstacles hindering the promotion 
of DC microgrids, including:  

- Load power sharing and voltage regulation in DC power systems 
since most installed power conversion systems adopt alternating 
current. 

- Low operating costs and emissions due to the expensive DC protec
tion systems, economical sizing, and operational challenges in DC 
power systems.  

- DC microgrids enable communication and data transmission, 
whereas extra communication systems are required compared to 
traditional power systems. 

- Energy storage systems’ protection against complex operating con
ditions is required to extend their lifespan and efficiency.  

- Communication with the primary grid and prepare the microgrid to 
switch between grid-connected and isolated modes.  

- Grounding systems and protection protocols for DC power systems 
are immature and expensive. In addition, this paper includes a 
comparative study between AC and DC microgrids, DC microgrid 
analysis, and perspectives. 

This review article contributes to reviewing current approaches to 
addressing difficulties in direct current (DC) and alternating current 
(AC) microgrids, emphasizing their benefits, drawbacks, and practi
cality. The study investigates the distinctive attributes, operational in
tricacies, and performance indicators of DC microgrids. The study 
investigates practical implementations, case studies, and extant litera
ture to comprehend DC microgrid deployment’s technical, economic, 
and regulatory dimensions. Additionally, this study delves into pro
spective developments and emergent patterns in DC microgrids, 
discerning possible avenues for advancement and growth. The paper 
offers stakeholders a comprehensive understanding of the development 
trajectory of DC microgrids through clarification of existing technolo
gies and ongoing research initiatives. Table 1 presents the main parts 
covered by the proposed paper compared to other published review 
papers in the context of DC microgrids. 

The rest of this review paper is structured as follows: The microgrid 
components are provided in Section 2, while their applications and 
classifications are illustrated in Section 3 and Section 4, respectively. 
Section 5 presents a comparative study between AC and DC microgrids. 
Sections 6 and 7 present the configuration and challenges of DC 
microgrids. Section 8 reports and discusses the rated DC bus voltage 
classifications. Section 9 provides the control plans, while Section 10 
presents the management strategies. The main perspectives on the 
DCMG’s future directions are reported in Section 11. 

2. Microgrid components 

Microgrid (MG) is a multisource system that combines various 
distributed generators (DGs), including RESs, energy storage systems 
(ESSs), loads (controllable and non-controllable), and grid equipment 
such as control and protection systems [24,25]. MG components are 
defined as follows: 

Distributed generators: Distributed generators may include emerging 
generation technologies such as combined heat and power (CHP) [26], 
fuel cells (FCs) [27], micro wind turbines, and PV [28]; and classic 
generators including single-phase, three-phase induction, and synchro
nous generators [29]. Fuel cell technology is one of the most promising 
technologies because of its high efficiency, modularity, scalability, and 
low pollutant emissions. FC technology includes the following types: 
proton exchange membrane FC (PEMFC), alkaline FC (AFC), phosphoric 
acid FC (PAFC), molten carbonate FC (MCFC), solid oxide FC (SOFC), 
and direct methanol FC (DMFC). 

Energy storage systems: Energy storage systems (ESSs) are essential 
components ensuring proper functioning. The primary role of the ESS is 
to maintain the power balance and energy demand within the MG [30]. 
They have other tasks, such as enhancing the power quality against load 
fluctuations or intermittence of RES and supplying the necessary power 
for a smooth transition from grid-connected to island-based MG 
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operation. Batteries, flywheels, and supercapacitors are the energy 
storage technologies better suited to MGs [31]. Because of their high 
energy density, batteries can provide superb performance for this 
application. 

MG loads: a microgrid can supply various consumer types such as 
residential, commercial, and industrial. Generally, commercial and in
dustrial consumers are crucial loads that require high power quality and 
reliability. Therefore, the microgrid has to manage the loads by 
accomplishing the following tasks [32]:  

- Load monitoring, analytics, and prediction.  
- Load balancing and demand response.  
- Load shedding for non-crucial loads to fulfill the net import/export 

power in on-grid mode.  
- Stabilize the voltage and frequency in the islanded mode.  
- Enhance the power quality and reliability of critical loads.  
- Load scheduling and resource planning for the resilient operation. 

DG interfacing systems: most DGs require a converter interface to 
adopt their output power with common bus-compatible power (AC or 
DC). Furthermore, the power electronic interface includes filters, mea
surement elements, and protection systems [33]. In particular, the 
interoperability among monitoring and control devices and microgrids 
is an open change. At the same time, interoperability is essential to 
ensure efficient communication and coordination between various 
monitoring and control devices within the microgrid. 

Management and control system/electronic card IC and measure
ment systems: the management card allows users to control and super
vise the source and ESSs. A complete energy management solution 
includes process data from the control and data acquisition systems, 
network monitoring, inverters, system automation, and more. In addi
tion, the remote cards are plug-and-play for quick and immediate 
management system installation. 

3. DCMG applications: 

Since microgrids can deliver power in a dependable, resilient, and 
environmentally friendly manner, they have a broad range of applica
tions across various industries. The following are some of the most 
essential uses of microgrids: 

Smart Cities and Urban applications: By integrating with cutting- 
edge technologies like the Internet of Things (IoT), energy manage
ment systems, and demand response processes, MGs aid in the transition 
of urban infrastructures to smart cities [34]. Intelligent energy systems 
and reliable electrical networks distinguish smart cities. They enable the 
integration of renewable energy resources, refueling electric vehicles, 
increase energy efficiency, facilitate demand-side management, and 
innovative energy-related value-added services [11]. In the power 
paradigm, these technological characteristics and information and 
communication networks are indispensable [35]. 

