
HAL Id: hal-04586874
https://nantes-universite.hal.science/hal-04586874

Submitted on 24 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Partially Hidden Markov Chain Multivariate Linear
Autoregressive model: inference and

forecasting-application to machine health prognostics
Fatoumata Dama, Christine Sinoquet

To cite this version:
Fatoumata Dama, Christine Sinoquet. Partially Hidden Markov Chain Multivariate Linear Autore-
gressive model: inference and forecasting-application to machine health prognostics. Machine Learn-
ing, 2022, 112 (1), pp.45-97. �10.1007/s10994-022-06209-5�. �hal-04586874�

https://nantes-universite.hal.science/hal-04586874
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Vol.:(0123456789)

Machine Learning (2023) 112:45–97
https://doi.org/10.1007/s10994-022-06209-5

1 3

Partially Hidden Markov Chain Multivariate
Linear Autoregressive model: inference
and forecasting—application to machine health prognostics

Fatoumata Dama1  · Christine Sinoquet1

Received: 19 February 2021 / Revised: 8 March 2022 / Accepted: 3 June 2022 /
Published online: 28 November 2022
© The Author(s) 2022

Abstract
Time series subject to regime shifts have attracted much interest in domains such as eco-
nometry, finance or meteorology. For discrete-valued regimes, models such as the popular
Hidden Markov Chain (HMC) describe time series whose state process is unknown at all
time-steps. Sometimes, time series are annotated. Thus, another category of models han-
dles the case with regimes observed at all time-steps. We present a novel model which
addresses the intermediate case: (i) state processes associated to such time series are mod-
elled by Partially Hidden Markov Chains (PHMCs); (ii) a multivariate linear autoregressive
(MLAR) model drives the dynamics of the time series, within each regime. We describe a
variant of the expectation maximization (EM) algorithm devoted to PHMC-MLAR model
learning. We propose a hidden state inference procedure and a forecasting function adapted
to the semi-supervised framework. We first assess inference and prediction performances,
and analyze EM convergence times for PHMC-MLAR, using simulated data. We show the
benefits of using partially observed states as well as a fully labelled scheme with unreliable
labels, to decrease EM convergence times. We highlight the robustness of PHMC-MLAR
to labelling errors in inference and prediction tasks. Finally, using turbofan engine data
from a NASA repository, we show that PHMC-MLAR outperforms or largely outperforms
other models: PHMC and MSAR (Markov Switching AutoRegressive model) for the fea-
ture prediction task, PHMC and five out of six recent state-of-the-art methods for the pre-
diction of machine useful remaining life.

Keywords  Time series analysis · Autoregressive model · Regime-switching model ·
Forecasting · Hidden state inference · Machine health prognostics

Editor: Gustavo Batista.

 *	 Fatoumata Dama
	 fatoumata.dama@univ-nantes.fr

	 Christine Sinoquet
	 christine.sinoquet@univ-nantes.fr

1	 Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F‑44000 Nantes, France

http://orcid.org/0000-0003-3953-3851
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06209-5&domain=pdf

46	 Machine Learning (2023) 112:45–97

1 3

1  Introduction

Time series are widely present in many domains such as industry, energy, meteorology,
e-commerce, social networks or health. They represent the temporal evolving of systems
and help us to understand their temporal dynamics and perform short, medium or long-
term predictions. A major research line has been dedicated to time series analysis. In this
line, exponential smoothing models (Gardner & Everette, 2006; Bergmeir et al., 2016),
Box and Jenkins models (Box et al., 2015) and nonlinear autoregressive neural networks
(Yu et al., 2014; Wang et al., 2019; Noman et al., 2020) are essentially devoted to forecast-
ing. In addition to the forecasting goal, Regime-Switching AutoRegressive models (Ubi-
lava & Helmers, 2013; Hamilton, 1990) also allow to discover hidden behaviors of such
systems.

In the cases when the studied system is stationary, that is its behavior is time-inde-
pendent, the Linear AutoRegressive (LAR) model is a framework widely used to capture
the autoregressive dynamics of the corresponding time series (Wold, 1954; Degtyarev and
Gankevich, 2019). The LAR model is a simple linear regression model in which predictors
are lagged values of the current value in the time series. However, many real-life systems
are subject to changes in behaviors: for instance in econometry, we distinguish between
recession and expansionary phases; in meteorology, anticyclonic conditions alternate with
low pressure conditions. These systems are commonly referred to as regime-switching
systems, where each regime corresponds to a specific behavior. Each time-step is asso-
ciated with some state, amongst those allowed for the system. Regime-switching system
modelling is achieved in two steps: (i) the state process modelling that enables to capture
how states are generated, and (ii) the modelling of the autoregressive dynamics of the time
series within each regime. In the latter step, a simple autoregressive framework such as the
LAR model can be used. Generally, in step (i), the state process is modelled by a discrete-
valued Markov process. In the current state-of-the-art literature, two categories of models
can be distinguished.

In Hidden Regime-Switching AutoRegressive (HRSAR) models, the state process is
hidden and is modelled by a Hidden Markov Process (HMP). This category of models has
been introduced by Hamilton (1989) in the context of United States’s Gross National Prod-
uct time series analysis. Several variants and extensions were subsequently designed.

In Observed Regime-Switching AutoRegressive (ORSAR) models, the state pro-
cess is either observed or derived a priori. In the latter case, a clustering algorithm is used
before fitting the model, to extract the regimes. The clustering may either rely on endog-
enous variables (i.e., the variables whose dynamics is observed through the time series) or
on exogenous variables supposed to drive regime-switching. The works of Flecher et al.
(2010) on the one hand, and of Bessac et al. (2016) on the other hand, illustrate the applica-
tion of these models to meteorological time series.

When the state process is partially observed, which means that the system state is
known at some random time-steps and unknown for the remaining time-steps, ORSAR
models cannot be directly applied while HRSAR models are suboptimal in the sense that
the observed states cannot be included.

Industry is a major potential supplier of such data. Many machines are monitored con-
tinuously, through multiple sensors. In parallel, technical monitoring may be carried out
episodically, by humans, during expert or technician visits; these visits result in partial
annotations on the state of the machine. Modelling adapted to this type of partially anno-
tated multivariate time series is a prerequisite for predicting the evolution of the extent of

47Machine Learning (2023) 112:45–97	

1 3

wear of a machine and anticipating maintenance operations, or even avoiding accidents.
The same needs have been identified for machines used in transport (trains, planes, ships).
Monitoring the ageing of engineering structures (bridges, railways) can also combine
the continuous collection of data from sensors and episodic assessments of the state of
the structures. In a different register, manual annotation of time series data (e.g., video
sequences, audio sequences) is a time-consuming task. It is very often the case that only
a partial annotation is available. Automatizing the annotation of latent states, seeking to
leverage the partial annotation, is therefore appealing. Thus, one can increase the amount
of fully labelled data, upstream a fully supervised machine learning task such as auto-
mated speech recognition, human gesture analysis, human activity recognition, segmenta-
tion of time series. Again, the same situation can be found in software reliability model-
ling. For instance, time intervals between bug occurrences can be governed by a Markov
chain (Bharathi & Selvarani, 2020). The latter may be considered as partially hidden, since
the debugging state is an observable state. Partial annotation corresponds to a frequently
encountered situation in research in biology. For instance, in de novo detection of biologi-
cally functional signals in proteins, wet-lab experiments are expected to provide guidance
for annotating regions of proteins as potentially harboring such functional signals. How-
ever, experimental limitations may prevent full annotation into “signal” and “no signal”
states. In this case, to avoid additional costly and time-consuming experiments, a model
allowing partial annotation would be appropriate.

To overcome the ORSAR and HRSAR limitations, in this work, we propose a novel
Regime-Switching AutoRegressive model that capitalizes on the observed states while
the hidden states are inferred. We consider a special case of Markov process henceforth
named Markov Chain. Our model is referred to as the Partially Hidden Markov Chain
Multiple Linear AutoRegressive (PHMC-MLAR) model. The innovative contributions
brought by this model are threefold. First, the PHMC-MLAR model is a flexible paramet-
ric model that supplies a unification of HRSAR and ORSAR models when the state pro-
cess is a Markov Chain. Thus, when the state process is fully observed, PHMC-MLAR
is reduced to ORSAR. Reversely, when the state process is fully hidden, PHMC-MLAR
instantiates as HRSAR. Second and third, our model can be seen as both an extension of
the seminal work of Scheffer and Wrobel (2001) around the Partially Hidden Markov
Chain (PHMC) and an extension of the seminal work of Hamilton (1989) around the
Markov-switching autoregressive (MSAR) model. On the one hand, the PHMC-MLAR
model locally adds autoregressive features to a (global) PHMC framework ; this innova-
tion clearly extends the PHMC proposal to the domain of time series modelling. Mean-
while, PHMC-MLAR adds a PHMC feature to the MSAR framework, to switch to a semi-
supervised global framework. Finally, beyond the unification aspect, we contribute to the
machine learning literature through designing the underlying algorithmic machinery dedi-
cated to effective and efficient PHMC-MLAR model training. We consider multivariate
time series.

The main contributions of this paper are as follows:

1.	 We propose a new Regime-Switching AutoRegressive model that integrates the states
observed at some random time-steps. This model, referred to as PHMC-MLAR, provides
a unification of HRSAR and ORSAR models when the state process is modelled by a
Markov Chain (MC).

2.	 The PHMC-MLAR proposal extends two existing models of the literature, the PHMC
and MSAR models. On the one hand, PHMC-MLAR incorporates local MSAR models

48	 Machine Learning (2023) 112:45–97

1 3

into a global PHMC framework, to model time series. On the other hand, PHMC-
MLAR replaces the Markov chain used as the global switching mechanism of the MSAR
model, by a semi-supervised global framework (PHMC).

3.	 We propose a variant of the Expectation-Maximization (EM) algorithm that allows
to learn the parameters of our model.

4.	 Inference on hidden states is carried out by a variant of the Viterbi algorithm, adapted
to take into account the observed states.

5.	 Regarding the time series forecasting task, a prediction function is proposed. We distin-
guish between the case where the system state is known at forecast horizons from the
case where it is latent.

The Baum-Welsh algorithm is the instantiation of the EM algorithm tailored for hidden
Markov models (HMMs) (Baum et al., 1970). It relies on the popular forward-backward
procedure, to calculate the statistics of the Expectation step. Scheffer and Wrobel (2001)
adapted this procedure to their PHMC proposal and derived a backward-forward-back-
ward procedure. However, these authors deal with observations that are independent and
categorical. Instead, we extended this PHMC framework to handle observations that are
continuous time series; we therefore thoroughly revisited the backward-forward-back-
ward procedure to incorporate the autoregressive feature.

In addition, we derived an estimation procedure to infer the unknown states in the
state sequence of a discrete-valued Markov process: the introduction of partial knowl-
edge on states, and that of the autoregressive feature, compelled us to customize the
well-known Viterbi algorithm (Forney, 1973).

The ability of our model to infer the hidden states and to make accurate predic-
tions on time series, even when the observed states are unreliable, was investigated
through experiments performed on synthetic data. Our work underlines the benefits of
using partially observed states to decrease EM convergence times. This performance is
obtained with no or practically no impact on the quality of hidden state inference, as
from labelling percentages around 20–30% ; the prediction accuracy is also preserved
above such percentage thresholds. For instance, for a training set of 100 sequences, with
70% labelled states, the EM algorithm converges after 22 iterations on average against
62 on average for the unsupervised case. Moreover, performing fully supervised train-
ing with a proportion of ill-labelled states is also beneficial for EM convergence. For
example, given a training set of size 100 annotated with a 70%-reliable labelling func-
tion, the EM algorithm converges after a single iteration against 67 iterations for the
unsupervised case. This offers promising prospects to enhance model selection for the
PHMC-MLAR model. Further experimentations also show the ability of our variant of
the Viterbi algorithm to infer hidden states in partially-labelled sequences. In addition,
while assessing the impact on predictions generated by incorporating labelled states in
the training sequences, we also compared the situations where all states are unknown at
forecast horizons to the situations where all states are known. Prediction errors are sub-
dued at all horizons in the latter case (by 44% on average), but contrasted horizons are
still evidenced with low (respectively high) scores as in the former case. The constrast
is kept constant whatever the percentage of observed states in the training set. Besides,
we also point out the robustness of our model to labelling errors in inference task, when
large training datasets and moderate labelling error rates are considered. Finally, the lat-
ter experiment highlights the remarkable robustness to error labelling in the prediction
task, over the whole range of error rates.

49Machine Learning (2023) 112:45–97	

1 3

Finally, the performance of the PHMC-MLAR model was evaluated in the context
of a practical application to machine health prognostics. For this purpose, we conducted
experiments on turbofan engine data from a NASA repository. Considering short, medium
and long-term feature forecasting, we first show that PHMC-MLAR and MSAR models
obtain comparable accuracies at the short-term horizon ( h = 5 ), whereas PHMC-MLAR
presents higher forecast accuracies than MSAR at medium and long-term forecast hori-
zons ( h = 10, 20, 30 ). In comparison with the PHMC model, our model achieves much
better performance (whatever the horizon). These results show the relevance of including
an autoregressive model within each regime, as suggested in this work. Second, we evalu-
ated the performance of PHMC-MLAR in predicting the remaining useful life (RUL) of
machines. Our results show that our proposal outperforms PHMC and five of six recent
state-of-the-art RUL prediction methods, including four artificial intelligence-based
methods.

This paper is organized as follows. Related work is reviewed in Sect. 2. Section 3
describes the PHMC-MLAR model. Then a learning algorithm is derived in Sect. 4, to esti-
mate the model parameters. Inference of the hidden states is addressed in Sect. 5. Section 6
presents the time series forecasting procedure. Section 7 depicts the experimental protocol
that drove our experimentations on synthetic data, and discusses the results obtained. Sec-
tion 8 focuses on a practical application to machine health prognostics. Therein, we depict
the experimental protocol applied to realistic datasets composed of turbofan engine degra-
dation trajectories, and we discuss the results observed. Section 9 concludes this paper and
opens up future directions of research.

2 � Related work

This section first highlights the links between our proposal, PHMC-MLAR, and the most
closely related contributions of the literature. The PHMC-MLAR combines a variant of the
Hidden Markov Model (HMM), namely the Partially Hidden Markov Chain (PHMC), with
the Linear AutoRegressive (LAR) model. The rest of this section reviews the two main
models that compose the hybrid model proposed.

As mentioned in the introduction, the PHMC-MLAR model unifies the HRSAR and
ORSAR frameworks. However, the common thread between these latter frameworks is the
implication of dependencies that drive the local dynamics within each regime. Therefore,
the contributions of the literature most closely related to PHMC-MLAR are also character-
ized by various local dynamics.

Several models closely related to HRSAR were proposed in the literature. The MSAR
model (Markov-switching AutoRegressive model) designed by Hamilton (1989) combines
ARIMA (AutoRegressive Integrated Moving Average) models with an HMM, to character-
ize changes in the parameters of an autoregressive process. The targeted application moti-
vating the MSAR model was economic analysis: the switch between fast growth and slow
growth is governed by the outcome of the Markov process.

Further, Filardo (1994) incorporated time-varying transition probabilities between
regimes in the MSAR model. For instance, the resulting model was subsequently used to
reproduce the cyclic patterns existing in climatic variables (Cardenas-Gallo et al., 2016).
In parallel, the Hamilton’s MSAR model was also extended into a general dynamic lin-
ear model combined with Markov-switching (Kim, 1994). Finally, Michalek and co-
authors’work focused on a HRSAR model that integrates HMM with Moving Average

50	 Machine Learning (2023) 112:45–97

1 3

(MA) models (Michalek et al., 2000). In the same work, the parameter estimation approx-
imation thus derived was generalized to deal with AutoRegressive Moving Average
(ARMA) hybridized with HMM. Simulations of electrophysiological recordings showed
that the derived estimators allow to recover the true dynamics where standard HMM fails.
The model generalized by Michalek and collaborators, to integrate HMM with ARMA,
was also applied to model human activity as time signals for activity early recognition (Li
& Fu, 2012).

More recently, a nonhomogeneous HRSAR model was developed to model wind time
series (Ailliot et al., 2015). The aim was to acknowledge that the probability of switching
from cyclonic conditions to anticyclonic conditions between time-steps t and t + 1 depends
on the wind conditions at time-step t at some given location off the French Brittany coast.
A nonhomogeneous MSAR (NHMSAR) model was thus designed for this purpose.

To our knowledge, the investigations around ORSAR models are limited to the recent
work of Bessac et al. (2016) which was applied to wind time series. Therein, observed
regimes are derived by running a clustering procedure on the variables under study or on
extra variables. Thus are identified the states, all distinct from one other, in which the data
are homogeneous. Besides comparing the ORSAR models derived from various clustering
procedures, Bessac and collaborators also compare the respective merits of HRSAR and
ORSAR models on real-world and simulated data.

2.1 � Partially Hidden Markov Chain—PHMC(K)

Hidden Markov models (HMMs) have been successfully used in such domains as natu-
ral language processing (Morwal et al., 2012), handwriting recognition (Mouhcine et al.,
2018), speech emotion recognition (Schuller et al., 2003), human action recognition (Berg
et al., 2018) or renewable power prediction (Ghasvarian Jahromi et al., 2020), to name but
a few.

HMM(K) is a flexible probabilistic framework able to model complex hidden-regime-
switching systems. It exactly possesses K states where each state drives the specific behav-
ior of an observed variable. This variable is itself modelled through a usual probability law
such as a Gaussian law, for example. The system state process, which specifies the ongo-
ing behavior of the latter observed variable at each time-step, is fully latent. Therefore,
state inference is the main purpose of HMM models: the goal is to learn about the latent
sequence of states from the observed behavior. This task is generally driven by Maximum
A Posteriori (MAP) estimation implemented through the Viterbi algorithm (Forney,
1973). Importantly, the HMM framework satisfies the Markov property, which stipulates
that the conditional probability distribution of the hidden state at time-step t, given the
hidden states at previous time-steps t′ < t , only depends on the hidden state at time-step
t − 1 . Besides, the observed behavior at time-step t solely depends on the hidden variable
at time-step t.

When dealing with systems in which the state process is partially observed or known,
applying HMM would result in an important information loss in the sense that the observed
states are ignored. To overcome this limitation, Scheffer and Wrobel (2001) have intro-
duced the Partially Hidden Markov Chain (PHMC), which integrates partially observed
states in the modelling process. The authors have proposed an active learning algorithm
in which the user is asked to label difficult observations identified during model learning.
More recently, Ramasso and Denoeux (2013) have proposed a model that makes use of
partial knowledge on HMM states. These authors have modelled the partial knowledge by a

51Machine Learning (2023) 112:45–97	

1 3

belief function that specifies the probability of each state at each time-step. The works car-
ried out by Ramasso and Denoeux (2013) have shown that the use of partial knowledge on
states accelerates HMM model learning.

2.2 � Linear AutoRegressive model—LAR(p)

An observed time series is considered to be one realization of a stochastic process. Time
series analysis and forecasting thus require that the underlying stochastic process be mod-
elled. The linear autoregressive (LAR) model is a stochastic model widely used for this
purpose. A LAR model of order p is a linear model in which the regressors are the p past
values of the variable, hence the term autoregression. Although the LAR model is concep-
tually simple and easy to learn, it can only be applied to stationary time series. When this
condition is violated, model misspecification issues arise. Nonetheless, it is well known
that if the autoregressive coefficients of a LAR process are all less than one in module, then
the process will be stationary. This is a necessary and sufficient condition which is tested
through unit root tests (Phillips & Perron, 1988; Dickey & Fuller, 1979; Kwiatkowski
et al., 1992).

In the LAR(p) model, the hyper-parameter p denotes the number of past observations
to include in the prediction at time-step t. Two alternative methods are generally used to
fix the value of p. The first one relies on a well-known property of the partial autocor-
relation function of the LAR(p) model: the autocorrelation becomes null from lag p + 1 .
The second method, more general, tests a range of candidate values for p, then selects the
value that minimizes a model selection criterion such as the Bayesian information criterion
(BIC) or the Akaike’s information criterion (AIC).

3 � The PHMC‑MLAR model

In this section, we explain how we have created a new regime-switching model called
PHMC-MLAR, based on the PHMC and LAR models. The section first introduces some
notations. Then Sect. 3.2 describes our proposal to model the state process by a PHMC
model. Section 3.3 details how, within each regime, the dynamics of the observed vari-
able is governed by a LAR model. Thus, the bivariate process follows a PHMC-MLAR
model. A final subsection briefly discusses hyper-parameter selection in Markov-switching
models.

To note, the fundamental difference between our model and the two other approaches
identified in the same line (Scheffer & Wrobel, 2001; Ramasso & Denoeux, 2013) is the
autoregressive dynamics of our model (see Fig. 1).

3.1 � Notations

•	 Symbol ∶= stands for the definition symbol.
•	 1A ∶ Ω → {0, 1} denotes the indicator function that indicates membership of an ele-

ment in a subset A of Ω . As from now, 1A will be noted 1{x∈A}.
•	 {Xt}t∈ℤ denotes a multidimensional stochastic process with Xt ∈ ℝd . By convention,

X0
1−p

 denotes the p initial values of the time series {Xt} . For each t ≥ 1 , Xt−1
t−p

 stands for
the subseries {Xt−p,Xt−p+1 ⋯Xt−1}.

52	 Machine Learning (2023) 112:45–97

1 3

•	 � = xT
1 represents an observed multivariate time series with �0 = x0

1−p
 the corre-

sponding initial values.
•	 {St}t∈ℕ∗ denotes a state process depicting the temporal evolution of a regime-

switching system where the set of states is � = {1, 2,… ,K} . In this paper, states
are instantaneous, whereas a regime is a succession of identical states. We denote
�t ( ⊆ � ) the set of possible states at time-step t with �t = � when St is latent, and
�t = {k} when St = k , that is kth state is observed at time-step t.

•	 Mp(ℝ) is the set of square matrices of order p with real coefficients.
•	 Symbols in bold represent nonscalar variables (e.g., vectors).

3.2 � Modelling the state process

Let {(St, �t)} the state process which is supposed to be partially observed. Remind that
if St = k , i.e. kth state has been observed at time-step t, then �t = {k} . At the extreme,
�t = � for a (fully) latent state St . We draw the reader’s attention to the flexibility of
the model: an intermediate case between observed ( {k} ) and latent ( � ) would be speci-
fied by 𝜎t ⊂ �.

Let R = {k ∈ � |∃ t ∈ ℕ
∗, �t = {k}} , the set of states that have been observed at

least once. We have |R| ≤ K where K is the total number of states. Thus, K − |R| states
are undetermined and depict the hidden dynamics of the system under study. It has to
be underlined that it is difficult (it not sometimes impossible) to associate a physical
interpretation to the hidden dynamics. Such an interpretation requires strong knowl-
edge upon the studied system.

In the PHMC-MLAR model, {(St, �t)} is modelled by a K-state PHMC, parametrized
by transition probabilities

and stationary law �i = P(S1 = i), �i ∈ [0, 1],
∑K

i=1
�i = 1.

Let �(S) = ((�i)i=1,...,K , (ai,j)i,j=1,...,K) denote the set of parameters associated with the
PHMC.

ai,j = P(St = j|St−1 = i), ai,j ∈ [0, 1],

K∑
j=1

ai,j = 1

Fig. 1   The conditional independence graphs of the Partially Hidden Markov Chain and of the Partially Hid-
den Markov Chain Linear Autoregressive (PHMC-MLAR) model, when the LAR order p is equal to 2. a
PHMC model. b PHMC-MLAR model. Observed states are shown in dark shade whereas hidden states are
colored in light shade. When a state is observed, �t is reduced to a singleton (Color figure online)

53Machine Learning (2023) 112:45–97	

1 3

3.3 � Modelling the dynamics under each state

For each state k ∈ � , {Xt ∈ ℝ
d} is supposed to be stationary and modelled by a p-order

LAR process defined as follows:

 where p ≥ 1 is the number of past values of Xt to be used in modelling, k is the state at
time-step t, �0,k ∈ ℝ

d and (�i,k ∈ Md(ℝ))i=1,…,p are respectively the vector of intercepts
and the matrices of autoregressive coefficients associated with kth state. The error terms
�t,k ∈ ℝ

d are independent and identically distributed with zero mean and covariance matrix
hk ∈ Md(ℝ).

Equation 1 defines the relationships between each dimension of Xt (a univariate time
series) and both the p lagged values for the d − 1 other dimensions and its own p past
values. The example below illustrates this relationship in the case where d = 3 and
p = 2.

It is important to underline that Eq. 1 is not defined for the p initial values denoted by
X0
1−p

 . These initial values are modelled by the initial law g0(x01−p;�) parametrized by � .
For instance, g0 can be a multivariate normal distribution Nd×p(�,�) where � ∈ ℝ

d×p is
the mean and � ∈ Md×p(ℝ) is the variance-covariance matrix.

Note that the law of {�t,k} and the conditional distribution P(Xt|Xt−1
t−p

 , St = k;�0,k, �1,k ,
...,�p,k, hk) belong to the same family. Usually, Gaussian white noises are used. In this case,
the conditional distribution is Gaussian too, with mean and covariance matrix respectively
equal to �0,k +

∑p

i=1
�i,kXt−i and hk.

Let �(X,k) = (�0,k, �1,k, ...,�p,k, hk) the parameters of the LAR(p) process associated with
kth state. The law of {Xt} is fully parametrized by �(X) = (�(X,k))k=1,...,K and �.

To note, as in (Scheffer & Wrobel, 2001) and (Ramasso & Denoeux, 2013), the PHMC-
MLAR model assumes that the same order p is shared by all |�| LAR processes associated
with the states in �.

It has also to be highlighted that the state St = k conditioning a LAR process of order p
on Xt does not impose that the p lagged values Xt−p

t−1
 be observed under same state k. That is,

the PHMC-MLAR model may perfectly switch from regime to regime, and even from state
to state, meanwhile keeping memory of values determined by previous regimes or states.

4 � Learning PHMC‑MLAR models

This section first presents an instance of the Expectation-Maximization (EM) algorithm
dedicated to PHMC-MLAR parameter learning. Then, we briefly discuss hyper-parameter
selection in Markov-switching models.

(1)Xt |Xt−1
t−p

, St = k ∶= �0,k +

p∑
i=1

�i,kXt−i + �t,k for t = 1,… , T ,

⎛⎜⎜⎝

Xt,1

Xt,2

Xt,3

⎞⎟⎟⎠
⏟⏟⏟

Xt

=

⎛⎜⎜⎝

a
(k)

1

a
(k)

2

a
(k)

3

⎞⎟⎟⎠
⏟⏟⏟

�0,k

+

⎛
⎜⎜⎜⎝

b
(k)

1,1
b
(k)

1,2
b
(k)

1,3

b
(k)

2,1
b
(k)

2,2
b
(k)

2,3

b
(k)

3,1
b
(k)

3,2
b
(k)

3,3

⎞
⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
�1,k

⎛⎜⎜⎝

Xt−1,1

Xt−1,2

Xt−1,3

⎞⎟⎟⎠
⏟⏟⏟

Xt−1

+

⎛
⎜⎜⎜⎝

c
(k)

1,1
c
(k)

1,2
c
(k)

1,3

c
(k)

2,1
c
(k)

2,2
c
(k)

2,3

c
(k)

3,1
c
(k)

3,2
c
(k)

3,3

⎞
⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
�2,k

⎛⎜⎜⎝

Xt−2,1

Xt−2,2

Xt−2,3

⎞⎟⎟⎠
⏟⏟⏟

Xt−2

+

⎛
⎜⎜⎜⎝

�
(k)

t,1

�
(k)

t,2

�
(k)

t,3

⎞
⎟⎟⎟⎠

⏟⏟⏟
�t,k

.

54	 Machine Learning (2023) 112:45–97

1 3

4.1 � Estimation of the PHMC‑MLAR parameters

This subsection is dedicated to the presentation of an instance of the EM algorithm, to esti-
mate the PHMC-MLAR parameters. As seen in previous subsections, the PHMC component
and the LAR components of our model are respectively parametrized by �(S) and (�(X),�) .
Then, the whole PHMC-MLAR model is parametrized by (�,�) where � = (�(S),�(X)) . Thus,
PHMC-MLAR learning consists in estimating (�,�) from a training dataset.

Thanks to good statistical properties such as asymptotic efficiency, a maximum likeli-
hood estimator (MLE) is considered. However, for models with hidden variables like ours,
MLE computation results in an untractable problem. To address this issue, the Expectation-
Maximization (EM) algorithm is generally used, in order to approximate a set of parameters
that locally maximizes the likelihood function. EM was introduced by Baum et al. (1970) to
cope with Hidden Markov Model learning. This version was further extended by Dempster
et al. (1977) into the versatile EM algorithm, to handle parameter estimation in a more general
framework. EM has also been applied to autoregressive Markov-switching models (Hamilton,
1990) and PHMC models (Scheffer & Wrobel, 2001; Ramasso & Denoeux, 2013).

We propose to learn the PHMC-MLAR model through a dedicated instance of the
EM algorithm. To fix ideas, in Sect. 4.1.1, we first consider the case where the model
is trained in a single training time series context, that is considering a unique pair of data
( � = xT

t=1−p
, Σ = �T

t=1
 ), with � a realization of {Xt} and �t the set of possible states at time-step

t. Then, in Sect. 4.1.2, we briefly outline the EM algorithm in the case where N (independent)
training time series (�(1),Σ(1)) , … , (�(N),Σ(N)) are used.

4.1.1 � Single training time series

Let � = xT
1−p

 the observed time series with x0
1−p

 the initial values of the autoregressive pro-
cess. Let Σ = �T

t=1
 , further simplified into �T

1
 , where �t stands for the set of possible states at

time-step t. Let (ST
1
,Σ) the state process (partially observed) of � with �t = � if St is hidden,

�t = {k} if state k is observed at time-step t, and 𝜎t ⊂ � in the intermediate case.
MLE is implemented by maximizing the expectation (with respect to the latent variables)

of the complete data likelihood. Complete data likelihood is further referred to as Lc . Lc
denotes the evidence/likelihood of the training data when latent/hidden variables are supposed
to be known. Lc writes as follows:

with Lc
c
 the conditional complete data likelihood and g0 the initial law of Xt.

When the expectation of Lc with respect to the partially hidden states is calculated, term
g0(x

0
1−p

;�) in Eq. 2 can be taken out of the expectation since it does not depend on the states:

where P(ST
1
|XT

1−p
= xT

1−p
,Σ;�) is the posterior probability of partially hidden states (ST

1
,Σ).

Then, by considering the logarithmic scale, Eq. 3 can be separately maximized with
respect to � and �:

(2)

L
c(�,�) = P(XT

1−p
= xT

1−p
, ST

1
= sT

1
;�,�)

= P(XT
1
= xT

1
, ST

1
= sT

1
|X0

1−p
= x0

1−p
;�) × P(X0

1−p
= x0

1−p
;�)

= L
c
c
(�) × g0(x

0
1−p

;�),

(3)�P(ST
1
|XT

1−p
=xT

1−p
,Σ;�)[L

c(�,�)] = �P(ST
1
|XT

1−p
=xT

1−p
,Σ;�)[L

c
c
(�)] × g0(x

0
1−p

;�),

55Machine Learning (2023) 112:45–97	

1 3

It has to be noted that Eq. 4 is a simple probability observation problem. In contrast,
because of the hidden states, maximization with respect to � (Eq. 5) is carried out by an
instance of the EM algorithm.

EM is an iterative algorithm that alternates between E(xpectation) step and
M(aximization) step. At iteration n, we obtain:

with P(ST
1
|XT

1−p
= xT

1−p
,Σ;�̂n−1) the posterior probability of partially hidden states (ST

1
,Σ)

at iteration n − 1.
The rest of this subsection details the two EM steps.

Step E of EM
In this step, the quantity Q(�,�̂n−1) (Eq. 6) is computed. Following the conditional inde-

pendence graph of the PHMC-MLAR model (see Fig. 1b), the conditional complete data
likelihood writes:

with �(X,k) the parameters of the LAR process associated with kth state and
P(Xt = xt |Xt−1

t−p
, St = k;�(X,k)) the conditional law of Xt within k.

Notice that the terms in Eq. 8 depend on either a single state St or two consecutive states
St, St−1 . In this same equation, products are replaced by sums when considering the loga-
rithm scale. Then lnLc

c
(�) is substituted in Eq. 6 and the expectation with respect to the

posterior probability of state process is developed. After some integrations, we find that
Q(�, �̂n−1) only depends on the following probabilities:

(4)�̂ = argmax
�

ln
(
g0(x

0
1−p

;�)
)
,

(5)�̂ = argmax
�

ln
(
�P(ST

1
|XT

1−p
=xT

1−p
,Σ;�)[L

c
c
(�)]

)
.

(6)E-step Q(�,�̂n−1) = �P(ST
1
|XT

1−p
=xT

1−p
,Σ;�̂n−1)

[lnLc
c
(�)],

(7)M-step �̂n = argmax
�

Q(�,�̂n−1),

(8)

L
c
c
(�) = P(XT

1
= xT

1
, ST

1
= sT

1
|X0

1−p
;�)

= P(S1 = s1;�
(S))

T∏
t=2

P(St = st|St−1 = st−1;�
(S))

T∏
t=1

P(Xt = xt|Xt−1
t−p

= xt−1
t−p

, St = st;�
(X,st)),

(9)
𝜉t(k,�) = P(St−1 = k, St = � |XT

1−p
= xT

1−p
,Σ;�̂n−1),

for t = 2,… , T , 1 ≤ k, � ≤ K.

(10)
𝛾t(�) = P(St = � |XT

1−p
= xT

1−p
,Σ;�̂n−1),

for t = 2,… , T , 1 ≤ � ≤ K.

56	 Machine Learning (2023) 112:45–97

1 3

The �t(k,�) quantities are used to compute the �t(�) probabilities
( �t(�) =

∑K

j=1
�t(j,�), for t = 2,… , Ti , �1(�) =

∑K

j=1
�2(�, j) ). Therefore, the E-step is

reduced to computing these probabilities. To this end, we have derived a backward-for-
ward-backward procedure as an extension of the forward-backward algorithm, one of the
ingredients of the Baum-Welsh algorithm (Baum et al., 1970). The backward-forward-
backward algorithm was initially proposed by Scheffer and Wrobel (2001) for the purpose
of PHMC model learning.

The difference with respect to the classical unsupervised framework of the MSAR model
lies in that the calculus of the probabilities �t(�) is ruled by the Σ annotation. In the MSAR
fully unsupervised framework, probabilities �t(�) always have to be computed. In the semi-
supervised PHMC-MLAR framework, probability �t(�) reaches the minimum 0 if annotation
Σ specifies that �t = {s} since St = s is observed and s ≠ � . In this configuration, probability
�t(s) reaches the maximum 1. Thus, no calculation of probabilities �t(...) is required for the
known states.