Residential applications: MGs can potentially augment energy in
dependence and robustness by installing sophisticated energy manage
ment devices, solar panels, and battery storage systems. In addition, 
with the increased number of DC residential loads, such as laptops and 
LEDs, DCMGs are becoming more reliable for residential applications. 
Because of its compatibility with the standards of the Emerge Alliance of 
buildings, 380-400 V DC bus voltage is used more in this application 
[21]. 

Commercial applications: commercial buildings have experienced a 
significant increase in energy consumption due to their characteristics, 
including high consumption ratio and building size [36]. MGs have the 
potential to decrease energy costs and alleviate the hazards linked to 
power outages. Also, the buildings can play a significant role if they are 
operated in a coordinated manner as flexibility assets integrated with 
the microgrids. Research efforts are needed to support the digital 
transformation of the buildings by proposing technological enablers and 
interoperability unlocking mechanisms to allow their coordinated 
operation. As reported in [37], 380 V DC bus voltage is an appropriate 
choice for these buildings. Zero-net energy (ZNE) buildings are 
becoming more attractive and using MG technology as a power system 
[38,39]. Using PV and batteries on the rooftops is also an encouraging 
solution for deploying the DCMGs in these buildings. In addition, 
buildings lose 13% of energy annually due to AC/DC conversion [40]. 
These losses can be eliminated using DCMGs. Its compatibility with 
residential and commercial buildings makes it an excellent solution for 
distributing power in urban cities. This can allow the city members to 
participate in the energy market by exchanging power between them. 
This can provide economic and technical benefits [41]. 

Industrial applications: electric motor drives consume >40% of the 
provided electricity [42]. If the used converters are connected to a DC 
bus, this enables the utilization of regenerative (braking) power [43]. As 
a result, the common DC bus configuration can be a cost-effective and 
energy-efficient option for many industrial applications. Therefore, 
using DCMGs for this kind of application is a reliable solution. Its DC 
nature allows for excellent plug-and-play prospects, enabling the 
attachment or disconnection of DGs or loads in the future without 
affecting the functioning of the MG [40]. 

Transportation applications: Most current propulsion systems are 
based on AC-supplying systems. However, the emerging propulsion 
technology may present DC-supplying systems as better solutions [44]. 
Hence, DCMGs are being presented as optimal solutions for future 
transportation systems such as electric ships [45], more electric aircraft 
(MEA) [46], advanced electric vehicles (EVs) [47], ships [48,49], and 
hybrid electric vehicles [50]. MGs-based hybrid power systems (HPSs) 
are becoming a strategic solution for these applications. Most EVs are 
based on batteries with other storage systems, such as supercapacitors. 
Furthermore, hybrid electric vehicle-based fuel cells are increasingly 
utilized for their advantages, including high power density and alter
native storage strategies [51]. 

Fast charging stations for electric vehicles (EVs): Plug-in electric 

Table 1 
comparative study between several review papers and the proposed paper.  

Ref [19] [20] [21] [22] [23] Proposed 

Market evolution Yes No Yes No No Yes 
Architecture Yes Yes Yes Yes Yes Yes 
DC vs. AC MGs No No No No No Yes 
Classification No No No No No Yes 
Applications Yes Yes No No Yes Yes 
Rated voltage review No No No No No Yes 
Control Yes No Yes No No Yes 
Energy management system No No Yes No No Yes 

Challenges 

Protection 

No 

Yes 

No 

Yes Yes Yes 
Power quality Yes No No Yes 
Communication Yes No No Yes 
Operation Yes No No Yes 

Perspectives Yes Yes No Yes Yes Yes  
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vehicles (PEVs) are gaining more and more attention in the context of 
energy decarbonization [52]. However, they require specific charging 
stations due to the high consumption rate. On the other hand, a 
microgrid as an independent power system favors self-consumption, and 
thus, less stress is applied to the main grid [53]. Moreover, due to their 
compatibility with the DC nature of charging power, DC microgrids are 
considered an optimal solution for charging station infrastructures 
compared with the AC type. Moreover, it is compatible with PV gener
ators commonly used in urban areas. 

The microgrid’s main applications are illustrated in Fig. 1. 

4. Microgrid classification: 

4.1. Based on the structure: 

ACMGs (Fig. 2.b): power electronics converters connect DGs and 
ESSs to the AC bus. AC sources that provide variable frequency and 
variable voltage are connected to the AC bus using AC/AC converters, 
while controllable AC sources are linked directly to the AC bus. Several 
sources, such as wind turbines and low-head hydro, may require AC/ 
DC/AC power converters to stabilize the ACMG [54]. On the other hand, 
DC sources are connected to the AC bus via a DC/AC converter [55]. 
Furthermore, the ACMGs directly link AC loads, while DC loads require 
AC/DC power converters. 

DCMGs (Fig. 2.a): DC-based DGs and ESSs connect directly to the DC 
bus, providing DC power. In addition, DC-compatible loads are getting 
more popular. As a result, the DCMGs will dominate soon. In this case, 
an AC/DC converter connects the AC sources to the DC bus [8]. 

Hybrid MGs: This type of MG includes both AC and DC MG features, 
where the AC sources are connected to the AC bus, and the DC sources 
are connected to the DC bus. A bidirectional converter connects the AC 
and DC buses, allowing power to flow between them. Hybrid microgrids 
(HMGs) comprise several parallel-connected DGs capable of operating in 
island and grid-connected modes [56]. Therefore, HMGs can be 
considered a combination of DC and AC MGs [57]. However, the HMGs 
require a robust management system due to the complex interaction 
between the AC and DC sides [58]. 