Besides, we have adapted the EM algorithm to PHMC-MLAR models by taking into con-
sideration the autoregressive dynamics. The details about the adapted backward-forward-
backward algorithm are given in Appendix A. Note that in this appendix, we have carefully
indicated the conditions required to calculate the various statistics involved, in relation to the Σ
annotation: these statistics may not be defined or they do not need to be calculated.

Step M of EM
At iteration n, this step consists in maximizing Q(�,�̂n−1) with respect to parameters

� = (�(S),�(X)) . It is straightforward to show that Q(�, �̂n−1) can be decomposed as follows:

where �(X,k) is the set of parameters specific to regime k. Functions QS and Q(k)

X
 write:

We call the reader’s attention to the fact that QS (respectively Q(k)

X
 ) only depends on param-

eters �(S) (respectively �(X,k) ). Therefore, QS and Q(k)

X k=1,…,K
 can be maximized apart:

Eq. 13 is an optimization problem under equality constraints which can be solved by the
method of Lagrange multipliers. Thus, the re-estimation formulas of �(S) write:

Q(�,�̂n−1) = QS(�
(S), �̂n−1) +

K∑
k=1

Q
(k)

X
(�(X,k),�̂n−1),

(11)QS(�
(S),�̂n−1) =

K∑
k=1

ln(𝜋k) 𝛾1(k) +

T∑
t=2

K∑
k,�=1

ln(ak,�) 𝜉t(k,�),

(12)Q
(k)

X
(�(X,k),�̂n−1) =

T∑
t=1

ln
(
P(Xt = xt |Xt−p

t−1
= x

t−p

t−1
, St = k;�(X,k))

)
× 𝛾t(k).

(13)�̂
(S)

n
= argmax

�(S)
QS(�

(S),�̂n−1) such that

K∑
k=1

ak,� = 1,

K∑
k=1

𝜋k = 1,

(14)�̂
(X,k)

n
= argmax

�(X,k)
Q

(k)

X
(�(X,k),�̂n−1), for k = 1,… ,K.

57Machine Learning (2023) 112:45–97	

1 3

In contrast, it is generally difficult to derive the analytical expression for �̂
(X,k)

n
 . That is why

Q
(k)

X
(�(X,k),�̂n−1) is maximized relying on a numerical optimization method (e.g., the quasi-

Newton method).
We point out that the M-step of our algorithm is very similar to that of the unsupervised

framework MSAR. The only difference relies on the fact that in our algorithm, probabili-
ties �t ’s and �t ’s depend on the partial annotation of states.

Finally, dealing with the multivariate case does not pose any fundamental problem
with respect to the univariate case: in the M step, the number of parameters estimated per
regime is simply multiplied by d2 where d is the dimension of the time series.

4.1.2 � Sketch of EM algorithm: several training time series

We now consider the general case in which PHMC-MLAR model is learnt from N (inde-
pendent) partially annotated time series (�(1),Σ(1)) , … , (�(N),Σ(N)) , with �(1)

0
,… , �

(N)

0
 the

associated initial values and �(1),… , �(N) the corresponding state processes with partial
annotations Σ(1),… ,Σ(N) . It has to be noted that time series �(i) ’s can have different lengths
while their respective initial vectors have a common size ( �(i)

0
∈ ℝ

d×p , with p the autore-
gressive order). The lengths of the N time series are denoted T1, T2,… , TN , respectively.

The extension from the single-training time series to the multi-training time series case
does not fundamentally change the parameter estimation algorithm. Thus, at each iteration, the
E-step is separatly run on each training time series, which results in quantities (�(i)t)t=1,…,Ti

 for
i = 1,… ,N . Then in the M-step, these probabilities are used to update model parameters � .
Note that when N = 1 , the single-training time series case is recovered.

Algorithm 1 sums up the instance of EM proposed for PHMC-MLAR parameter learning.

(15)â
(n)

k,�
=

∑T

t=2
𝜉t(k,�)∑T

t=1
𝛾t(k)

, 𝜋̂
(n)

�
= 𝛾1(�) for 1 ≤ k,� ≤ K.

58	 Machine Learning (2023) 112:45–97

1 3

It is well known that the EM algorithm is sensitive to the choice of the starting point �̂
(0)

as regards the risk of attraction in a local maximum. In practice, several initial values are
tested and the model that provides the highest likelihood is chosen. In this work, the ini-
tialization procedure presented in Algorithm 2 is used.

4.2 � Hyper‑parameter selection

An important step prior to the learning of Markov-switching models is hyper-parameter
selection (or model selection). Hyper-parameter selection is the problem of picking a par-
ticular structure amongst several alternatives. In the case of Markov-switching, the model
structure encompasses the number of hidden states, the form of the state transition matrix
and output probabilities. There exist three main frameworks to address hyper-parameter
selection.

Cross-validation iteratively splits the training set in a novel training set and a validation
set, to assess how the model structure under consideration generalizes to the validation set.
The computational burden of this approach is prohibitive for large hyper-parameter grids.

Regularization adds a penalty term to the likelihood objective function, to favour par-
simonious models. In this category, several criteria are very often used for HMMs [see the
recent review by Pohle et al. (2017)]. The Bayesian Information Criterion (BIC) (Schwarz,
1978) is defined as follows:

with L the log-likelihood, 𝜃̂ the maximum likelihood estimator, npar the number of param-
eters of the model and C a regularization term that depends on the data used to train the
model. For N independent multivariate time series of dimension d and respective lengths
T1, T2,⋯ , TN , the C penalty is d × ΣiTi.

Experiments conducted on synthetic data have shown that the BIC criterion is relevant
for the selection of the number of states in MSAR models (Psaradakis & Spagnolo, 2003),
and on the joint determination of the number of states and autoregressive order in Markov-
switching models (Psaradakis and Spagnolo, 2006). Furthermore, works on real-world data
have shown that the BIC criterion allows the selection of models that are parsimonious and
relevant, (i.e., that fit the data well) (Ailliot & Monbet, 2012; Kuck & Schweikert, 2017).

It should be noted that the consistency of the BIC criterion, i.e., its ability to always
choose the right number of states when an infinite sample size is used, has been estab-
lished for independent mixture models (Durand, 2003). However, in the case of HMM and
MSAR models, the theoretical study of the behaviour of the BIC criterion remains an open
problem.

BIC = −2log(L(𝜃̂)) + nparlog(C),

59Machine Learning (2023) 112:45–97	

1 3

On the other hand, the Akaike Information Criterion (AIC) (Akaike, 1974) is defined as

The AIC is an asymptotically unbiased estimator of a scoring function used to rank can-
didate models. It is a variant of the Kullback-Leibler (KL) divergence between the true
model (i.e., the process that generated the data) and the approximate candidate model.
Some works about KL divergence-based selection focused on Markov-switching models
have been reported in the literature (Smith et al., 2006). However, the BIC score is more
documented than the AIC score as regards Markov-switching models.

In the context of probabilistic modelling, it is often enlightening to think of regular-
izers as expressing a prior over the parameters, and thus view the regularized maximum
likelihood fitting procedure as the search for maximum a posteriori (MAP) parameters
under such a prior. Dirichlet distributions are commonly used as priors for the param-
eter distributions in the case of variables with categorical distributions or multinomial
distributions in the models. Dirichlet, normal, gamma and inverse-gamma priors are
used in the case of MSARs (Pinto & Spezia, 2015; Lhuissier, 2019).

In regularized model selection for autoregressive Markov-switching models, a grid of
(p, K) values is tested and the pair obtaining the minimum value for the criterion consid-
ered is retained. However, estimating such models using a grid of hyper-parameters may be
computationally expensive. A Bayesian approach treats all unknown quantities as random
variables, assigning priors to these quantities to infer posterior distributions. A step further,
in the case of HMMs for example, when the model structure, i.e. the number of states, is
part of the unknown quantities, model structures can nonetheless be compared provided
one knows how to integrate over both parameters and hidden states. In practice, Bayesian
integration requires approximating integrals, for example through Monte-Carlo methods,
Laplace approximation or the variational Bayesian method (Ghahramani, 2001).

In a similar vein, the sticky infinite hidden Markov-switching modelling framework
proposed by Fox et al. (2011) short-circuits this computation: it assumes a Markov chain
with a potentially infinite number of states, thus encompassing any finite number of them.
Instead, the number of states is determined during the estimation of the model, which
avoids the need to fix this number using a criterion such as BIC. For instance, Bauwens
et al. (2017) applied this framework to autoregressive moving average Markov-switching
models. A panorama of Bayesian nonparametric methods for learning Markov-switching
processes is provided in (Fox et al., 2010).

In Sect. 8.3.1, we mention that the computational resources available to us allowed us to
test multiple values for the hyper-parameters, using the BIC score.

5 � Hidden state inference

In HMM modelling, after a model is learnt, inference consists in finding the state sequence
that maximizes the likelihood of a given observed sequence. This is equivalent to solve a
Maximum A Posteriori (MAP) problem. The Greedy search method that enumerates all
combinations of states requires O(KT) operations, where K is the number of states and T is
the sequence length. The Viterbi algorithm designed by Forney (1973) computes the opti-
mal state sequence in O(TK2) operations.

AIC = −2log(L(𝜃̂)) + 2 npar.

60	 Machine Learning (2023) 112:45–97

1 3

In this section, we propose a variant of the Viterbi algorithm that takes into account the
observed states of the PHMC-MLAR model. Thus, the hidden states are inferred given the
observed states and the given observation sequence.

Let �̂ the MLE parameter estimates of the PHMC-MLAR model trained on a given
dataset. Let � = xT

1
 an observed time series and �0 = x0

1−p
 the corresponding initial values.

Let Σ = �T
t=1

 the possible states at each time-step with �t = {k} if kth regime is observed at
time-step t, �t = � if the state process is latent at that time-step, and 𝜎t ⊂ � in the inter-
mediate case. Let (�,Σ) the partially hidden state process associated with this time series.

We search the optimal state sequence �∗ = (z∗
1
,… , z∗

T
) that maximizes the posterior prob-

ability P(� = � |� = �,�0 = �0,Σ;�̂) . Thanks to Bayes’ rule, maximizing this posterior
probability is equivalent to maximizing the joint probability P(� = �,� = � |�0 = �0,Σ;�̂):

where � = {1, 2,… ,K} is the set of possible states.
Note that the probability of a given state sequence is null if there is at least a time-step

t such that zt ∉ �t , that is if state zt is not allowed at time-step t. A consequence is that �∗
must coincide with the observed states if there are any. This constraint entails a decrease in
calculation cost, as we will see later.

Following the dynamic programming paradigm, the Viterbi algorithm makes it possible
to retrieve �∗ by splitting the initial problem into subproblems and solving this set of smaller
problems. Let 𝛿t(�;�̂) the maximal probability of subsequence (z1,… , zt = �) that ends within
regime �:

The information on the known states is taken into account in the 𝛿t(�;�̂) quantities, through
the �t

1
 terms.

The probabilities involved in these quantities are iteratively computed as follows:
At first time-step,

where

For t = 2,… , T we have

(16)P(� = � |� = �, �0 = �0;�̂
(X)
) =

P(� = �,� = � |�0 = �0 Σ;�̂)

P(� = � |�0 = �0,Σ;�̂
(S)
)

.

(17)�∗ = argmax
�∈�T

P(� = �,� = � |�0 = �0,Σ;�̂),

(18)
𝛿t(�;�̂) = max

z1,…,zt−1 ∈�
t−1
P(Xt

1
= xt

1
, St−1

1
= zt−1

1
, St = � |�0 = �0, 𝜎

t
1
;�̂),

for t = 1, 2,… T .

(19)𝛿1(�;�̂) = P(X1 = x1 |�0 = �0, S1 = �;�(X,�)) × P(S1 = � | 𝜎1;�̂(S)
)

P(S1 = � � 𝜎1;�̂(S)
) =

⎧
⎪⎪⎨⎪⎪⎩

1
�∈𝜎1

if ∣ 𝜎1 ∣= 1 (observed state case)

𝜋̂l if ∣ 𝜎1 ∣= K (hidden state case)

𝜋̂l × 1
�∈𝜎1∑

��∈𝜎1
𝜋̂
��

if ∣ 𝜎1 ∣< K (intermediate case)

61Machine Learning (2023) 112:45–97	

1 3

with

Since the maximal probability of the complete state sequence, that is the maximum for the
probability expressed in Eq. 16, also writes:

the optimal sequence �∗ , defined in Eq. 17 is retrieved by backtracking as follows:

The original Viterbi algorithm runs in O(TK2) . Our variant runs in
O((T − Tobs)K

2 + (Tobs + T)K) where Tobs denotes the number of observed states and
T − Tobs is the number of undetermined states to be inferred. To note, O(K2) (resp. O(K) )
is the computational cost of Viterbi variables �t ’s when the state at time-step t is undeter-
mined (respectively observed); and O(TK) represents the backtracking computational cost.
Thus, when all states are undetermined (i.e. Tobs = 0 ), our algorithm has the same com-
plexity as the original Viterbi algorithm. Moreover, the computational cost of our algo-
rithm decreases linearly with the number of observed states Tobs.

6 � Forecasting

Forecasting for a time series consists in predicting future values based on past values. Let
us consider a PHMC-MLAR model trained on a sequence observed up to time-step T, and
�̂ the corresponding parameters. Let �1,… , �T+h the set of possible states from time-step 1
to time-step T + h.

The optimal prediction of XT+h (with respect to mean squared error) is the conditional
mean �

[
XT+h |XT

1−p
= xT

1−p
, 𝜎T+h

1
;�̂
]
 , which writes as follows:

(20)
𝛿t(�;�̂) = max

k

[
𝛿t−1(k;�̂)P(St = � | St−1 = k, 𝜎t;�̂

(S)
)
]

× P(Xt = xt |Xt−1
1

= xt−1
1

,�0 = �0, St = �;�(X,�)),

P(St = � � St−1 = k, 𝜎t;�̂
(S)
) =

⎧
⎪⎪⎨⎪⎪⎩

1
�∈𝜎t

if ∣ 𝜎t ∣= 1 (observed state case)

âk,� if ∣ 𝜎t ∣= K (hidden state case)

âk,� × 1
�∈𝜎t∑

��∈𝜎t
âk,��

if ∣ 𝜎t ∣< K (intermediate case)

(21)P∗ = max
�

𝛿T (�;�̂),

(22)z∗
t
= argmax

�

{
𝛿T (�;�̂) for t = T

𝛿t(�;�̂) × â
�,z∗

t+1
for t = T − 1,… , 1.

62	 Machine Learning (2023) 112:45–97

1 3

with �T+h = (1, xT+h−1,… , xT+h−p) , �̂k = (𝜙0,k,𝜙1,k,… ,𝜙p,k) the intercept and autoregres-
sive parameters associated with kth state, and ′ denoting matrix transposition.

Equation 23 depends on smoothed probabilities 𝛾̄(i, s) = P(ST+i = s |XT
1−p

= xT
1−p

, 𝜎T+i
1

;�̂) ,
which are recursively computed as follows:

for i = 1,… , h , s ∈ � and �T (l) defined in Eq. 10.
From Eqs. 23 and 24, we can notice that if state s is observed at time-step T + h (i.e.

�T+h = {s} ), then prediction X̂T+h equals the conditional mean of the LAR process associ-
ated with this state (since 𝛾̄(h, k) = 0 for k ∉ �T+h ). In contrast, if state process is latent at
time-step T + h (i.e., �T+h = � ), X̂T+h is computed as the weighted sum of the conditional
means of all states, with probabilities 𝛾̄(h, k) as weights.

Note that for h = 1 , the past values of the time series required in Eq. 23 are known. In
contrast, for h > 1 , the intermediate predictions X̂T+1,… , X̂T+h−1 are used in order to feed
the autoregressive dynamics of the PHMC-MLAR framework.

It is important to underline that, the whole distribution of XT+h|XT
1−p

, �T+h
1

 is computed
as a mixture of conditional densities P(XT+h|XT+h−1

T+h−p
, ST+h;�̂) (Eq. 1) weighted by probabili-

ties 𝛾̄ ’s (Eq. 24) Thus, the point forecast in Eq. 23 is the mean of this distribution, which is
called the predictive density. In practice, this predictive density can be sampled in order to
build a confidence interval for the predicted values, instead of a single-point forecast.

7 � Experiments

The aim of this section is two-fold: (i) assess the ability of PHMC-MLAR model to infer
the hidden states, (ii) evaluate prediction accuracy. These evaluations were achieved on
simulated data, following two experimental settings. On the one hand, we varied the
percentage of observed states in training set, to evaluate its influence on hidden state
recovery and prediction accuracy. On the other hand, we simulated unreliable observed
states in training set, and evaluated the influence of uncertain labelling on hidden state
inference and prediction accuracy.

(23)

X̂T+h =

K∑
k=1

P(ST+h = k |XT
1−p

= xT
1−p

, 𝜎T+h
1

;�̂)

�

[
XT+h |XT+h−1

T+h−p
= xT+h−1

T+h−p
, ST+h = k;�̂

]

=

K∑
k=1

P(ST+h = k |XT
1−p

= xT
1−p

, 𝜎T+h
1

;�̂)
(
�T+h �̂

�

k

)
,

(24)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛾̄(0, s) = P(ST = s �XT
1−p

= xT
1−p

, 𝜎T
1
;�̂) = 𝛾T (s),

𝛾̄(i, s) =

K�
�=1

â
�,s 𝛾̄(i − 1, �) if 𝜎T+i = �,

𝛾̄(i, s) = 1 if 𝜎T+i = {�} and s = �,

𝛾̄(i, s) = 0 if 𝜎T+i = {�} and s ≠ �,

63Machine Learning (2023) 112:45–97	

1 3

This section starts with the description of the protocol used to simulate data in both
experimental settings. Then, the section focuses on implementation aspects. We next
present and discuss the results obtained in both experimental settings.