4.2. Based on operating mode [59]: 

Islanded MGs (off-grid mode): due to their independence and lack of 
connection to the main grid, MGs are able to generate electricity on their 
own. 

Grid-connected MGs (on-grid mode): MGs can be connected to the 
main grid or function autonomously during grid disruptions or 
blackouts. 

4.3. Based on size [60]: 

Mini MGs: designed to serve extremely small communities or indi
vidual residences, frequently in remote or rural regions, these micro
grids are compact in size. 

Medium MGs: these MGs are characterized by their smaller size and 
are primarily designed to provide electricity to specific towns, colleges, 
or smaller industrial sites. 

Large MGs: these MGs may encompass a substantial geographical 
expanse and cater to a sizable population or industrial facility. 

4.4. Based on application [59]: 

Urban MGs: urban areas are equipped with these microgrids in an 
effort to improve energy resilience, efficiency, and sustainability. 

Rural MGs: these MGs are strategically installed in remote or rural 
regions to supply dependable electricity in the absence of conventional 
grid infrastructure. 

Embedded MGs: these MGs are designed for embedded applications 
like transportation applications. 

MG general classifications are summarized in Fig. 3. 

5. AC versus DC MGs: 

DC MGs are getting more attractive due to their considerable ad
vantages. The DC nature of several renewable energy sources and elec
trochemical storage systems reduced conversion stages to power local 
consumers. In addition, the simplified electrical structure of this MG 
type implies higher efficiency and more simple control since no syn
chronization and complex control is needed. Nevertheless, these power 
systems still suffer from several problems, such as safety and protection 
tools, existing codes and standards designed for AC systems, and other 
issues [61,62]. According to the research reported in [63,64], the main 
characteristics of both DC and AC MGs are reported in Table 2. 

6. DCMG Configuration: 

The configuration of a DCMG is mainly available in four different 
topologies: single-bus, multi-bus, multi-terminal, and ring architecture. 

Single bus: This type of configuration is the basic one. A single bus is 
used in this configuration. All the devices, including RESs, ESSs, and 
loads, connect in parallel, as shown in Fig. 4(a). Power electronics 
converters must be correctly located to provide system stability and 
robustness. Because of a single bus, single-point failure may lead to 
system failure [65]. 

Ring architecture: As shown in Fig. 4(b), the ring configuration 
offers a closed arrangement suitable for various applications. In addi
tion, this configuration provides more reliability and security due to the 
bidirectional power flow. If one busbar connection is damaged, the 

Fig. 1. Microgrid applications  
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opposite direction of the current flow will hold power. Therefore, this 
configuration provides excellent robustness [66]. 

Multi-bus: This kind of configuration combines several single-bus 
MGs, as illustrated in Fig. 4(c). Each microgrid in a multi-bus DCMG 
system absorbs or provides electricity to or from its neighbors [67]. This 
structure makes it easier to isolate a DC MG in the event of a breakdown. 
Furthermore, the communication lines between DGs transmit control 
signals to enhance the performance and stability of the DC microgrid 
[68]. 

According to [22,69], the characteristics of each one are presented in 
Table 3. 

7. DCMG Challenges 

Many problems occur due to the various features and topologies of 
the DC microgrid, causing the system to fail to work consistently and, 
therefore, necessitating further development to meet these obstacles. As 
illustrated in Fig. 5, DCMG issues can be classified into four categories: 
protection, communication, power quality, and operational. 

Protection issues: some issues are common in DCMGs and DCMGs, 
such as the restricted fault current contribution of inverter-based DG in 
islanded mode or the incapacity of single-setting overcurrent relays to 
protect dual-mode microgrids [70]. However, two additional problems 
regarding DCMG protection should be taken into account.  

- Grounding: typically, two types of faults may occur on DCMGs that 
may damage the MG: pole-to-pole (PP) faults associated with the low 
impedance and pole-to-ground (PG) faults associated with the high 
impedance. These faults can be prevented by respecting the 
grounding norms [71,72]. In addition, the grounding has extra 
benefits, such as improving personnel safety by decreasing the touch 
voltage [73,74]. According to the international standard 
IEC60364–1 [75,76], three grounding types are expressed by two 
letters: TN, TT, and IT. The first letter describes the connection type, 
symbolized by T (direct connection) or I (no point is connected). The 
second letter represents the connection mode between the ground 
and the electrical device, and it has two symbols: T (local direct 
connection to ground) or N (the MG provides the grounding, either as 
a separate protected earth wire or in combination with the neutral 
conductor). Although detecting faults in a TN system is straightfor
ward due to the low grounding resistance, personnel safety cannot be 

Fig. 2. Microgrid types according to the power type  

Fig. 3. Microgrid classifications  

Table 2 
AC vs. DC MG.   

DC MG AC MG 

Number of 
converters 

Medium High 

Transmission 
efficiency 

High: no loss associated 
with the reactive power 

Low: the reactive power 
increases the transmission 
losses 

Stability margin High: easy Low: complexed 
Synchronization Not required Required 
Power supply 

reliability 
High reliability with smooth 
transient 

A seamless transition is 
challenging to ensure after a 
grid fault 

Control Simple due to the absence of 
frequency, reactive power, 
or phase unbalance 
problems 

Complex control process due 
to voltage and frequency 
regulation and the unbalanced 
compensation in three-phase 
systems. 

Load 
compatibility 

Low but promising for 
future loads 

High due to domination of the 
AC loads 

Protection system Complex and costly Simple and affordable 
Devices 

compatibility 
No Yes 

skin effect Not existed Yes  
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assured as the touch voltage may exceed the permitted limit. On the 
other hand, IT systems are good candidates for maximizing human 
safety because of their low fault currents, but fault detection in such 
systems is difficult [77]. As a result, developing an optimal 
grounding model that satisfies human safety criteria and fault 
detection is difficult.  