7.1 � Simulated datasets

This subsection first focuses on the model used to generate data. Then we describe the
precursor sets used to further generate the test-set and the training datasets.

7.1.1 � Generative model

These experiments were achieved on simulated data from a univariate ( d = 1 ) 4-state
PHMC-MLAR(2) model whose transition matrix and initial probabilities are:

Within each state k ∈ {1, 2, 3, 4} , the autoregressive dynamics is a LAR(2) process defined

by parameters �(X,k) = (�0,k, �1,k, �2,k, h
1

2

k
):

In the LAR(2) process associated with state k, stationarity is guaranteed by setting the fol-
lowing contraints: 𝜙i,k < 1, i ∈ {1, 2}.

Finally, the initial law g0 is a bivariate Gaussian distribution

Figure 2 shows an example of state process (Fig. 2a) and corresponding time series
(Fig. 2b) that were simulated from the previously defined PHMC-MLAR(2).

7.1.2 � Precursor sets for the test‑set and training datasets

The training and test sets are common to both experimental settings (influence of the
percentage of observed labels, influence of labelling error).

Inference The precursor set Pinfer_test of the test-set is composed of M = 100 fully
labelled observation sequences of length � = 1000 . These sequences were generated
from the PHMC-MLAR(2) model described in Eqs. 25–27. A protocol repeated for
each N ∈ {1, 10, 100} produced a precursor set PN_infer_train consisting of N fully labelled
observation sequences of length T = 100 . The generative model in Eqs. 25–27 was used
for this purpose.

(25)A =

⎛⎜⎜⎜⎝

0.5 0.2 0.1 0.2

0.2 0.5 0.2 0.1

0.1 0.2 0.5 0.2

0.2 0.1 0.2 0.5

⎞⎟⎟⎟⎠
, � = (0.25, 0.25, 0.25, 0.25).

(26)
�(X,1) = (2, 0.5, 0.75, 0.2), �(X,2) = (−2,−0.5, 0.75, 0.5),

�(X,3) = (4, 0.5,−0.75, 0.7), �(X,4) = (−4,−0.5,−0.75, 0.9).

(27)g0 = N2

(
(3, 5),

(
1 0.1

0.1 1

))
.

64	 Machine Learning (2023) 112:45–97

1 3

Forecasting In this case, training sets are each reduced to a single sequence. In each
such sequence, the sequence’s prefix of size T = 100 is used for model training, whereas
the subsequence T + 1,⋯ , T + 10 is used for testing prediction accuracy. The sequences
of the unique precursor set denoted PN=1_forecast_train_test are generated using Eqs. 25–27.

7.2 � Implementation

Our experiments required intensive computing resources from a Tier 2 data centre (Intel
2630v4, 2 × 10 cores 2.2 Ghz, 20× 6 GB). We exploited data-driven parallelization to
replicate our experiments on various training sets. On the other hand, code paralleliza-
tion allowed us to process multiple sequences simultaneously in the step E of the EM
algorithm. The software programs dedicated to model training, hidden state inference
and forecasting were written in Python 3.6.9. We used the NumPy and Scipy Python
libraries.

The models were learnt through the EM algorithm with precision � = 10−6 and ini-
tialization procedure parameters (L,Niter) = (10, 5).

7.3 � Influence of the percentage of observed states

To analyze the impact of observed states, we varied the percentage P of labelled obser-
vations (equivalently the percentage of observed states) in the training sets. P was var-
ied from 0% (fully unsupervised case) to 100% (fully supervised case), with steps of
10% . The aim is to evaluate the performance of intermediate cases for different sizes of
the training datasets.

7.3.1 � Hidden state inference

The test-set Sinfer_test was generated by unlabelling all states from the precursor set Pinfer_test
described in Sect. 7.1.2 ( M = 100 fully observed sequences of length � = 1000).

To generate the training sets, the following protocol was repeated for each N ∈ {1, 10, 100}
and for each percentage P: (i) considering the appropriate precursor set PN_infer_train (N fully
observed sequences of length T = 100 ) depicted in Sect. 7.1.2, only a proportion of P obser-
vations was kept labelled while the rest was unlabelled; (ii) this process was repeated 15 times,

Fig. 2   A simulation from the PHMC-MLAR(2) model defined by Eqs. 25–27: a state process, b the cor-
responding time series (Color figure online)

65Machine Learning (2023) 112:45–97	

1 3

each time varying which observations are kept labelled. Thus were produced 15 training data-
sets SN_P_infer_train_1,⋯ ,SN_P_infer_train_15.

The PHMC-MLAR(2) model with 4 states was trained on each training set SN,P,infer_train_i ,
i = 1,⋯ , 15 . For each trained model, state inference was achieved for the M fully hidden
sequences of test-set Sinfer_test , which yielded M sequences of predicted labels. Inference per-
formance was evaluated by comparing the true state sequences with the inferred ones, using
the Mean Percentage Error (MPE) score defined as follows:

where sj ’s and ŝj ’s are respectively observed and inferred states. The MPE score var-
ies between 0 and 1. The lower the value of the MPE score, the higher the inference
performance.

Figure 3 displays 95% confidence interval for the MPE score as a function of P. As
expected, the results show that inference ability increases with the number of training
sequences denoted by N. Note that when the proportion of labelled observations is less
than some threshold ( P = 30% for N = 1, 10 and P = 20% for N = 100 ), inference perfor-
mance is greatly impacted by the distribution of observed states since we obtain very large
confidence intervals for the MPE score.

For N = 1 , the use of labelled observations makes it possible to outperform the fully
unsupervised case ( P = 0% ) (which translates into small MPE scores) when at least 30% of
observations are labelled (see Fig. 3a). In contrast, for N = 10, 100 , from some threshold
value of P (respectively 30% and 20% ), the use of larger proportions of labelled obser-
vations sustains inference performances equal to that of the fully unsupervised case (see
Fig. 3b and c). Importantly, the results show that using large proportions of labelled obser-
vations considerably speeds up model training by decreasing the number of iterations of
the EM algorithm (see Fig. 4), and allows to better characterize the training data (which
is reflected by a greater likelihood, see Fig. 5). Ramasso and Denoeux (2013) had already
underlined the beneficial impact of partial knowledge integration on EM convergence in
HPMCs. Our work confirms this advantage in the PHMC-MLAR model, with a good
preservation of inference performance. Besides, the decrease in convergence time offers
promising prospects to enhance model selection for the PHMC-MLAR model, by allowing
examination of larger grids of hyper-parameter values.

In order to evaluate the influence of observed states in recognition phase, we consid-
ered the case P = 10% which previously obtained the lowest inference performance. This
time, we also kept labelled a proportion Q of observations within the test-set Sinfer_test .
We assessed the inference performances for the models trained on SN,P=10%,infer_train_i ,
i = 1,⋯ 15 . Figure 6 presents MPEs as a function of Q for N = 1, 10 and 100. We observe
that inference performances are improved by the presence of observed states. More pre-
cisely, for Q taking its values in 25% , 50% and 75% , respectively, MPE decreases by: (i)
19% , 42% and 69% for N = 1 (Fig. 6a); (ii) 27% , 52% and 77% for N = 10 (Fig. 6b); and (iii)
27% , 53% and 77% for N = 100 . (Fig. 6c). These results show the ability of our variant of
the Viterbi algorithm to infer partially-labelled sequences.

(28)MPE =
1

M

M∑
i=1

[
1

�

�∑
j=1

1sj≠ŝj

]
,

66	 Machine Learning (2023) 112:45–97

1 3

Fig. 3   95% confidence interval for mean percentage error (MPE) of hidden state inference, as a function of
the percentage P of labelled observations. Models were trained on datasets of N sequences of length 100, for
each of 15 replicates differing by the P% labelled observations. For each model, inference was performed
for a test-set of 100 unlabelled sequences of size 1000. The 95% confidence interval of the MPE score was
computed from the 15 replicates. The dash (red) line indicates the MPE score obtained for the unsupervised
learning case ( P = 0% ). Mind the differences in scales between the three subfigures (Color figure online)

Fig. 4   Number of EM iterations before convergence as a function of the percentage P of labelled observa-
tions. For the description of the experimental protocol, see caption of Fig. 3. The distribution of the number
of EM iterations is studied across 15 replicates. Dash (red) line and dot (green) line indicate the number
of iterations for unsupervised and supersived learning cases respectively. Mind the differences in scales
between the three subfigures (Color figure online)

67Machine Learning (2023) 112:45–97	

1 3

Fig. 5   Log-likelihood as a function of the percentage P of labelled observations. For the description of the
experimental protocol, see caption of Fig. 3. The distribution of the log-likelihood is studied across 15 rep-
licates. Dash (red) line and dot (green) line indicate the log-likelihoods for unsupervised and supervised
learning cases respectively. Mind the differences in scales between the three subfigures (Color figure online)

Fig. 6   95% confidence interval for mean percentage error (MPE) of hidden state inference, as a function of
the percentage Q of labelled observations within test-set, with P = 10% labelled observations in the training
sets. Models were trained on datasets of N sequences of length 100 in which P = 10% of observations have
been labelled. Fifteen replicates differing by the P = 10% labelled observations were considered. For each
model, inference was performed for a test-set of 100 partially labelled ( Q% ) sequences of size 1000. The
95% confidence interval of the MPE score was computed from the 15 replicates. Mind the differences in
scales between the three subfigures (Color figure online)

68	 Machine Learning (2023) 112:45–97

1 3

7.3.2 � Forecasting

In this experiment, we consider models trained on a single sequence. This case corresponds
to many real-world situations in which a unique time series is available (e.g., the evolution
of air pollution at some geographical location). Using the precursor set PN=1_forecast_train_test
described in Sect. 7.1.2, we generated datasets SN=1_forecast_train_test_i , i = 1,⋯ , 15 each com-
posed of a single sequence of size 110. Again, the 15 replicates differed by the P% labelled
observations. In these sets, the sequence prefixes of length T = 100 were used to train the
models. Out-of-sample forecasting was carried out at horizons T + h , h = 1,… , 10 , which
means that prediction accuracy was assessed using subsequences T + 1,⋯ , T + h . To note,
the P% labelled observations were distributed in the sequence prefixes of length T.

Two experimental schemes were considered. First, the states at forecast horizons were
supposed to be latent; that is, all states were unlabelled from T + 1 to T + h , h = 1,⋯ , 10 .
Then, we performed the prediction evaluation when states are observed at forecast hori-
zons. The latter situation corresponds to performing the prediction conditional on some
assumption on the regime. For instance, in econometrics, assuming we know which phase
will be on (growth phase versus recession) might improve the forecasting performance of
the Gross National Product (GNP). In this case, all states were kept labelled from T + 1 to
T + h , h = 1,⋯ , 10.

Prediction performance is estimated by the Root Mean Square Error (RMSE) defined
as follows:

where h is the forecast horizon and Nrep = 15 is the number of replicates. Accurate predic-
tions are characterized by low RMSEs.

Table 1 presents the RMSEs obtained when the states at forecast horizons are supposed
to be latent. Figure 7a presents the mean, median and maximum of RMSEs, computed
over all forecast horizons, as a function of P, the percentage of labelled observations in the
training sets. Table 1 and Fig. 7a show that as from some low P threshold ( 10% or 20% ),
the prediction performance remains nearby constant across proportions.

In addition, Table 1 also highlights that the ability to predict depends on the forecast
horizon under consideration. At any given labelling percentage P, high RMSE scores (i.e.,
around 7) alternate with low scores (around 1) across horizons. The nonmonotonic error
trend across horizons was observed empirically for MSAR models and threshold autore-
gressive models when they are applied to US GNP time series (Clements & Krolzig, 1998).

Finally, our experiments show that PHMC-MLAR model’s ability to better characterize
the training data in presence of large proportions of labelled observations (characterized by
greater likelihood, see Fig. 5a) does not translate into an improved forecast performance.

When states are known at forecast horizons, RMSEs (presented in Table 2) are reduced
by 44% on average. Moreover, Fig. 7b shows that above percentage P = 30% , prediction
performances are slightly greater than that of the unsupervised case ( P = 0% ). Note that as
in the case when the states are unknown at forecast horizons, the prediction ability depends
on the forecast horizon. Again, for a given P, the RMSE score does not systematically
increase with forecast horizon h, although previously predicted values are used as inputs
when predicting at next horizons.

(29)RMSEh =

√√√√ 1

Nrep

Nrep∑
i=1

(X
(i)

T+h
− X̂

(i)

T+h
)2,

69Machine Learning (2023) 112:45–97	

1 3

7.4 � Influence of labelling error

In this experiment, the influence of labelling error is evaluated. To simulate unreliable
labels, we proceeded as follows.

At each time-step t, an error probability pt was drawn randomly from a beta distribution
with mean � and variance 0.2. With probability pt , the observed state st was replaced by
a random state uniformly chosen from {1, 2, 3, 4} ⧵ {st} . So, the unreliable labels s̃t were
defined as follows:

Table 1   Root mean square error (RMSE) of prediction at horizon h for different values of P, when the
states are unknown throughout forecast horizons

P is the percentage of labelled observations within the training datasets. The forecast horizons are time-
steps T + 1 to T + h , T = 100 . For a given value of P, models were each trained on a unique sequence:
the sequence’s prefix of length T = 100 was used for training, for each of 15 replicates differing by the
P% labelled observations distributed in the prefix. Then, out-of-sample forecasting was carried out at time-
steps T + 1,… ,T + 10 , for the same sequence. The figures in bold highlight the minimum RMSE obtained
across all labelling percentages (P), at each horizon (h) considered

P h

1 2 3 4 5 6 7 8 9 10

0 1.860 6.680 1.830 3.165 4.167 2.540 1.133 7.938 7.854 2.465
10 2.035 8.273 1.829 2.909 4.477 2.851 0.957 7.667 7.583 2.224
20 1.934 7.612 1.337 3.161 4.110 2.482 1.189 7.991 7.907 2.518
30 1.323 7.450 1.373 3.168 4.093 2.469 1.201 8.005 7.921 2.532
40 1.293 7.496 1.392 3.158 4.103 2.480 1.191 7.994 7.911 2.521
50 1.308 7.525 1.402 3.135 4.122 2.496 1.174 7.978 7.894 2.505
60 1.394 7.502 1.424 3.115 4.134 2.508 1.162 7.965 7.882 2.493
70 1.363 7.560 1.431 3.094 4.155 2.527 1.142 7.946 7.862 2.473
80 1.306 7.502 1.395 3.129 4.116 2.489 1.179 7.984 7.900 2.511
90 1.294 7.569 1.444 3.088 4.155 2.526 1.142 7.947 7.863 2.473
100 1.267 7.613 1.447 3.076 4.164 2.535 1.132 7.937 7.854 2.464

Fig. 7   Mean, median and maximum root mean square error (RMSE) of prediction at horizon h as a func-
tion of P, the percentage of labelled observations in the training datasets. The 95% confidence intervals are
shown for the mean. States at forecast time-steps T + h , h = 1,⋯ 10 are a hidden, b known. Models were
trained on a single sequence, for each of 15 replicates differing by the P% labelled observations. Model
training was performed on subsequences of length 100, whereas prediction was achieved for the 10 subse-
quent time-steps. For each value of P, the statistics provided were computed across the 15 replicates and all
horizons (Color figure online)

70	 Machine Learning (2023) 112:45–97

1 3

where U is the discrete-valued uniform distribution. Thus, on average a proportion � of
observations is assigned wrong labels.

7.4.1 � Inference of hidden states

To assess inference performance in presence of labelling errors, we relied on the test-set
Sinfer_test described in Sect. 7.3 ( M = 100 fully hidden sequences of length � = 1000 ) cor-
responding to the fully labelled dataset Pinfer_test.

To generate the training sets, for each N ∈ {1, 10, 100} , we considered the appropri-
ate precursor set PN_infer_train (N fully observed sequences of length T = 100 ) depicted in
Sect. 7.1.2.

We varied the mean labelling error probability � in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 ,
0.8, 0.9, 0.95} . For N ∈ {1, 10, 100} , and each value of � , we generated 15 replicates from
dataset PN_infer_train , each time varying the distribution of the wrong labels amongst the
observations. The PHMC-MLAR(2) model with 4 states was trained on each of the train-
ing sets SN,�,infer_train_1,⋯ ,SN_�_infer_train_15 thus obtained.

For each trained model, state inference was achieved, which yielded M = 100 sequences
of predicted labels of length 1000, to be compared with the label sequences within Pinfer_test
(see Sect. 7.1.1).

Figure 8 presents 95% confidence intervals for the MPE score as a function of � . Note
that for all sizes N ∈ {1, 10, 100} of training data, the average MPE gradually increases
when � tends to 1. Moreover, confidence intervals become more and more tight when

(30)

pt ∼ 𝛽(0.2, 𝜌)

s̃t =

{
st with probability 1 − pt

U
(
{1, 2, 3, 4} ⧵ {st}

)
with probability pt

Table 2   Root mean square error (RMSE) of prediction at horizon h for different values of P, when the
states are known throughout forecast horizons

P is the percentage of labelled observations within the training datasets. The forecast horizons are time-
steps T + 1 to T + h , T = 100 . For the description of the experimental protocol, see caption of Table 1.
The states are known from T + 1 to T + 10 time-steps. The figures in bold highlight the minimum RMSE
obtained across all labelling percentages (P), at each horizon (h) considered

P h

1 2 3 4 5 6 7 8 9 10

0 0.083 0.325 0.870 1.577 1.509 1.171 2.220 1.216 0.996 1.104
10 3.730 1.791 2.936 3.593 4.914 4.153 4.060 4.873 3.603 3.902
20 1.831 0.510 1.806 1.939 2.171 1.250 2.581 1.438 1.239 1.458
30 0.083 0.321 0.854 1.542 1.477 1.158 2.167 1.137 1.109 1.289
40 0.070 0.325 0.841 1.532 1.460 1.150 2.151 1.154 1.084 1.301
50 0.065 0.324 0.832 1.540 1.459 1.154 2.161 1.130 1.078 1.229
60 0.063 0.329 0.829 1.524 1.443 1.145 2.137 1.125 1.039 1.181
70 0.057 0.329 0.810 1.531 1.431 1.143 2.143 1.118 1.036 1.263
80 0.036 0.327 0.810 1.490 1.411 1.134 2.086 1.086 1.072 1.276
90 0.036 0.325 0.788 1.479 1.386 1.124 2.065 1.067 1.023 1.161
100 0.001 0.326 0.760 1.473 1.368 1.121 2.053 1.065 1.002 1.133

71Machine Learning (2023) 112:45–97	

1 3

larger training data is considered. We also observe that up to � = 0.7 , the robustness to
labelling errors, translated into small MPE average and low dispersion, increases with N.
However, from � ≥ 0.8 , this trend is reversed and inference performance slightly decreases
when N grows.

On the other hand, we underline that the fully unsupervised case outperforms supervised
cases in presence of labelling errors. Up to relatively high labelling error rates ( � = 70% ),
the trade-off between training time and inference performance becomes beneficial for
large training datasets. For instance, for N = 100 , with a 70%-reliable labelling function
(i.e. � = 0.3 ), the EM algorithm converges after a single iteration against 67 iterations for
the unsupervised case; and the resulting model has good inference abilities with an MPE
score equal to 35% on average (see Fig. 8c) against 5% on average in the unsupervised case.
Thus, when analyzing real-world data for which the number of states K and auto-regressive
order p are unknown, model selection strategies can capitalize on such labelling functions
in order to explore/prospect larger grids of values for the hyper-parameters K and p.

7.4.2 � Forecasting

As in Sect. 7.3.2, we considered models trained on a single sequence ( N = 1 ).
Again, for each value of the mean labelling error probability � , we used precursor set
PN=1_forecast_train_test described in Sect. 7.1.2, and we varied the distribution of wrong labels:
15 replicates (i.e., 15 sequences of length T = 100 ) were thus generated. Out-of-sample
forecasting was carried out at horizons T + h , h = 1,⋯ , 10.

Fig. 8   95% confidence interval for mean percentage error (MPE) of hidden state inference, as a function
of the mean labelling error probability � . Models were trained on N sequences, for each of 15 replicates
differing by the �% ill-labelled observations. The average MPE was computed from the 15 replicates. The
dash (red) line indicates the MPE score obtained for the unsupervised learning case. Mind the differences in
scales between the three subfigures (Color figure online)

72	 Machine Learning (2023) 112:45–97

1 3

Table 3 presents RMSE scores for different values of mean labelling error � when states
are unknown at forecast horizons h = 1,… , 10 . The results show that at forecast horizons
h = 1, 2, 5, 6 , the best prediction accuracies are reached when � is null, whereas at the
remaining horizons, the highest accuracies are obtained when � = 0.8 or 0.9. Figure 9 pre-
sents the mean, median and maximum for the prediction errors computed over the whole
forecast horizons as a function of � . We observe that the mean and median very slightly
increase with � , whereas labelling errors exert a greater impact on the maximum values of
RMSEs. Therefore, this second experiment also highlights the remarkable robustness to
error labelling in the prediction task, over the whole range of error rates.

8 � Application to machine health prognostics

In this section, we report experiments on realistic machine condition data available on
NASA’s CMAPSS (Commercial Modular Aero-Propulsion System Simulation) reposi-
tory (https://​ti.​arc.​nasa.​gov/​tech/​dash/​groups/​pcoe/​progn​ostic-​data-​repo-​sitor​y/#​turbo​fan).
The application of interest is data-driven machine health prognostics. This task consists

Table 3   Root mean square error (RMSE) of prediction at horizon h for different values of the mean label-
ling error probability � , when the states are unknown throughout forecast horizons

The forecast horizons are time-steps T + 1 to T + h , T = 100 . The states are unknown from T + 1 to T + 10
time-steps. For a given value of � , models were each trained on a unique sequence: the sequence’s prefix
of length T = 100 was used for training, for each of 15 replicates differing by the position of ill-labelled
observations distributed in the prefix. Then, out-of-sample forecasting was carried out at time-steps
T + 1,… ,T + 10 , for the same sequence. The figures in bold highlight the minimum RMSE obtained
across all mean labelling error probabilities ( � ), at each horizon (h) considered

� h

1 2 3 4 5 6 7 8 9 10

0 1.267 7.613 1.447 3.076 4.164 2.535 1.132 7.937 7.854 2.464
0.1 1.814 8.992 1.393 3.193 4.334 2.625 1.117 7.865 7.780 2.407
0.2 2.258 10.315 1.529 2.855 4.758 3.026 0.811 7.481 7.398 2.044
0.3 2.793 10.458 1.575 2.911 4.689 3.004 0.801 7.512 7.426 2.062
0.4 2.877 11.457 1.161 3.114 4.779 2.941 0.886 7.562 7.478 2.123
0.5 2.655 11.104 1.396 2.953 4.812 3.008 0.843 7.488 7.410 2.062
0.6 2.925 12.013 1.004 3.031 4.878 3.002 0.749 7.472 7.392 2.020
0.7 3.088 11.643 1.271 2.969 4.901 3.082 0.706 7.409 7.321 1.954
0.8 2.656 11.860 0.905 3.001 4.848 2.954 0.768 7.498 7.422 2.046
0.9 2.444 11.667 1.338 2.786 5.011 3.164 0.647 7.310 7.234 1.875
0.95 2.362 11.071 1.192 3.027 4.685 2.905 0.866 7.588 7.504 2.135

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repo-sitory/#turbofan

73Machine Learning (2023) 112:45–97	

1 3

in predicting the Remaining Useful Life (RUL) of a machine: the RUL is the time period
beyond which equipments will likely require repair or replacement. The aim of these exper-
iments is two-fold: (i) assess the benefit of adding autoregressive dynamics to the PHMC
model as we propose in this work; (ii) compare our model to state-of-the-art methods in the
context of machine health prognostics.

The remainder of this section is organized as follows. NASA’s CMAPSS datasets are
described in Sect. 8.1. Section 8.2 explains how we predicted RUL using PHMC models,
with or without autoregressive dynamics. The last Sect. 8.3 is devoted to assess the per-
formance of our model for two tasks: h-step ahead feature prediction and RUL prediction.
Feature prediction performances are compared for PHMC-MLAR, PHMC and MSAR.
RUL prediction performances are compared for PHMC-MLAR, PHMC, and six recent
state-of-the-art RUL prediction methods.

8.1 � Data description

NASA’s CMAPSS datasets are composed of realistic degradation trajectories of turbofan
engines. In our experiments, we used datasets FD001 and FD003. Each dataset is divided
into a training and testing subsets of 100 trajectories each. FD003 is a more complex case
study than FD001 because it includes two fault modes against a single fault mode for
FD001. In fact, it is known that fault occurrences are directly related to the degradation
of engine operating conditions so that the number of fault modes increases the diversity of
degradation trajectories.

The degradation pattern of each trajectory is represented by 21 features (time series)
recorded from 21 sensors. Moreover, for each trajectory, engine operational state is healthy
in the early stage and begins to degrade over time until a failure occurs. At a given time-step,
the RUL indicates the time period left before failure. Since the training datasets contain the
whole degradation patterns, the RUL value at the last time-step of each training trajectory
equals 0. In contrast, for each testing trajectory, only an incomplete (i.e. “partial”) degrada-
tion pattern and the RUL (different from 0) associated with the last time-step are available. In
Fig. 10, each testing trajectory is represented by a point whose coordinates are its length and
its RUL. To note, the difficult cases are caracterized by large RUL values and short partial
degradation patterns (see the top left-hand side of Fig. 10).

The data-driven machine health prognostics task consists in predicting the RUL of a
device, knowing its partial degradation pattern. To build such a predictive method, models are
trained on training trajectories and evaluated on testing trajectories.

Fig. 9   Descriptive statistics
for the distribution of the root
mean square error (RMSE) of
prediction, as a function of � :
� denotes the mean labelling
error probability. The forecast
horizons are time-steps T + 1 to
T + h , T = 100 . The statistics
are computed over all horizons.
The 95% confidence intervals are
shown for the mean (Color figure
online)

74	 Machine Learning (2023) 112:45–97

1 3

8.2 � Machine health prognostics using PHMC‑LAR models

In the literature of data-driven machine health prognostics, we distinguish between three main
approaches: case-based reasoning approaches (Wang et al., 2008; Ramasso, 2014), artificial intel-
ligence approaches (Wu et al., 2018; Zhao et al., 2019) and statistical model-based approaches
(Javed et al., 2015). The method proposed in this work belongs to the family of statistical model-
based approaches. The overview of our method is summed up in Fig. 11. It consists of two com-
plementary modules: the model training module and the RUL prediction module. In the model
training module, CMAPSS training datasets were annotated with operational states which were
used to feed PHMC[-MLAR] (that is PHMC or PHMC-MLAR models) with partial annotations
during model training (see Sect. 8.2.1). Then in the RUL prediction module, the RULs of the test-
ing trajectories were predicted following a three-step procedure (see Sect. 8.2.2).

8.2.1 � Engine operational states—model training

As explained in Sect. 8.1, CMAPSS training datasets contain run-to-failure trajectories, that
is engines start to operate in healthy operational state and then, at some point, the state starts
to degrade due to fault occurrences until the engine fails. We constructed a health indicator
(HI) time series that indicates engines’ health status over time for each training trajectory. To
estimate HI based on sensor measurements, we followed the approach described by Ramasso
(2014), which relies on an exponential degradation model and linear regression models. In a
nutshell, we first constrained the synthetic variable HI to roughly decrease from 1 (healthy
state) to 0 (faulty state) over time:

with �1 = Ti × 5% and �2 = Ti × 95% , as recommended in (Ramasso, 2014), t a given time-
stamp and i a training trajectory of length Ti . Finally, for each time-step t and trajectory i,
we regressed HI(i)t against the features. We used the regression model specific to each time-
step, to estimate ĤI(i)

t
.

Afterwards, operational states were obtained by segmenting the estimated HI,
following the method presented in (Ramasso, 2016) and used in (Juesas & Ramasso,
2016). We considered four operational states: healthy, intermediate, faulty and failure
denoted by 1, 2, 3 and 4, respectively. Figure 12 shows two examples of the estimated
HI and corresponding operational states.

HI
(i)
t = 1 − exp

(
log(0.05)

0.95 Ti
× t

)
, t ∈ [�1, �2],

Fig. 10   Testing dataset FD001.
Scatter-plot of remaining useful
life (RUL) with respect to trajec-
tory length. Each point represents
a single testing trajectory (Color
figure online)

75Machine Learning (2023) 112:45–97	

1 3

Since the transitions between operational states are not known precisely, there is an
uncertainty about the states nearby the switching time-steps from one operational state
to the next one. From this consideration, partial annotations about states were built
as follows: let ti→j ( i < j ) the switching time-step from state i to state j; and let �t the set
of possible states at time-step t. Within a time-window of size 11 centered around ti→j ,

Fig. 11   RUL prediction using PHMC or PHMC-MLAR models: overview of the proposed method. RUL:
remaining useful life. In the training phase, we first had to assign partial state annotation to each mul-
tivariate training trajectory. We designed a synthetic health indicator, constraining it to roughly decay
from 1 (healthy state) to 0 (failure state) over time, for each trajectory. By regressing HI against the fea-
tures for each time-step of each training trajectory, we obtained one estimated ĤI time series per trajectory
[subfigure (a)]. The segmentation of this time series yielded one sequence of states per trajectory [sub-
figure (b)]. The four possible states are healthy (1), intermediate (2), faulty (3) and failure (4). The partial
annotation Σ of each trajectory was obtained by setting �t to {i, j} in each time-step t of windows (of size
11) centered on the switch from state i to state j. Otherwise, �t was set to the state obtained through the seg-
mentation. Only the 8 features that are sufficiently informative were retained from the 21 initial features, in
the rest of the experiment. To predict a RUL for each testing trajectory, a three-step process was imple-
mented. In step 1, the degradation pattern of each testing trajectory, known from time-step 1 to the trajecto-
ry’s length T, was completed from T + 1 to T + H [see subfigure (c)]. H was set at 145, the maximum RUL
value observed in the testing dataset. The completion was achieved by sampling from the feature forecast-
ing function described in Eq. 23. Iterating this sampling procedure R = 100 times produced R completed
degradation patterns per testing trajectory. In step 2, the R patterns of each testing trajectory were each
segmented into healthy, intermediate, faulty and failure states using our variant of the Viterbi algo-
rithm. When existing, the switch from faulty to failure state allowed us to estimate the trajectory’s RUL.
Otherwise, the RUL estimate was set to the maximum H. In step 3, for each testing trajectory, a final RUL
estimate was aggregated from the R estimates previously obtained [see subfigure (d)] (Color figure online)

76	 Machine Learning (2023) 112:45–97

1 3

the doubt on the switching time-step location between states i and j was explicited. Thus,
if t ∈ [ti→j − 5, ti→j + 5] then �t = {i, j} ; otherwise �t equals the state provided by the
segmentation.

Thus, PHMC[-MLAR] models were trained on CMAPSS training datasets with the par-
tial annotations obtained previously. The number of states K was fixed at 4 and Gaussian
white noises were considered. Moreover, amongst the 21 features (time series) that make
up each trajectory, only those features {2, 3, 4, 7, 9, 11, 12, 14} were used, that show con-
sistent monotonic degradation trends (Wang et al., 2008) and/or present “the highest con-
tent of domain-specific information relating to the influence of fault occurrences” (Aremu
et al., 2020).

8.2.2 � RUL prediction

Once PHMC[-MLAR] model parameters had been estimated, RUL prediction for each sin-
gle testing trajectory was performed using the following three-step procedure.

(i) Step 1: production of R completed partial degradation patterns, for each testing
trajectory.

Let T the length of the testing trajectory under consideration, which degradation pat-
tern is known up to time-step T. We wished to produce several evolutions of the partial
degradation pattern. We could not rely on the optimal point prediction (classical method),
which provides only one value (mean). Instead, we sampled from the predictive density
(defined in Sect. 6, last paragraph) which characterizes each time-step T + h , for h ranging
from 1 to H. An iterative sampling of the predictive densities allowed us to generate one
possible evolution of this degradation pattern (from time-step T + 1 to T + H ). Besides, in
order to obtain only reasonable completed patterns, the sampling was restricted to the val-
ues belonging to the interval [Q25,Q75] , where Q25 and Q75 are the predictive-density first
and third quartiles. These quantiles were estimated by Monte Carlo simulations. Note that
the predictive density of PHMC is similar to that of PHMC-MLAR with the difference that
in PHMC model, the dependency on past observations is removed.

Performing the previous operation R = 100 times, we generated R evolutions of the
observed partial degradation pattern. In the sequel, the resulting completed trajectories,
each of length T + H , are referred to as completed degradation patterns. The maximum

Fig. 12   Evolution of the estimated health indicator (HI) and corresponding operational states, for two train-
ing trajectories. Numbers 1, 2, 3, and 4 stand for healthy, intermediate, faulty and failure states, respec-
tively. FD001 and FD003 are the two training datasets considered in our experiments (Color figure online)

77Machine Learning (2023) 112:45–97	

1 3

forecast horizon H was set at 145, which is the maximum RUL value observed within the
testing datasets. An example of such completed degradation pattern is depicted in Fig. 13.

(ii) Step 2: segmentation of the R completed degradation patterns, production of R esti-
mates of the true RUL.

For each completed degradation pattern (previously generated), we know that up to
time-step T, the failure state has null probability since at time-step T, the true RUL is
not null. Namely, at each time-step t ≤ T of a testing trajectory, the annotation �t is set
to {1, 2, 3} (We remind the reader that for each time-step of a training trajectory, �t was
set to {i, j} around each switch i → j , and was set to the unique state obtained through
segmentation otherwise). We recall that such partial knowledge is taken into account by
our variant of the Viterbi algorithm. Afterwards, the R patterns produced for each test-
ing trajectory were each segmented into healthy, intermediate, faulty and failure states.
Let t̂3→4 the time-step at which the engine switches from faulty state to failure state. So,
t̂3→4 + p provides an estimation of engine end life time-step. To note, the term (+p) takes
into account the p initial observations whose states cannot be inferred because of the
autoregressive dynamics. Thus, the RUL estimate writes:

Fig. 13   Completion of partial degradation pattern for testing trajectories. a and b Illustration with 11th test-
ing trajectory of dataset FD001. The solid line indicates the known degradation pattern - or partial deg-
radation pattern -, that encompasses time-steps 1 to T, the length of the testing trajectory. The dotted line
denotes one simulated evolution generated by PHMC-MLAR(K=4, p = 7) model. It encompasses time-
steps T + 1 to T + H , where H is the maximum remaining useful life (RUL) value observed in the testing
dataset. c and d Ilustration with 47th training trajectory of dataset FD001. In our experiments, no comple-
tion of partial degradation pattern is achieved for training trajectories. Subfigures c and d are only provided
here to show how simulated evolution generated by PHMC-MLAR(K = 4, p = 7) and true (ground truth)
evolution compare. For this illustration, time-step T ′ was set at T − H where T is the length of the training
trajectory and T coincides with engine failure. The solid line indicates the true evolution encompassing
time-steps 1 to T ′ . The dashed line denotes the true evolution as from T � + 1 till failure at time-step T. The
dotted line indicates one simulated evolution generated by PHMC-MLAR(K = 4, p = 7) model, in time
interval [T � + 1,T] (Color figure online)

78	 Machine Learning (2023) 112:45–97

1 3

When the switching to the failure state was not achieved between the beginning and the
end of the pattern, RUL estimate was set at H.