- No zero-crossing current: the functioning of circuit breakers (CBs) 
in both AC and DC networks is associated with arc phenomena. 
Because AC CBs rely on the natural interruption of AC currents, they 
can generally discern an arc within half a cycle after tripping. 
However, because DC currents have no natural zero-crossing point, 
interruption of currents is a significant issue that poses a substantial 
safety risk to personnel and causes contact corrosion that will reduce 
their lifespan [78,79]. Moreover, the fault current levels are 
commonly very high because of the low impedance of DC systems. 

Communication issues: communication is a critical issue in 
achieving the reliability and efficiency of the system since it has a sub
stantial impact on the MG design, including topology, operating mode, 
control, protection, and energy management systems. MG has adopted 
several communication methods, including wireless and optical fiber, to 
ensure stable and effective MG operations. In addition, the communi
cation system delivers voltage and current information to manage the 
MG operating mode [80]. 

Power quality issues: due to the combination of nonlinear load and 

renewable DG output, power quality problems such as voltage fluctua
tions, harmonics, reactive power compensation, and frequency de
viations will become more significant in MGs. DCMGs have low power 
quality issues compared to AC and hybrid types. The main power quality 
problems in DCMGs focus on reducing the voltage and current ripple. 
Ripple control may be achieved by increasing the capacitors in the DC 
bus [81]. However, operating DCMG in islanded and on-grid modes can 
lead to other power quality problems [82]. These problems include:  

- Voltage transient from AC grid: According to [83], the transient 
over-voltage in these circumstances reaches 194% of the standard 
voltage and is balanced off at 111% of the standard voltage. This 
might be a very unsafe level for other devices using a similar DC bus.  

- Harmonics and Electromagnetic Interference compatibility: The 
high operating frequency of many DC-DC converters might produce 
electromagnetic interference. Moreover, the converter’s capacitor 
can produce multiple resonance frequencies and increase the 
impedance of the bus cable [84].  

- Inrush currents: the power electronic converters are equipped with 
electromagnetic interference filters. However, the inrush current 
that passes through these filters will produce voltage fluctuations in 
the DC bus and ultimately affect the operation of other devices 
connected to the common DC bus [85]. 

Operational issues: power-sharing between various DGs under 

Fig. 4. Microgrid structures.  

Table 3 
DCMG Topology Characteristics.  

Topology Explanation Advantages Reliability Application 

Single bus All the sources are connected to a single line  
- High dynamic stability.  
- Improved ESS reliability.  
- Improved voltage regulation 

+ +

Residential 
Commercial 
Transportation 

Multi-bus Multiple Single bus MGs connected in series and parallel  
- High controllability of power flow.  
- A possible connection between LV and MV MGs.  
- UPS. 

+
Commercial 
Auxiliary grid 

Multi-terminal A structure that provides the power flow in multiple directions  
- UPS.  
- Reliable operation + +

Commercial 
Industrial 

Ring Closed-loop topology Bidirectional load supplying + + Industrial  

Fig. 5. DC Microgrid’s main issues  
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different operating conditions is a significant issue regarding the per
formance of MG. The main objective of the MG is to supply the users 
with high-quality power, so the response to the power demand must be 
considered [86]. Moreover, integrating various DG types with different 
characteristics may lead to stability problems. Hence, controlling the 
parallel operation of the DGs is a crucial step [63]. The power generation 
of each DG has its characteristics and limitations that must be included, 
such as the dynamics, capacity, and nature of the DG [27]. As the 
permeability of power electronic devices with low inertia compared 
with power systems based on generative machines [87,88] increases, the 
conventional power system’s rotating reserve capacity and rotational 
inertia will diminish. Furthermore, the microgrid exhibits inadequate 
anti-disturbance capabilities and stability when operating in islanding 
mode [89]. As a result, many researchers have developed design 
methods for virtual synchronous generators (VSGs) that let inverters 
using VSG control strategies mimic the working characteristics of syn
chronous generators. This makes it easier for microgrids and power 
systems to work together smoothly and improves the stability of 
microgrids [90]. 

Social issues: social acceptance is one of the most significant social 
problems [91–94]. It includes community acceptance, sociopolitical 
acceptance, and market acceptance. At the community level, social 
acceptability is significantly influenced by member behavior and active 
participation in initiatives. Other social issues can be faced during the 
evolution of DCMG, such as decision-making and investment challenges, 
especially for the local communities, due to a lack of resources and ca
pacity and stakeholder contact, participation, and coordination issues 
[95,96]. 

8. Rated DC bus voltage classifications: 

Another critical aspect to be tackled is the voltage levels for DCMGs. 
The compatible voltage ranges are necessary to adapt the i-AFE con
verter architecture to current DC load standards [97]. The IEC publi
cation [98] summarizes the primary rated voltages utilized in direct 
current applications, as illustrated in Fig. 6. 

In houses and offices, there are many DC loads. However, it is 
required to protect safety from electric shocks, making using extra-low 
DC voltage (ELDCV) levels appealing. Furthermore, several industrial 
systems use ELDCV to facilitate servicing and repair. Many crucial DC 
loads in telecommunications, for example, are powered by 12, 24, or 48 
V. Large currents and long distances result in substantial power losses, 
which inherently restricts ELDCV buses in terms of power processing 
and distance. As a result, ELDCV buses should only be used across short 
distances and at modest power levels (>1 kW). Low DC voltage (LDCV) 
values between 350 and 450 V are often employed in data centers, racks, 
servers, and other industrial applications. The amount of electricity 
handled can be increased thanks to these LDCV levels [99,100]. The 
primary challenge for the high DC voltage levels (HDCV) (600–900 V 
and 1–1.5 kV) relates to safety and protection needs. These voltage 
ranges are not typical for residential-scale microgrids due to the 

potential risk of damage to end users [100]. 