By doing so for the R patterns, we obtained R estimates of the true RUL denoted by
{ ̂rulr}r=1,…R . Figure 14 presents the distribution of ̂rulr ’s obtained for two different test-
ing trajectories.

(iii) Step 3: estimation of a final RUL from the R RUL estimates of a given testing
trajectory.

To compute the final estimate of the RUL, the previously computed ̂rul ’s were aggre-
gated using a fusion rule F :

The mean and median functions were first considered: the corresponding fusion rules are
referred to as Fmean and Fmedian . Then, several combinations of the minimum and maxi-
mum of the ̂rul ’s were also considered, as suggested by Ramasso (2014):

The choice of a = 13∕23 will be explained in Sect. 8.2.3.
The set of final RUL estimates, considering different fusion functions, is denoted

8.2.3 � Performance metrics

To evaluate the performance of our model in RUL prediction, two performance metrics
were used: the score function (SF) and the root mean square error (RMSE).

The score function defined by Saxena et al. (2008) has been largely used in the literature
of CMAPSS datasets. This function writes:

(31)̂rul = t̂3→4 + p − T .

(32)̂RUL = F(̂rul1,
̂rul2,… , ̂rulR).

(33)
Fa_min_max = a ×min(̂rul’s) + (1 − a) ×max(̂rul’s),

for a ∈ A = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 13∕23, 0.6, 0.7, 0.8, 0.9, 1}.

(34)̂��� = {Ff , f ∈ {mean,median,max, a_min_maxa∈A}}.

Fig. 14   Density of R = 100 estimates of the true RUL for testing trajectories. RUL: remaining useful life. a
17th trajectory from the FD001 dataset. b 26th trajectory from the FD001 dataset. Each estimate is obtained
from a completed degradation pattern simulated from the PHMC-MLAR(K = 4, p = 7) model (Color figure
online)

79Machine Learning (2023) 112:45–97	

1 3

where Ntest is the number of testing trajectories, di = RÛLi − RULi denotes the difference
between the estimated RUL and true RUL for ith testing trajectory.

We point out that this score function assigns higher penalties on late predictions
(over-estimations of RUL). Now function SF has been defined, we return to the choice of
a = 13∕23 in Eq. 33. This specific value was proposed by Wang et al. (2008). The motiva-
tion of these authors originates in the definition of the SF score function: this function
penalizes over-estimations of RULs by 1/10 and penalizes under-estimations of RULs by
1/13. Over-estimations (late predictions) are therefore more penalized than under-estima-
tions (early predictions). The authors transformed the 1/10 and 1/13 penalties into weights
that sum to 1: 13/23 was assigned to the minimim in Eq. 33, since min(̂rul’s) favours RUL
under-estimation, and 10/23 was assigned to the maximum in this same equation, since
max(̂rul’s) favours over-estimation.

The RMSE of RUL prediction is computed as follows:

Both performance metrics SF and RMSE have to be minimized.

8.3 � Results and analysis

This subsection first describes the best models selected for PHMC-MLAR (K = 4, p) and
MSAR(p), on each of datasets FD001 and FD003. Then, we show and discuss the accura-
cies obtained for the feature prediction task performed with PHMC-MLAR, MSAR and
PHMC, on both datasets. Third, we conduct a detailed analysis of the RUL prediction
performances obtained for PHMC-MLAR and PHMC, on dataset FD001. The subsection
ends with the comparison, on dataset FD001, of PHMC-MLAR against six RUL prediction
methods recently reported in the literature.

8.3.1 � Model selection

Remember that the number of states K was fixed at 4. In this experiment, we identified the
best PHMC-MLAR and MSAR models by varying the autoregressive order p among values
{1, 2,… , 14} ; the BIC score was used for the selection. Figure 15 displays the BIC scores of
each model for both training datasets FD001 and FD003. For each model and each dataset,
the value that provides the lowest BIC score was selected. Thus the best MSAR models are
obtained for p = 10 in both datasets (see Fig. 15b and d). Regarding the PHMC-MLAR
model, the BIC score allows to select p = 13 for FD003 dataset (see Fig. 15c). However, for
FD001 dataset, models PHMC-MLAR(p = 6), PHMC-MLAR(p = 7) and PHMC-MLAR(p
= 8) obtained very close BIC scores (472.509; 472.433 and 472.501, respectively), making
the selection difficult (see Fig. 15a). Therefore, using the testing trajectories, a second selec-
tion has been performed among these three models based on their 30-step ahead prediction

(35)SF =

Ntest�
i=1

SFi, SFi =

⎧
⎪⎨⎪⎩

exp
�
−

di

13

�
− 1, if di < 0

exp
�

di

10

�
− 1, if di ≥ 0

(36)RMSE =

√√√√ 1

Ntest

Ntest∑
i=1

d2
i
.

80	 Machine Learning (2023) 112:45–97

1 3

performances. This time, the model PHMC-MLAR(p = 7) was selected. We observe that
this model also obtained the lowest BIC score.

8.3.2 � Feature prediction performance

For each dataset, we compared the feature prediction accuracies of the previously selected
PHMC-MLAR and MSAR models against that of the PHMC model. To this end, we con-
sidered short, medium and long-term forecasts: h = 5, 10, 20, 30 . For each testing trajec-
tory, we performed rolling h-step ahead forecasts, starting from t = 15 and considering
increments of 5 time-steps, up to t + 5i∗ with i∗ the highest integer i such that t + 5i ≤ T − h .
Thus, for each trajectory, we obtained one estimate of the h-step ahead forecast RMSE. We
recall that for feature prediction, the RMSE is computed as shown in Eq. 29, with Nrep = i∗ .
To produce reliable estimates of RMSE, very short trajectories were removed (that is the
ones for which less than 10 h-step ahead projections can be performed).

For the three models PHMC-MLAR, PHMC and MSAR, Table 6 (resp. Table 7) in
Appendix B presents the mean and 95% confidence interval of RMSE for dataset 1 (respec-
tively dataset 3), and for each pair (feature, prediction horizon).

The results show that PHMC-MLAR (respectively MSAR) obtains the lowest RMSE
for features F9 and F14 (respectively features F2, F3, F7 and F12) on both datasets FD001
and FD003. For these two models, Table 4 displays the sum of the RMSE means com-
puted over all features, at each forecast horizon. It can be highlighted that the two models
have the same performance at short forecast horizon (that is h = 5 ). However, our model
outperforms MSAR when medium and long-term forecasts are considered (that is for
h = 10, 20, 30).

Fig. 15   Model selection for the PHMC-MLAR(K = 4, p) and MSAR(p) models, for datasets FD001 and
FD003, when the autoregressive order p varies from 1 to 14. The BIC score is used. Mind the different
scales in the four subfigures (Color figure online)

81Machine Learning (2023) 112:45–97	

1 3

Compared to the PHMC model, our model obtains much better prediction performance
on both datasets. Figure 16 displays the percentage of RMSE improvement (that is RMSE
reduction) obtained using our model instead of the PHMC model. This figure shows that
our model improves the prediction performance over PHMC for all features whatever the
forecast horizon. For dataset FD001 (respectively FD003), the improvement is greater
than 40% for features F9 and F14 (respectively features F7, F9, F12 and F14), whatever
the forecast horizon. From these results, we can conclude that, on CMAPSS datasets, the
autoregressive dynamics included in our model results in better prediction performance.
Thus, for these datasets, more information is obtained from the history of past observa-
tions compared with the multivariate data point sampled at a single time-step.

8.3.3 � RUL prediction performance

We compared the RUL prediction performance of our proposal with those of the PHMC and
several existing methods, on testing dataset FD001. We point out that, on this task, a compar-
ison with MSAR would have been biased since the MSAR framework is fully unsupervised.
Figure 17 depicts the performance metrics (SF, RMSE) of PHMC(K = 4) model and PHMC-
MLAR(K = 4, p = 7) model, for the different fusion functions considered in this work. The
results show that the fusion function F0.7_min_max yields the best performance for PHMC-
MLAR(K = 4, p = 7) model, which obtains the scores (SF,RMSE) = (472, 17.49) , whereas
PHMC(K = 4) model shows the smallest scores (SF,RMSE) = (17066, 34.32) , when consider-
ing fusion function F0.9_min_max.

Table 4   Global comparison of feature prediction performances for PHMC-MLAR and MSAR models

Sum of RMSE means over all features, at each forecast horizon h. The figures in bold highlight the minimum

Dataset Model h = 5 h = 10 h = 20 h = 30

FD001 PHMC-MLAR(K = 4, p = 7) 16.904 17.239 18.697 21.284
MSAR(K = 4, p = 10) 16.949 17.486 19.356 22.126

FD003 PHMC-MLAR(K = 4, p = 13) 17.316 17.651 18.544 20.008
MSAR(K = 4, p = 10) 17.397 17.863 19.134 21.267

Fig. 16   Comparison of feature prediction performances for PHMC-MLAR and PHMC models. Percentages
of RMSE improvement of PHMC-MLAR model over PHMC model compared along various pairs (fea-
ture, prediction horizon). a PHMC-MLAR(K = 4, p = 7) versus PHMC(K = 4), experiment with dataset
FD001. b PHMC-MLAR(K = 4, p = 13) versus PHMC(K = 4), experiment with dataset FD003. An RMSE
improvement corresponds to a decrease (Color figure online)

82	 Machine Learning (2023) 112:45–97

1 3

Overall, our model largely outperforms PHMC since its SF and RMSE values are much
smaller: the RMSE was reduced by half and the SF was divided by 34, with respect to PHMC.
When we go deeper into details and analyze RUL estimates, we found out that PHMC is more
subject to late predictions of RUL (over-estimations), with 70% of testing trajectories for which
the difference between the estimated and actual RULs is greater than 10, against only 24% for our
model. This explains the very large difference between the SF of the two models (in comparison
with RMSE) because the SF metric assigns higher penalties to late predictions of the RUL (see
Eq. 35).

Finally, Table 5 compares the method proposed in this paper with six recent state-of-
the-art methods used to predict the remaining useful life of a machine: Multi-Layer Per-
ceptron (MLP) Switching Kalman filter ensemble (Lim et al., 2015), extreme learning
machine fuzzy clustering (Javed et al., 2015), deep convolutional neural network (CNN)
(Sateesh Babu et al., 2016), Vanilla long short-term memory (LSTM) (Wu et al., 2018),
double LSTM (DLSTM) (Zhao et al., 2019), and complete ensemble empirical mode
decomposition DLSTM (CEEMD DLSTM) (Zhao et al., 2019).

Table 5   RUL prediction

Comparison of PHMC-MLAR against six recent methods of the state-of-the-art. The figures in bold high-
light the minima for RMSE values and SF values. The second minimum values are underlined

Method RMSE SF

MLP Switching Kalman Filter Ensemble (Lim et al., 2015) [18.4, 18.9] [560, 580]
Extreme Learning Machine Fuzzy Clustering (Javed et al., 2015) - - - 1046
Vanilla DLSTM (Wu et al., 2018) 19.74 - - -
Deep CNN (Sateesh Babu et al., 2016) 18.45 1287
DLSTM (Zhao et al., 2019) [19.3, 23.8] [750, 1200]
CEEMD DLSTM (Zhao et al., 2019) 14.72 262
PHMC(K = 4) 34.33 ± 0.15 17066 ±590
The proposed method - PHMC-MLAR(K = 4, p = 7) 17.49 ± 5.2 472 ± 42

Fig. 17   Comparison of RUL prediction performances for PHMC-MLAR and PHMC models. Mean and
standard deviation of performance metrics (SF, RMSE) computed from ten executions of the methods based
on PHMC-MLAR and PHMC. Performance metrics are presented for fusion functions Fmean,Fmedian and
Fa_min_max for a = {0.5, 13∕23, 0.6, 0.7, 0.8, 0.9} . The scores obtained by the other fusion functions are too
high; therefore they are not displayed in this figure. Mind the different scales in the two subfigures (Color
figure online)

83Machine Learning (2023) 112:45–97	

1 3

The results show that the method proposed in this work presents better performance than the
first five comparison methods with a smaller RMSE and SF metrics. However, thanks to the
extensive feature extraction procedure (CEEMD) used to build the input features of DLSTM,
CEEMD DLSTM method presents better performance than our proposal. Note that our model
is directly trained on noisy features recorded from sensors. Moreover, in contrast to CEEMD
DLSTM method, our proposal provides an accurate (short, medium and long-term) prediction
of features which can be used in practice to extract useful information about system operational
states.

9 � Conclusion

In this work, we have introduced the PHMC-MLAR model to analyze time series subject
to switches in regimes. Our model is a generalization of the well-known Hidden Regime-
Switching AutoRegressive (HRSAR) and Observed Regime-Switching AutoRegressive
(ORSAR) models when regime-switching is modelled by a Markov Chain. Our model
allows to handle the intermediate case where the state process is partially observed.

In the evaluation, we conducted experiments on simulated data and considered both
inference performance and prediction accuracy. The results show that the partially observed
states (when they represent a reasonable proportion) allow a better characterization of train-
ing data (reflected by greater log-likelihood), in comparison with the unsupervised case.
An interesting characteristics of the PHMC-MLAR model is that the partially observed
states allow faster convergence for the learning algorithm. This performance is obtained
with no or practically no impact on the quality of hidden state inference, as from labelling
percentages around 20–30% ; the prediction accuracy is also preserved above such percent-
age thresholds. Furthermore, faster EM convergence is also verified in a fully supervised
scheme where part of the observations is ill-labelled. Model selection strategies can there-
fore rely on an approximate labelling function (provided by an expert or by a supervised
algorithm learnt on a small subset of data for which the true labels are known), to explore
larger grids of hyper-parameter values. In addition, complementary experimental studies
have revealed the robustness of our model to labelling errors, particularly when large train-
ing datasets and moderate labelling error rates are considered. Finally, we showed the abil-
ity of our variant of the Viterbi algorithm to infer partially-labelled sequences.

We also conducted experiments on two realistic machine condition data (CMAPSS
datasets FD001 and FD003) and considered both short/medium/long-term feature forecast
accuracy and prediction accuracy for machine remaining useful life (RUL). Regarding fea-
ture prediction, we compared PHMC-MLAR with the two models it extends, MSAR and
PHMC. The results show that at medium and long-term forecast horizons ( h = 10, 20, 30 )
our model presents higher forecast accuracies than the MSAR model, whereas both models
obtain comparable accuracies at short-term forecast horizon ( h = 5 ). In comparison with
the PHMC model, our model achieves much better performance (whatever the horizon
h = 5, 10, 20, 30 ). These results show the relevance of including an autoregressive model
within each regime (as we suggested in this work). Regarding RUL prediction, our pro-
posal outperforms PHMC and five out of six recent state-of-the-art RUL prediction meth-
ods, including four artificial intelligence-based methods.

A natural extension of the PHMC-MLAR model consists in putting uncertainty on par-
tial knowledge: for instance instead of states observed with no doubt, a subset of possible
states with various occurrence probabilities can be considered at each time-step. On the

84	 Machine Learning (2023) 112:45–97

1 3

other hand, it is more realistic to consider time-dependent state processes, especially when
large time series are analyzed. These directions will be investigated in future work.

A Appendix: backward‑forward‑backward algorithm

The Backward-forward-backward algorithm introduced by Scheffer and Wrobel (2001) for
PHMC model learning has been adapted to the PHMC-MLAR framework. This algorithm
makes it possible to compute the probabilities

in O(TK2) operations. The analytical development for the above quantity involves three
additional probabilities:

with

The algorithm operates recursively in three steps: two backward steps chained through a
forward step. The first backward step computes the set of probabilities �t(s) (Sect. A.1); the
forward step computes probabilities �t(s) (Sect. A.2); the second backward step computes
probabilities �t(s) . In Sect. A.4, we describe a scaling method that is necessary to prevent
floating point underflow when running the algorithm, especially when large sequences are
considered.

Note that the �t(k,�) quantities can be used to compute the �t(�) probabilities

In practice �t(�) have to be normalized by dividing them by the sum
∑K

�=1
�t(�).

Proof  First, in Eq. 39, the conditional probability is transformed into a joint prob-
ability. Then, in Eq. 40, we successively maginalize XT

t+1
 , Xt , St and (St−1,Xt−1

1
) . Accord-

ing to the conditional independence graph of the PHMC-MLAR model, the marginali-
zation of XT

t+1
 gives �t(�) , that of Xt yields P(Xt = xt | St = �,Xt−1

t−p
,Σ;�̂) , that of St gives

P(St = � | St−1 = k,Σ;�̂) and that of (St−1,Xt−1
1

) provides �t−1(k) . Finally, in Eqs. 42–44, the
probability P(St = � | St−1 = k,Σ;�̂) is developed using Bayes’ rule. Note that in Eq. 44, the
probability P(St = �, 𝜎t | St−1 = k, 𝜎t−1;�̂) is null for � ∉ �t and is not defined for k ∉ �t−1.

(37)
𝜉t(k,�) = P(St−1 = k, St = � |XT

1−p
= xT

1−p
,Σ;�̂), for t = 2,… , T , 1 ≤ k, � ≤ K

(38)
𝜉t(k,�) =

𝛽t(�)P(St = � | St−1 = k;�̂)P(Xt = xt |Xt−1
t−p

, St = �;�̂) 𝛼t−1(k) 𝜏t(�)

P(XT
1
= xT

1
|X0

1−p
,Σ;�̂) 𝜏t−1(k)

× 1{�∈𝜎t , k∈𝜎t−1}
,

𝜏t(s) = P(𝜎t+1,… , 𝜎T | St = s,�̂),

𝛼t(s) = P(St = s,Xt
1
= xt

1
|X0

1−p
,Σ;�̂),

𝛽t(s) = P(XT
t+1

= xT
t+1

|Xt
t+1−p

, St = s,Σ;�̂).

�1(�) =

K∑
j=1

�2(�, j) �t(�) =

K∑
j=1

�t(j,�), for t = 2,… , Ti.

85Machine Learning (2023) 112:45–97	

1 3

with

	� ◻

A.1 First backward step

The first backward step computes probabilities �t(s) , the probabilities of the remain-
ing possible states given that state s ∈ {1,… ,K} is observed at time-step t ∈ {1,… , T} :
𝜏t(s) = P(𝜎t+1,… , 𝜎T | St = s,�̂) = P(St+1 ∈ 𝜎t+1,… , ST ∈ 𝜎T | St = s,�̂) . This set of prob-
abilities is computed recursively as follows:

(39)

𝜉t(k,�) = P(St−1 = k, St = � |XT
1−p

= xT
1−p

,Σ;�̂)

=
P(St−1 = k, St = �,XT

1
|X0

1−p
,Σ;�̂)

P(XT
1
|X0

1−p
,Σ;�̂)

(40)

= P(XT
t+1

= xT
t+1

| St−1 = k, St = �,Xt
1
,X0

1−p
,Σ;�̂)

× P(Xt = xt | St−1 = k, St = �,Xt−1
1

,X0
1−p

,Σ;�̂)

× P(St = � | St−1 = k,Xt−1
1

,X0
1−p

,Σ;�̂)
P(St−1 = k,Xt−1

1
= xt−1

1
|X0

1−p
,Σ;�̂)

P(XT
1
|X0

1−p
,Σ;�̂)

(41)=
𝛽t(�)P(Xt = xt | St = �,Xt−1

t−p
,Σ;�̂) 𝛼t−1(k)

P(XT
1
|X0

1−p
,Σ;�̂)

× P(St = � | St−1 = k,Σ;�̂)

(42)P(St = � | St−1 = k,Σ;�̂) =
P(St = �, St−1 = k, 𝜎T

1
;�̂)

P(St−1 = k, 𝜎T
1
;�̂)

(43)=
P(𝜎T

t+1
| St = �, St−1 = k, 𝜎t

1
;�̂)P(St = �, St−1 = k, 𝜎t

1
;�̂)

P(𝜎T
t | St−1 = k, 𝜎t−1

1
;�̂)P(St−1 = k, 𝜎t−1

1
;�̂)

(44)=
𝜏t(�)

𝜏t−1(k)
× P(St = �, 𝜎t � St−1 = k, 𝜎t−1;�̂)

=

⎧⎪⎨⎪⎩

𝜏t(�)

𝜏t−1(k)
× P(St = � � St−1 = k;�̂) if k ∈ 𝜎t−1, � ∈ 𝜎t

0 otherwise.

86	 Machine Learning (2023) 112:45–97

1 3

Proof  Base case: t = T − 1

By applying the definition of �T−1 , we obtain:

Recursive case: t = T − 2,… , 1

We first use the law of total probabilities (Eq. 48), followed by Bayes’ rule (Eq. 49).
Note that in Eq. 49, the probability P(𝜎t+1,… , 𝜎T | St+1 = i, St = s,�̂) is null for
i ∉ �t+1 (since �t+1 is the set of possible states at time-step t + 1 ); otherwise it equals
P(𝜎t+2,… , 𝜎T | St+1 = i,�̂) = 𝜏t+1(i) (Eq. 50). Thus, we obtain the recursive formula pre-
sented in Eq. 45.

	� ◻

A.2 Forward step

This step allows to compute the probabilities of being in regime s at time-step t while
observing sequence x1,… , xt . These probabilities, denoted by �t(s) , are defined as
𝛼t(s) = P(St = s,Xt

1
= xt

1
|X0

1−p
,Σ;�̂) for 1 ≤ t ≤ T  , 1 ≤ s ≤ K . They are computed as

follows:

(45)

⎧
⎪⎨⎪⎩

𝜏T (s) ∶= 1

𝜏t(s) =
�
i∈𝜎t+1

𝜏t+1(i)P(St+1 = i � St = s;�̂).

(46)𝜏T−1(s) = P(𝜎T | ST−1 = s, �̂) = P(ST ∈ 𝜎T | ST−1 = s;�̂)

(47)=
∑
i∈𝜎T

𝜏T (i)P(ST = i | ST−1 = s;�̂).

(48)

𝜏t(s) = P(𝜎t+1,… , 𝜎T | St = s,�̂)

=

K∑
i=1

P(𝜎t+1,… , 𝜎T , St+1 = i | St = s,�̂)

(49)=

K∑
i=1

P(𝜎t+1,… , 𝜎T | St+1 = i, St = s,�̂)P(St+1 = i | St = s,�̂)

(50)=
∑
i∈𝜎t+1

P(𝜎t+2,… , 𝜎T | St+1 = i,�̂)P(St+1 = i | St = s,�̂)

(51)=
∑
i∈𝜎t+1

𝜏t+1(i)P(St+1 = i | St = s,�̂).

87Machine Learning (2023) 112:45–97	

1 3

To note, the likelihood of sequence xT
1
 can be easily computed by integrating out St in �T:

The likelihood of N independent sequences is therefore calculed by multiplying the indi-
vidual likelihoods across the sequences.

Proof  Base case: t = 1

In Eq. 54, using the conditional independence graph of the PHMC-MLAR model, we
transform the joint probability into two conditional probabilities, P(X1 = x1 | S1 = s,X0

1−p
;�̂)

and P(S1 = s |Σ;�̂) . Then, in Eq. 55, Bayes’ rule is applied to the latter conditional prob-
ability. It can be easily shown that P(Σ;�̂) =

∑
i∈𝜎1

𝜏1(i)P(S1 = i;�̂) . Thus we obtain Eq. 56.

Recursive case: t = 2,… , T

As previously, the joint probability is split into two conditional probabilities (Eq. 57).
We use the law of total probabilities to introduce St−1 in Eq. 58. From Eqs. 58 to 59, Bayes’
rule is applied on the terms within the sum. Then, in Eq. 60, recursive terms �t−1 weighted
by probabilities P(St = s | St−1 = i,Σ;�̂) appear within the sum. Finally, probabilities
P(St = s | St−1 = i,Σ;�̂) are computed through the calculations presented in Eqs. 61–64.
Thus, by substituting Eq. 64 in Eq. 60, we obtain the recursive case (Eq. 52).

(52)

⎧
⎪⎪⎨⎪⎪⎩

𝛼1(s) = P(X1 = x1 �X0
1−p

, S1 = s;�̂)P(S1 = s;�̂)
𝜏1(s)∑

i∈𝜎1
𝜏1(i)P(S1 = i;�̂)

𝛼t(s) = P(Xt = xt �Xt−1
t−p

, St = s;�̂)
�
i∈𝜎t−1

𝛼t−1(i)P(St = s � St−1 = i;�̂)
𝜏t(s)

𝜏t−1(i)
× 1{s∈𝜎t}

.

(53)P(XT
1
= xT

1
|X0

1−p
,Σ;�̂) =

K∑
s=1

𝛼T (s).

(54)
𝛼1(s) = P(S1 = s,X1 = x1 |X0

1−p
,Σ;�̂)

= P(X1 = x1 | S1 = s,X0
1−p

;�̂) × P(S1 = s |Σ;�̂)

(55)= P(X1 = x1 | S1 = s,X0
1−p

;�̂) ×
P(𝜎1,… , 𝜎T | S1 = s ;�̂)P(S1 = s;�̂)

P(Σ;�̂)

(56)= P(X1 = x1 � S1 = s,X0
1−p

;�̂)P(S1 = s;�̂)
𝜏1(s)∑

i∈𝜎1
𝜏1(i)P(S1 = i;�̂)

.

(57)

𝛼t(s) = P(St = s,Xt
1
= xt

1
|X0

1−p
,Σ;�̂)

= P(Xt = xt |Xt−1
1

, St = s,X0
1−p

,Σ;�̂) × P(Xt−1
1

= xt−1
1

, St = s |X0
1−p

,Σ;�̂)

= P(Xt = xt |Xt−1
t−p

, St = s;�̂)

(58)

K∑
i=1

P(Xt−1
1

= xt−1
1

, St = s, St−1 = i |X0

1−p
,Σ;�̂)

= P(Xt = xt |Xt−1
t−p

, St = s;�̂)

88	 Machine Learning (2023) 112:45–97

1 3

where

	� ◻

A.3 Second backward step

In this second backward step, quantities 𝛽t(s) = P(XT
t+1

= xT
t+1

|Xt
t+1−p

, St = s,Σ;�̂) are com-
puted. �t(s) denotes the probability to observe sequence xt+1,… , xT given that state s has
been observed at time-step t. These probabilities are recursively computed as follows:

Proof  Base case: t = T − 1

Equation 66 is obtained by applying the law of total probabilities. In Eq. 67, Bayes’
rule is applied to P(ST = i | ST−1 = s,Σ;�̂) and a quotient of probabilities appears. Then,
the numerator and denominator of this quotient are transformed into products of con-
ditional probabilities (Eq. 68). In Eq. 69, we introduce backward propagation terms

(59)
K∑
i=1

P(Xt−1
1

= xt−1
1

, St−1 = i |X0
1−p

,Σ;�̂)P(St = s | St−1 = i,Σ;�̂)

(60)= P(Xt = xt |Xt−1
t−p

, St = s;�̂)

K∑
i=1

𝛼t−1(i)P(St = s | St−1 = i,Σ;�̂)

(61)P(St = s | St−1 = i,Σ;�̂) =
P(St = s, St−1 = i,Σ;�̂)

P(St−1 = i,Σ;�̂)

(62)
=

P(𝜎t+1,… , 𝜎T | St = s, St−1 = i, 𝜎t
1
;�̂)

P(𝜎t,… , 𝜎T | St−1 = i, 𝜎t−1
1

;�̂)P(St−1 = i, 𝜎t−1
1

;�̂)

× P(St = s, 𝜎t | St−1 = i, 𝜎t−1
1

;�̂)P(St−1 = i, 𝜎t−1
1

;�̂)

(63)=
𝜏t(s)

𝜏t−1(i)
× P(St = s, 𝜎t | St−1 = i, 𝜎t−1;�̂)

(64)=
𝜏t(s)

𝜏t−1(i)
×

{
P(St = s | St−1 = i;�̂) if i ∈ 𝜎t−1, s ∈ 𝜎t

0 otherwise.

(65)

⎧
⎪⎪⎨⎪⎪⎩

𝛽T (s) ∶= 1

𝛽t(s) =
�
i∈𝜎t+1

𝛽t+1(i)P(St+1 = i � St = s;�̂)
𝜏t+1(i)

𝜏t(s)

P(Xt+1 = xt+1 �Xt
t+1−p

, St+1 = i;�̂) × 1{s∈𝜎t}
.

89Machine Learning (2023) 112:45–97	

1 3

�T (i) and �T (i) , which each equal one (by definition); thanks to Markov property, prob-
ability P(ST = i, 𝜎T | ST−1 = s, 𝜎1,… , 𝜎T−1;�̂) is equal to P(ST = i | ST−1 = s;�̂) if
i ∈ �T and s ∈ �T−1 , and this probability is null if i ∉ �T and is undefined if s ∉ �T−1
(hence the indicator function 1{s∈�T−1, i∈�T} ). Besides, in Eq. 68, a common term appears
at numerator and denominator, which entails a simplification. Finally, probability
P(𝜎T | ST−1 = s, 𝜎1,… , 𝜎T−1;�̂) appearing at denominator equals �T−1(s) thanks to Markov
property.

Recursive case: t = T − 2,… , 1

The application of the law of total probabilities yields Eq. 70. In Eq. 71, XT
t+2

 then Xt+1
are marginalized, which allows to make appear the recursive term �t+1 together with the
conditional probability of Xt+1 given St+1 and past values in Eq. 72. As in the base case,
probability P(St+1 = i | St = s,Σ;�̂) is computed using Bayes’ rule (Eqs. 73–76).

(66)

𝛽T−1(s) = P(XT = xT |XT−1
T−p

, ST−1 = s,Σ;�̂)

=

K∑
i=1

P(XT = xT |XT−1
T−p

, ST = i,Σ;�̂)P(ST = i | ST−1 = s,Σ;�̂)

(67)=

K∑
i=1

P(XT = xT |XT−1
T−p

, ST = i;�̂)
P(ST = i, ST−1 = s,Σ;�̂)

P(ST−1 = s,Σ;�̂)

(68)

=

K∑
i=1

P(XT = xT |XT−1
T−p

, ST = i;�̂)

×
P(ST = i, 𝜎T | ST−1 = s, 𝜎1,… , 𝜎T−1;�̂)P(ST−1 = s, 𝜎1,… , 𝜎T−1;�̂)

P(𝜎T | ST−1 = s, 𝜎1,… , 𝜎T−1;�̂)P(ST−1 = s, 𝜎1,… , 𝜎T−1;�̂)

(69)
=

K∑
i=1

𝛽T (i)P(XT = xT |XT−1
T−p

, ST = i;�̂)
𝜏T (i)

𝜏T−1(s)

× P(ST = i | ST−1 = s;�̂) × 1{s∈𝜎T−1, i∈𝜎T}
.

(70)

𝛽t(s) = P(XT
t+1

= xT
t+1

|Xt
t+1−p

, St = s,Σ;�̂)

=

K∑
i=1

P(Xt+1 = xt+1,X
T
t+2

= xT
t+2

, St+1 = i |Xt
t+1−p

, St = s,Σ;�̂)

(71)
=

K∑
i=1

P(XT
t+2

= xT
t+2

|Xt+1
t+1−p

, St+1 = i,Σ;�̂)

× P(Xt+1 = xt+1 |Xt
t+1−p

, St+1 = i,Σ;�̂)P(St+1 = i | St = s,Σ;�̂)

(72)=

K∑
i=1

𝛽t+1(i)P(Xt+1 = xt+1 |Xt
t+1−p

, St+1 = i,Σ;�̂)P(St+1 = i | St = s,Σ;�̂)

90	 Machine Learning (2023) 112:45–97

1 3

where

	� ◻

A.4 Scaling of backward‑forward‑backward algorithm

For large sequences, i.e. large value of T, the quantities �t(s) , �t(s) and �t(s) tend to zero as
products of probabilities. Thus, the computations will require beyond the precision range
of machine and PHMC-MLAR parameter estimate will be inaccurate. Generally, this prob-
lem is solved by normalizing �t(s) , �t(s) and �t(s) by a term of same order of magnitude
(Florez-Larrahondo, 2020; Koenig & Simmons, 1996). Thus, we propose the following
normalization:

As previouly, 𝜏t(s) , 𝛼̃t(s) and 𝛽t(s) can be computed recursively. The recursive formula
for these quantities can be deduced from those of �t(s) (Eq. 45), �t(s) (Eq. 52) and �t(s)

(73)P(St+1 = i | St = s,Σ;�̂) =
P(St+1 = i, St = s,Σ;�̂)

P(St = s,Σ;�̂)

(74)

= (𝜎t+2,… , 𝜎T | St+1 = i, St = s, 𝜎1,… , 𝜎t+1;�̂)

×
P(St+1 = i, 𝜎t+1 | St = s, 𝜎1,… , 𝜎t;�̂)P(St = s, 𝜎1,… , 𝜎t;�̂)

P(𝜎t+1,… , 𝜎T | St = s, 𝜎1,… , 𝜎t;�̂)P(St = s, 𝜎1,… , 𝜎t;�̂)

(75)=
𝜏t+1(i)

𝜏t(s)
× P(St+1 = i, 𝜎t+1 | St = s, 𝜎t;�̂)

(76)=
𝜏t+1(i)

𝜏t(s)
× P(St+1 = i | St = s;�̂) × 1{s∈𝜎t , i∈𝜎t+1}

.

(77)𝜏t(s) =
𝜏t(s)

P(𝜎t,… , 𝜎T | 𝜎t−1;�̂)
,

(78)𝛼̃t(s) =
𝛼t(s)

P(Xt
1
= xt

1
|X0

1−p
,Σ;�̂)

,

(79)𝛽t(s) =
𝛽t(s)

P(XT
t = xTt |Xt−1

1−p
,Σ;�̂)

.

91Machine Learning (2023) 112:45–97	

1 3

(Eq. 65). To do so, Eqs. 45, 52 and 65 are respectively divided by the normalization terms
P(𝜎t,… , 𝜎T | 𝜎t−1;�̂) , P(Xt

1
= xt

1
|X0

1−p
,Σ;�̂) and P(XT

t
= xT

t
|Xt−1

1−p
,Σ;�̂) . After decomposing

the formula obtained and after some calculations, we obtain the subsequent recurvive for-
mulas for 𝜏t , 𝛼̃t and 𝛽t.

First backward propagation

with

Forward propagation

with P(𝜎t−1 | 𝜎t−2;�̂) defined in Eq. 81 and Ct the scaling term defined and computed as
follows:

(80)

⎧
⎪⎪⎨⎪⎪⎩

𝜏T (s) =
1

P(𝜎T � 𝜎T−1;�̂)
𝜏t(s) =

�
i∈𝜎t+1

𝜏t+1(i)
P(St+1 = i � St = s;�̂)

P(𝜎t � 𝜎t−1;�̂)
, for t = T − 1,… , 1,

(81)

P(𝜎t | 𝜎t−1;�̂) = P(St ∈ 𝜎t | St−1 ∈ 𝜎t−1;�̂) =
∑
i∈𝜎t−1

∑
j∈𝜎t

P(St = j | St−1 = i;�̂).