9. DCMG Stability and Control Strategies: 

Usually, each DC-DC converter is built to provide strong stability 
margins and reach certain performance levels while working indepen
dently. Nevertheless, the interaction between the many DC-DC con
verters in the network might impact the overall performance and 
possibly result in instability. In addition, unlike constant impedance and 
current loads, which typically do not affect stability, constant power 
loads (CPLs) might result in network instability owing to their negative 
impedance characteristics. DCMGs often have stability problems when 
they have CPLs, which happen when filters with low impedance do not 
match up with strictly regulated power converters [101]. Additionally, 
electronic loads and speed-regulated motor systems can produce 
destabilizing effects [102]. Therefore, ensuring network stability is 
essential to a DCMG. This can be achieved using feedback control 
mechanisms to regulate voltage and current at the converters’ local 
control level [103]. 

Averaging and linearization are the most common methods for 
modeling and analyzing switching power converters in DCMGs. This 
method provides small-signal models valid for frequencies up to half of 
the switching frequency but provides accurate analysis around the 
quiescent operating point [104]. The impedance-based approach sim
plifies the dynamic analysis and design of DC MGs by defining 
straightforward stability criteria for every individual subsystem through 
convenient impedance specifications [105]. However, the stability re
sults for impedance criteria rely heavily on selecting the point in the 
system, which is broken into load and source subsystems [106]. They 
provide only sufficient stability conditions and assume unidirectional 
power flow, making them inapplicable to systems where ESSes are used 
on the load side [107]. The system should be well-tuned before applying 
a filter, and a full-order state-space approach can be used as an 
alternative. 

Designing a control strategy for the DCMG should include a list of 
controlling objectives, such as guaranteeing stability and reliability, 
enhancing global performance and efficiency, protecting the MG ele
ments, and managing the power flow within the MG. This is achievable 
by implementing a proper control strategy. The literature review clas
sifies control strategies into three categories [108]: centralized, decen
tralized, and distributed. An illustrative classification of various types is 
presented in Fig. 7. 

9.1. Centralized control strategies: 

To establish centralized control in DCMGs, a central controller 
(MGCC) system and a digital communication network link the CC with 
the power sources and loads, as shown in Fig. 8(a). The MG central 
controller (MGCC) receives data from the DG units and sends command 
signals back to each unit for centralized control strategies. For small- 
scale DCMGs can be directly controlled via master-slave control strate
gies [109,110]. In the case of larger-scale MGs, hierarchical control is 
favored on account of its autonomy and dependability [111,112]. Local 
converter control is utilized as a primary control level in hierarchical 
control. Secondary and tertiary control levels regulate DC voltage, 
control power flow, and grid-interactive control objectives such as unit 
commitment and global optimization, which are coordinated functions. 
The hierarchical control structure has been introduced as one of the 
most successful control strategies [111,113]. Its structure is based on 
primary, secondary, and tertiary levels [111,114]. The primary control 
is decentralized control, which mainly includes voltage loop and current 
regulation loops, DG MPPT control, and state of charge estimation for 
each storage unit. It has a fast dynamic response to real-time regulation 
[115,116]. Secondary control is associated with voltage correction and 
load-sharing performance improvement. It is concerned with controlling 
the DC bus voltage [117,118]. The tertiary control level can schedule the Fig. 6. DC bus voltage levels for existing applications [98].  
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MG operating mode, the exchanged energy, the load prediction, and 
response, forecast the DG production, evaluate the power quality, and 
optimize the global performance. All of these tasks are provided by the 
energy management strategy implemented at the MGCC level [119]. 
However, this technique has several disadvantages regarding the 
decentralized topology, including single-point failure, less battery life, 
and weak scalability [103]. 

9.2. Decentralized control strategies: 

Each DG unit generates its control signal in the case of decentralized 
control strategies. Droop control strategy, power line signaling (PLS), 
and distributed DC bus signaling (DBS) are the most common decen
tralized control strategies [120]. Lately, the decentralized management 
of microgrids has focused on using blockchain or other distributed led
gers to facilitate peer-to-peer exchanges among prosumers or energy 
assets [121–124]. In such approaches, the blockchain will store immu
table energy transactions based on digitally signed energy-related data 
acquired by intelligent devices installed at the prosumers’ sites. At the 
microgrid level, the blockchain network is established, and the pro
sumer, as a network peer, maintains the blockchain and receives noti
fications from peer nodes when new energy transactions are generated. 
Prosumers can trade energy among themselves to increase their profits 
or contribute to microgrid objectives, such as balancing demand and 
supply, reducing energy exchanges with the primary grid, and 
increasing local renewable energy usage. Smart contracts implement the 
control logic in these cases. Similarly, demand response programs can be 
implemented in microgrids using blockchain overlays. Intelligent con
tracts will monitor the demand response process for correctness, 
compliance, and control according to predefined rules. These can 
encode, execute, and enforce arbitrary agreements between entities, be 

they humans or machines, which provide a transparent, verifiable, and 
secure framework for, e.g., following the demand signal and trading 
energy flexibility. The droop control strategy is the most used strategy. 
However, determining the droop parameters is problematic because the 
current sharing, accuracy, and system stability depend on the droop 
parameters [125,126]. Moreover, with limited communication, full 
control cannot be possible. These control strategies offer several bene
fits, such as simplicity and autonomy from digital communication 
technology, but the absence of information from other units inherently 
constrains their performance. Furthermore, considering that the efficacy 
and dependability of these approaches are unfailingly contingent on the 
interpretation of the voltage in the common DC bus, the precision of 
voltage sensors is crucial. 

9.3. Distributed control strategies 

Distributed control is a control approach in which no central and 
local controllers (LCs) interact only with each other. Distributed control 
strategies may perform duties comparable to centralized methods using 
digital communication. Fig. 8(b) shows the distributed topology. They 
collect and analyze data using consensus-based algorithms or direct 
means, which improves dependability by eliminating any single point of 
failure [127,128]. The distributed control technique may effectively 
regulate voltage fluctuations while fulfilling tertiary-level goals like load 
sharing or economic dispatch [129]. Distributed control provides a level 
of information awareness that is similar to centralized control. This al
lows for achieving goals such as sharing output current, autonomous 
voltage restoring, power sharing, improving global efficiency, and 
balancing state of charge (SoC) [130,131]. One primary benefit of this 
technique is that it allows the system to retain complete functionality 
even if certain communication links fail, as long as the communication 

Fig. 7. DC Microgrid’s main category control strategies  

Fig. 8. Microgrid control strategies.  
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network remains connected. Distributed control is, therefore, imper
vious to singular points of failure [120]. Nevertheless, its primary 
drawback is the intricacy of its analytical performance analysis, partic
ularly in nonideal settings. Moreover, thorough mathematical analysis 
continues to be difficult, particularly under nonideal conditions such as 
communication delays, measurement noise, and inadequate electrical 
control systems. Therefore, this type is not achievable for large-scale 
MGs. 

Table 4 compares centralized, decentralized, and distributed MG 
control strategies. 

10. DCMG Management system 

Each microgrid has a management system (MS) that includes 
monitoring, control systems, and electronic interfaces. In addition, it 
tacks on voltage level control, power balancing, load sharing, and 
shedding [86]. According to the implemented energy management 
strategy (EMS) in the control system, the MG operates in islanding (off- 
grid) mode without connection with the primary grid or in grid- 
connected (on-grid). In grid-connected operating mode, the MG ex
changes power with the primary grid by absorbing or injecting it. The 
locally generated power will supply the loads if the MG operates in 
islanding mode. The management system architecture is illustrated in 
Fig. 9. 

The MS tasks are presented in Fig. 10, including forecasting, 
analyzing, and optimizing tasks and real-time controlling tasks. These 
tasks are executed based on data optimization variables (DG genera
tion), load power, storage, meteorological conditions, and electricity 
market prices [132,133]. 

According to [134], the specific functions of the MS can be listed in 
Table 5. 

The energy management strategy (EMS) is a multi-objective strategy 
that responds to technological, financial, and environmental problems. 
The principal purposes are to improve system reliability, energy 
scheduling, and operation in both on-grid and islanded modes. There
fore, developing the energy management strategy (EMS) can enhance 
the operation of the MG. This topic is gaining more attention due to its 
enormous impact on the performance of the MG. The MGCC and the LCs 
control and coordinate the whole MG operation using a communication 
network known as information and communication technology (ICT) 
[135]. 

In the literature, the EMS can be classified into three major cate
gories: rule-based, artificial intelligence, and optimization-based stra
tegies [27,51]. There are two subcategories for rule-based strategies: 
deterministic and Boolean logic strategies. Furthermore, there are two 
subcategories for optimization-based strategies: online and offline. 
Finally, artificial intelligence can be classified into three subcategories: 
fuzzy logic, neural network, and machine learning strategies. These 
categories and subcategories are presented in Fig. 11. 

Rule-based Strategies: These methods are defined mainly by the 
operating mode. They are simple to integrate with a real-time controller 
to control power flow in a hybrid power system. The rules are defined 
using designer intelligence or mathematical models and generally 

without previous information about the load profile [136]. Determin
istic rule strategies, also known as static logic threshold techniques 
[137], formulate rules with specific goals such as grid independence, 
cost savings, and diminished emissions. Look-up tables [138], filter- 
based control (FBC) [139], wavelet transform [140,141], load follow 
control (LFC) strategy [142], and state machine control (SMC) strategy 
[143–145] are the most common deterministic rule strategies. Due to 
their minimal complexity, FBC, SMC, and wavelet-based EMS are the 
simplest techniques for allocating the power reference via frequency 
division. Nevertheless, it is unstable in the case of large input variations. 
Furthermore, it is incapable of responding to complex and changing 
operational circumstances. Linear programming (LP) [146] and mixed- 
integer linear programming (MILP) are two different approaches used to 
manage power flow on DCMGs [147–149]. Furthermore, designers have 
utilized rule-based strategies in numerous DCMGs. It is possible to 
benefit from integrating new communication systems like the internet of 
things (IoT) to design more advanced strategies. Authors in [150] pro
vided a DMS based on MILP for an IoT-enabled grid. Nonetheless, the 
effectiveness of these strategies heavily depends on the designer’s 
knowledge and engineering experience. Therefore, determining the 
power system’s optimal operating point is complicated. 

Artificial intelligence-based strategies: EMSs in this category are 
developed based on artificial intelligence (AI) approaches like fuzzy 
logic (FL), neural networks (NN), and machine learning (ML). 

FL-based management strategies: Incorporating fuzzy logic (FL) into 
the EMS provides soft switching between rules, improved stability, and 
performance. FL is simple to build and offers a high level of resilience. 
One of the main advantages of FL is its ability to be modified and altered, 
which increases the degree of flexibility of EMS. Conventional FL 
[151,152], type 2 FL [153], predictive FL [154], and adaptive FL 
[155,156] are examples of FL-based EMSs. These strategies are insen
sitive to model errors and have robust techniques for dealing with sys
tem disruptions; nonetheless, they need an accurate design and faster 
microcontrollers. 

NN-based management strategies: these methods include ANN 
[157], recursive neural network (RNN) [158], and ANFIS [159,160]. 
These methods can perform better; nevertheless, they require a database 
to train these systems. 

ML-based management strategies: Reinforcement learning (RL) 
[161,162]. Multi-agent systems (MAS) [163–165] and deep learning 
approaches [166,167] are the most used strategies in this subcategory. 
Since there has not been enough study done in this relatively new sector, 
training the EMS based on a previously obtained database, which is not 
constantly obtainable, becomes a problem. This poses a problem due to 
insufficient research in this relatively new sector. Furthermore, there is 
no guarantee that it will function with data other than that used for the 
training process. 

Optimization-based strategies: they aim to minimize/maximize the 
objective function. The objective function might include emissions, 
costs, energy savings, device deterioration, and global efficiency [168]. 

Offline optimization: Dynamic Programming (DP) [169–171], 
Nonlinear Programming (NLD) [172,173], Stochastic Dynamic Control 
Strategy (SDP) [174], and Genetic Algorithm (GA) [175,176] are the 
most widely utilized to manage the power flow in the DCMG. The au
thors in [177] developed an Improved Butterfly Optimization algorithm 
for managing the scheduling of household appliances and battery 
charging and discharging. The algorithm aims to minimize energy costs, 
reduce carbon emissions, and optimize peak-to-average energy usage. 
Similar work has been reported in [178] to discover the optimal 
scheduling of home appliances using an optimized EMS based on the 
Bald Eagle Search algorithm. In [179], a multi-objective optimization 
algorithm using the Improved Cockroach Swarm Algorithm has been 
used to reduce operating costs, maximize user comfort, and handle peak- 
to-average ratio. All load profiles must exist. Hence, a large amount of 
data is involved. This makes their implementation extremely difficult. 

Online optimization: in these strategies, the objective function 

Table 4 
Comparison of MG control strategies.  

Metric Centralized Decentralized Distributed 

Number of users Single Multiple Multiple 
Flexibility + +++ +

Optimization +++ + ++

Evolution + +++ ++

Communication +++ + +++

Installation cost +++ + ++

System failure ++ − −

Data acquisition 
From all 
elements 

Local data 
Local and neighboring 
data  
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depends only on the actual states of the system [180]. They have more 
restricted processing and higher real-time performance. The storage 
devices’ SoC is considered, but global optimization is not possible [50]. 
The equivalent consumption minimization strategy (ECMS) [181,182], 
model predictive control (MPC) [183,184], Pontryagin’s minimal prin
ciple (PMP) [185], and the external energy maximization strategy 
(EEMS) [181,186] are examples of these techniques. 

Table 6 presents the main advantages and shortcomings of each 

category. 
Based on [187–189], several published works in DCMG energy 

management strategies are presented in Table 7. 

11. Perspectives and future works: 

Compared to ACMGs, DCMGs offer several technical advantages, 
including better harmonic mitigation, easier integration of renewable 
energy sources, no frequency or reactive power management diffi
culties, and direct connection to DC loads. Nevertheless, DC microgrids 
also face particular technical challenges that need to be addressed by 
researchers, system engineers, and developers in both control and 
management strategies. The most challenging problems in the coming 
years can be listed as follows:  

- Accurate system modeling: increasing the accuracy of the DCMG 
model will provide better opportunities to evaluate its behavior and 
improve its performance. However, the model’s accuracy may be 
decreased because of several factors, such as parametric variation, 
element degradation, and unexpected operation conditions. In this 
context, the Digital Twins is a promising research field for building 
replicas of microgrids and energy assets that can play a valuable role 
in improving the accuracy and effectiveness of DCMG modeling by 
integrating data-driven models and physics-informed ones.  

- Advanced control strategies: several strategies may be developed or 
incorporated to provide simultaneous power-sharing and efficient 
DC bus voltage management.  

- The high penetration of renewables into DCMGs diminishes their 
total inertia, which reduces their voltage controllability. Although 
certain solutions have been proposed to deal with such a 

Fig. 9. management system structure for DC Microgrid.  

Fig. 10. Microgrid tasks with a time scale.  

Table 5 
DCMG functions.  

Reliability Efficiency Sustainability Security  

- Alarming  
- Voltage 

regulation  
- Reserve 

management  
- Grid mode 

transition  
- Load Shaving  
- Black start 

recovery  
- Power quality 

evaluation  

- Optimal 
economic 
dispatch  

- Simple or 
autonomous 
operation  

- Demand 
management  

- Energy trading  
- Ancillary 

services  
- Protect the 

energy storage 
systems  

- Emission 
reducing  

- Renewable 
(wind speed and 
solar radiation) 
forecasting  

- Maximum power 
production from 
renewables  

- Enhancement of 
the security 
architecture  

- Cyber 
vulnerability 
evaluation  

- Access restriction  
- Lifecycle 

extension  
- Information 

security 
governance  

Fig. 11. Energy management strategies  
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circumstance, more research should be done in this area, considering 
that the DCMG is becoming a 100% converter-based system. Virtual 
synchrony generators (VSGs) may receive more attention for this 
problem. 

- Several nonlinear loads, such as constant power loads (CPL), indi
cator motors, and EVs, may reduce the stability margin. Therefore, 
power system instability is highly possible. Consequently, it is crucial 
to investigate the effect of these loads deeply and incorporate them 
into control strategies. 

- Integrating DCMGs with the energy markets by providing coordi
nation mechanisms to trade and exchange energy over local energy 
markets aims to construct win-win business and financial models for 
all the stakeholders involved in the value chain and incentivize 
efficient energy utilization and microgrid stability.  

- Integrating DC microgrids with grid-interactive buildings enables 
effective coordination between building energy management sys
tems and the microgrid, exploiting their flexibility for improving 
interoperability and creating synergies among DC microgrids, multi- 
carrier energy networks, buildings, and non-energy sectors.  

- Researchers are expected to extend studies on large-scale MGs’ 
communication systems to build robust, secure, and efficient 
communication environments. These environments are crucial for 
the efficient and coordinated operation of the microgrids, as they 
provide data on various operational parameters, performance, and 
grid conditions.  

- The decentralized energy management of a multi-energy grid and 
energy communities: consumer engagement frameworks are needed 
to unlock the necessary socio-economic potential for microgrid 
management, ensuring that consumers and local communities play 
an active role in grid management via demand response, peer-to-peer 
energy trading and fair allocation of incurred costs and benefits. 

- More research is required for ESS lifespan extension while control
ling the power balance and regulating DC bus voltage.  

- Establish new standards such as voltage standardization, protection, 
safety, and power quality for all aspects of DCMGs. These new 
standards may improve the readiness level of this technology for 
practical implementation.  

- Social problems related to the consumer’s opinion on the EMS’s 
decisions. The EMS can cut off the loads in some cases. These loads, 
considering the EMS, are optional. However, they are not for some 
consumers. More social studies are required to adapt EMS’s decisions 
to consumers’ preferences.  

- The contractual commitments between market participants should 
be made more explicit through improved regulatory and policy 
obstacles. 

Based on these perspectives, our future works can focus on the 
following points:  

- Design sophisticated optimization techniques for DCMGs to improve 
energy management, optimize efficiency, and reduce costs. These 
algorithms should consider elements such as integrating renewable 
energy, exploiting energy storage, controlling the demand side, and 
the grid’s stability.  

- Explore novel energy storage technology, including batteries, 
supercapacitors, and flywheels, for DC microgrid systems in terms of 
size, location, and management techniques.  

- Explore new converter designs, control algorithms, and protective 
systems to enhance the stability and dependability of the power grid.  

- Real-world experiments of DCMG energy management strategies 
under various environmental conditions with the assistance of real- 
world emulators such as RT-Lab. 

Table 6 
The main advantages and weaknesses of each category.  

Category Advantages Shortcomings 

Rule-based strategies  

- They’re resilient, easy 
to design, and simple 
to implement.  

- They are extensively 
used for managing the 
power flow in hybrid 
power systems (HPS) 
such as MGs-based 
EVs.  

- Due to the dependency 
on human experience 
and the consequences, 
they cannot be robust or 
flexible under 
complicated operating 
situations.  

- Determining the 
optimal control point is 
challenging. 

Artificial intelligence- 
based strategies  

- It has superior 
robustness and high 
efficiency in real- 
time.  

- It can solve complex 
and nonlinear 
problems.  

- It can provide 
reasonable power- 
sharing.  

- Complex 
implementation.  

- Weak dynamic 
characteristics due to 
the firmness of the 
control rule. 

Optimization- 
based 
strategies 

Offline  

- Very excellent 
performance.  

- They can be utilized 
to compare and 
evaluate the 
performance of other 
strategies.  

- Knowing the load 
profile, complicated 
processing, and vast 
amounts of data is 
necessary. 

Online  

- It has superior real- 
time performance, 
and each point of 
operating work is 
optimum.  

- Extended power 
source lifespan.  

- It requires a high- 
processing controller 
and huge storage 
devices.  

Table 7 
The main advantages and shortcomings of each category.  

MG composition EMS Objectives Ref 

Standalone PV/WT/FC/ 
Battery Linear Programming  

- Power balance  
- PEMFC 

protection 
[190] 

Grid-connected PV/wind/ 
battery Linear Programming  

- Power balance  
- Power quality [191] 

Standalone PV/WT/FC/ 
Battery 

FL-based DE 
algorithm  

- Power balance  
- Cost reduction 

[192] 

Standalone PV/WT/FC/ 
Bioethanol reformer 

SMC  - Power balance  
- Bio storage 

[193] 

Standalone PV/FC/Battery MPC  
- Power balance  
- Renewable 

optimization 
[194] 

Standalone PV/WT/micro 
hydropower/ Diesel/ 
Battery 

MAS  
- Power balance  
- Demand side 

control 
[195] 

Standalone PV/WT/FC/ 
Battery ANN  

- Power balance  
- Renewable 

forecasting 
[196] 

Standalone PV/WT/Battery FL  
- Battery 

management [197] 

Grid-connected PV/FC/ 
Battery 

Bald eagle search 
algorithm (BES)  

- Power balance  
- Cost reduction  
- Power quality 

[37] 

Standalone PV/FC/ 
Supercapacitor 

Differential 
Flatness-Based 
Control  

- Power balance  
- Power quality [198] 

Grid-connected PV/Battery MILP  - Cost reduction [199] 
PV/Micro-Turbine/FC/ 

Battery PSO  
- Power balance  
- Cost reduction [200] 

Battery/Supercapacitor LQR with SSA  
- Power balance  
- Power quality 

[51] 

WT/PV/MT/FC/Battery Firefly algorithm 
(FA)  

- Cost reduction [201]  
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