P(𝜎1;�̂) = P(S1 ∈ 𝜎1;�̂) =
∑
i∈𝜎1

P(S1 = i;�̂).

(82)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛼̃1(s) =
P(X1 = x1 �X0

1−p
, S1 = s;�̂)P(S1 = s;�̂)

C1

×
𝜏1(s)∑

i∈𝜎1
𝜏1(i)P(S1 = i;�̂)

𝛼̃t(s) = P(Xt = xt �Xt−1
t−p

, St = s;�̂)

� �
i∈𝜎t−1

𝛼̃t−1(i)P(St = s � St−1 = i;�̂)
𝜏t(s)

𝜏t−1(i)

�

×
1

P(𝜎t−1 � 𝜎t−2;�̂)Ct

× 1{s∈𝜎t}

(83)C1 = P(X1 = x1 |X0
1−p

,Σ;�̂) =
∑
i∈𝜎1

P(X1 = x1 |X0
1−p

, S1 = i;�̂)P(S1 = i;�̂)

(84)Ct = P(Xt = xt |Xt−1
1−p

,Σ;�̂) for t = 2,… , T

(85)=
∑
s∈𝜎t

P(Xt = xt |Xt−1
t−p

, St = s;�̂) ×

[∑
i∈𝜎t−1

𝛼̃t−1(i)P(St = s | St−1 = i;�̂)

]
.

92	 Machine Learning (2023) 112:45–97

1 3

The proof is straightforward and is left to the reader. Note that
P(XT

1
= xT

1
�X0

1−p
,Σ;�̂) =

∏T

t=1
Ct.

Second backward propagation

where Ct and P(𝜎t | 𝜎t−1;�̂) are defined in Eqs. 83–84 and Eq. 81 respectively.
�t(k,�) computation
In Eq. 37 probabilities �t(k,�) are defined in function of quantities �t , �t−1 , �t−1 and �t .

These quantities can be easily expressed in function of their normalized versions 𝜏t , 𝜏t−1 ,
𝛼̃t−1 and 𝛽t using Eqs. 77, 78 and 79. After substituting �t , �t−1 , �t−1 and �t by the result-
ing expressions and after some simplifications, we obtain the following formula:

B Appendix: evaluation of feature prediction performance
on the CMAPSS real‑world data

See Tables 6 and 7.

(86)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛽T (s) =
1

CT

𝛽t(s) =
�
i∈𝜎t+1

�
𝛽t+1(i)P(St+1 = i � St = s;�̂)

𝜏t+1(i)

𝜏t(s)
P(Xt+1 = xt+1 �Xt

t+1−p
, St+1 = i;�̂)

�

×
1

P(𝜎t � 𝜎t−1;�̂)Ct

× 1{s∈𝜎t}

(87)
𝜉t(k,�) =

𝛽t(�)P(St = � | St−1 = k;�̂)P(Xt = xt |Xt−1
t−p

, St = �;�̂) 𝛼̃t−1(k) 𝜏t(�)

P(𝜎t−1 | 𝜎t−2;�̂) 𝜏t−1(k)
× 1{�∈𝜎t , k∈𝜎t−1}

.

93Machine Learning (2023) 112:45–97	

1 3

Table 6   Comparison of feature prediction performances for PHMC-MLAR, PHMC and MSAR models on
dataset FD001

Mean and 95% confidence interval of RMSE at different forecast horizons h for the eight features
{2, 3, 4, 7, 9, 11, 12, 14} used in the training stage. The figures in bold highlight the minimum mean RMSE
across the three models PHMC-MLAR(K = 4, p = 7), PHMC(K = 4) and MSAR(p = 10) for each pair
(feature, forecast horizon)

Features Models h = 5 h = 10 h = 20 h = 30

F2 PHMC-MLAR 0.296 [0.214, 0.386] 0.304 [0.199, 0.413] 0.315 [0.217, 0.405] 0.337 [0.218, 0.459]
PHMC 0.340 [0.233, 0.452] 0.345 [0.247, 0.467] 0.349 [0.243, 0.487] 0.353 [0.244, 0.482]
MSAR 0.295 [0.208, 0.394] 0.300 [0.206, 0.397] 0.303 [0.216, 0.387] 0.311 [0.230, 0.400]

F3 PHMC-MLAR 4.023 [2.698, 5.674] 4.043 [2.570, 5.674] 4.195 [2.663, 6.153] 4.379 [2.811, 5.848]
PHMC 4.385 [3.052, 6.074] 4.390 [2.965, 6.345] 4.390 [2.753, 6.157] 4.385 [2.854, 6.030]
MSAR 4.003 [2.677, 5.597] 4.003 [2.626, 5.667] 4.024 [2.439, 5.879] 4.006 [2.645, 5.475]

F4 PHMC-MLAR 4.108 [2.831, 5.255] 4.148 [2.789, 5.441] 4.489 [3.112, 5.908] 5.168 [3.164, 7.013]
PHMC 5.336 [3.391, 7.929] 5.327 [3.175, 8.089] 5.409 [3.696, 7.966] 5.548 [3.908, 8.416]
MSAR 4.084 [2.865, 5.232] 4.089 [2.780, 5.311] 4.225 [3.007, 5.543] 4.491 [3.049, 6.280]

F7 PHMC-MLAR 0.418 [0.272, 0.555] 0.429 [0.303, 0.609] 0.478 [0.351, 0.712] 0.553 [0.370, 0.775]
PHMC 0.561 [0.346, 0.872] 0.561 [0.362, 0.868] 0.576 [0.367, 0.898] 0.592 [0.382, 0.936]
MSAR 0.415 [0.262, 0.547] 0.420 [0.296, 0.584] 0.440 [0.306, 0.646] 0.461 [0.295, 0.636]

F9 PHMC-MLAR 4.303 [2.791, 5.616] 4.487 [2.840, 6.063] 4.971 [3.237, 6.987] 5.886 [3.720, 9.157]
PHMC 9.581 [4.373, 24.60] 9.629 [4.244, 24.82] 10.18 [4.390, 25.98] 10.45 [4.381, 25.36]
MSAR 4.363 [2.599, 5.826] 4.674 [2.772, 6.310] 5.533 [3.526, 7.300] 6.868 [4.023, 9.986]

F11 PHMC-MLAR 0.104 [0.083, 0.128] 0.108 [0.080, 0.137] 0.119 [0.080, 0.167] 0.142 [0.093, 0.209]
PHMC 0.146 [0.091, 0.216] 0.148 [0.087, 0.216] 0.151 [0.089, 0.225] 0.156 [0.093, 0.245]
MSAR 0.104 [0.078, 0.129] 0.106 [0.080, 0.133] 0.111 [0.081, 0.142] 0.118 [0.080, 0.164]

F12 PHMC-MLAR 0.309 [0.199, 0.412] 0.318 [0.193, 0.428] 0.356 [0.232, 0.482] 0.420 [0.255, 0.593]
PHMC 0.437 [0.278, 0.684] 0.444 [0.255, 0.725] 0.453 [0.279, 0.699] 0.465 [0.273, 0.742]
MSAR 0.307 [0.196, 0.399] 0.312 [0.192, 0.412] 0.325 [0.199, 0.413] 0.349 [0.228, 0.461]

F14 PHMC-MLAR 3.343 [2.447, 4.375] 3.402 [2.295, 4.337] 3.774 [2.296, 5.549] 4.399 [2.395, 7.693]
PHMC 8.679 [3.435, 23.03] 8.677 [3.400, 23.68] 9.047 [3.403, 24.39] 9.251 [3.515, 23.56]
MSAR 3.378 [2.521, 4.343] 3.582 [2.371, 4.687] 4.395 [2.511, 6.928] 5.522 [3.097, 9.282]

94	 Machine Learning (2023) 112:45–97

1 3

Table 7   Comparison of feature prediction performances for PHMC-MLAR, PHMC and MSAR models on
dataset FD003

Mean and 95% confidence interval of RMSE at different forecast horizons h for the eight features
{2, 3, 4, 7, 9, 11, 12, 14} used in training stage. The figures in bold highlight the minimum mean RMSE
across the three models PHMC-MLAR(K = 4, p = 13), PHMC(K = 4) and MSAR(p = 10) for each pair
(feature, forecast horizon)

Features Models h=5 h=10 h=20 h=30

F2 PHMC-MLAR 0.306 [0.230, 0.376] 0.307 [0.240, 0.377] 0.306 [0.240, 0.408] 0.308 [0.233, 0.386]
PHMC 0.361 [0.480, 0.274] 0.363 [0.268, 0.478] 0.363 [0.265, 0.482] 0.369 [0.240, 0.481]
MSAR 0.305 [0.230, 0.379] 0.306 [0.242, 0.377] 0.306 [0.234, 0.402] 0.308 [0.234, 0.382]

F3 PHMC-MLAR 4.175 [2.989, 5.384] 4.161 [3.117, 5.298] 4.145 [3.039, 5.292] 4.142 [2.700, 5.322]
PHMC 4.790 [3.276, 6.781] 4.793 [3.302, 6.882] 4.868 [3.369, 7.342] 4.940 [3.544, 7.632]
MSAR 4.116 [2.994, 5.235] 4.106 [3.106, 5.283] 4.080 [2.976, 5.255] 4.097 [2.526, 5.302]

F4 PHMC-MLAR 4.089 [2.790, 5.174] 4.134 [2.746, 5.329] 4.229 [2.545, 5.686] 4.343 [3.090, 5.976]
PHMC 5.796 [4.088, 8.876] 5.818 [3.844, 8.958] 5.951 [3.559, 8.897] 6.097 [3.662, 9.492]
MSAR 4.101 [2.771, 5.227] 4.118 [2.777, 5.217] 4.264 [2.527, 5.833] 4.390 [2.509, 5.973]

F7 PHMC-MLAR 0.485 [0.315, 0.802] 0.517 [0.330, 0.878] 0.613 [0.307, 1.409] 0.768 [0.356, 2.063]
PHMC 1.601 [0.454, 3.101] 1.653 [0.447, 3.118] 1.754 [0.403, 3.334] 1.850 [0.416, 3.461]
MSAR 0.480 [0.316, 0.837] 0.506 [0.313, 0.871] 0.567 [0.304, 0.970] 0.689 [0.348, 1.474]

F9 PHMC-MLAR 4.347 [3.105, 5.674] 4.472 [3.220, 5.932] 4.748 [3.213, 6.906] 5.349 [3.415, 9.431]
PHMC 8.609 [3.637, 19.27] 8.809 [3.747, 20.30] 9.234 [3.354, 23.72] 9.635 [3.690, 19.35]
MSAR 4.415 [3.222, 5.854] 4.601 [3.465, 6.077] 5.099 [3.210, 7.041] 6.069 [3.906, 9.781]

F11 PHMC-MLAR 0.106 [0.080, 0.145] 0.107 [0.082, 0.142] 0.112 [0.085, 0.150] 0.117 [0.077, 0.158]
PHMC 0.168 [0.098, 0.240] 0.167 [0.101, 0.233] 0.173 [0.105, 0.250] 0.176 [0.098, 0.275]
MSAR 0.105 [0.081, 0.144] 0.108 [0.080, 0.142] 0.113 [0.084, 0.153] 0.118 [0.070, 0.160]

F12 PHMC-MLAR 0.407 [0.251, 0.704] 0.442 [0.256, 0.802] 0.554 [0.261, 1.312] 0.709 [0.275, 1.959]
PHMC 1.478 [0.357, 2.928] 1.531 [0.338, 2.882] 1.634 [0.308, 3.048] 1.733 [0.316, 3.254]
MSAR 0.395 [0.241, 0.712] 0.421 [0.250, 0.722] 0.493 [0.252, 0.973] 0.616 [0.278, 1.359]

F14 PHMC-MLAR 3.401 [2.065, 4.880] 3.511 [2.160, 5.268] 3.837 [2.352, 6.051] 4.272 [2.587, 7.920]
PHMC 7.496 [2.758, 19.05] 7.693 [3.053, 20.07] 8.039 [2.882, 22.58] 8.244 [3.114, 19.40]
MSAR 3.480 [2.094, 4.761] 3.697 [2.356, 5.249] 4.212 [2.520, 6.507] 4.980 [2.892, 8.583]

95Machine Learning (2023) 112:45–97	

1 3

Acknowledgements  The software development and the realization of the experiments were performed at
the CCIPL (Centre de Calcul Intensif des Pays de la Loire, Nantes, France).

Author Contributions  Not Applicable.

Funding  Fatoumata Dama is supported by a PhD scholarship granted by the French Ministery for Higher
Education, Research and Innovation.

Data availability  The CMAPSS datasets are available from https://​ti.​arc.​nasa.​gov/​tech/​dash/​groups/​pcoe/​
progn​ostic-​data-​repo-​sitor​y/#​turbo​fan.

Code availability  Not Applicable.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Consent to participate  Not Applicable.

Consent for publication  Not Applicable.

Ethical approval  Not Applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Ailliot, P., & Monbet, V. (2012). Markov-switching autoregressive models for wind time series. Environ-
mental Modelling & Software, 30, 92–101.

Ailliot, P., Bessac, J., Monbet, V., & Pene, F. (2015). Non-homogeneous hidden Markov-switching models
for wind time series. Journal of Statistical Planning and Inference, 160, 75–88.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Con-
trol, 19, 716–723.

Aremu, O. O., Cody, R. A., Hyland-Wood, D., & McAree, P. R. (2020). A relative entropy based feature
selection framework for asset data in predictive maintenance. Computers & Industrial Engineering,
145, 106536.

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statisti-
cal analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41(1),
164–171.

Bauwens, L., Carpantier, J. F., & Dufays, A. (2017). Autoregressive moving average infinite hidden Markov-
switching models. Journal of Business and Economic Statistics, 35(2), 162–182.

Berg, J., Reckordt, T., Richter, C., & Reinhart, G. (2018). Action recognition in assembly for human-robot-
cooperation using Hidden Markov models. Procedia CIRP, 76, 205–210.

Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL
decomposition and Box-Cox transformation. International Journal of Forecasting, 32(2), 303–312.

Bessac, J., Ailliot, P., Cattiaux, J., & Monbet, V. (2016). Comparison of hidden and observed regime-switch-
ing autoregressive models for (u, v)-components of wind fields in the Northeast Atlantic. Advances in
Statistical Climatology, Meteorology and Oceanography, 2(1), 1–16.

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repo-sitory/#turbofan
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repo-sitory/#turbofan
http://creativecommons.org/licenses/by/4.0/

96	 Machine Learning (2023) 112:45–97

1 3

Bharathi, R., & Selvarani, R. (2020). Hidden Markov model approach for software reliability estimation
with logic error. International Journal of Automation and Computing, 17, 305.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and
control (5th ed.). Wiley.

Cardenas-Gallo, I., Sanchez-Silva, M., Akhavan-Tabatabaei, R., & Bastidas-Arteaga, E. (2016). A Markov
regime-switching framework application for describing El Niño Southern Oscillation (ENSO) patterns.
Natural Hazards, 81(2), 829–843.

Clements, M. P., & Krolzig, H. M. (1998). A comparison of the forecast performance of Markov-switching
and threshold autoregressive models of US GNP. The Econometrics Journal, 1(1), 47–75.

Degtyarev, A. B., & Gankevich, I. (2019). Evaluation of hydrodynamic pressures for autoregressive model
of irregular waves. In Contemporary ideas on ship stability (pp. 37–47). Springer.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a
unit root. Journal of the American Statistical Association, 74(366), 427–431.

Durand, J. B. (2003). Modèles à structure cachée : Inférence, sélection de modèles et applications. PhD
thesis, Grenoble 1. (in French)

Filardo, A. J. (1994). Business-cycle phases and their transitional dynamics. Journal of Business & Eco-
nomic Statistics, 12(3), 299–308.

Flecher, C., Naveau, P., Allard, D., & Brisson, N. (2010). A stochastic daily weather generator for
skewed data. Water Resources Research, 46, W07519.

Florez-Larrahondo, G. (2020). Incremental learning of discrete hidden Markov models. PhD thesis, Mis-
sissippi State University.

Forney, G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61(3), 268–278.
Fox, E., Sudderth, E., Jordan, M., & Willsky, A. (2010). Bayesian nonparametric learning of Markov

switching processes. IEEE Signal Processing Magazine, 27(6), 43–54.
Fox, E., Sudderth, E., Jordan, M., & Willsky, A. (2011). A sticky HDP-HMM with application to

speaker diarization. Annals of Applied Statistics, 5(2A), 1020–1056.
Gardner, E., Jr., & Everette, S. (2006). Exponential smoothing: The state of the art—Part II. Interna-

tional Journal of Forecasting, 22(4), 637–666.
Ghahramani, Z. (2001). An introduction to hidden Markov models and Bayesian networks. International

Journal of Pattern Recognition and Artificial Intelligence, 15(1), 9–42.
Ghasvarian Jahromi, K., Gharavian, D., & Mahdiani, H. (2020). A novel method for day-ahead solar

power prediction based on hidden Markov model and cosine similarity. Soft Computing, 24(7),
4991–5004.

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the
business cycle. Econometrica, 57, 357–384.

Hamilton, J. D. (1990). Analysis of time series subject to changes in regime. Journal of Econometrics,
45(1–2), 39–70.

Javed, K., Gouriveau, R., & Zerhouni, N. (2015). A new multivariate approach for prognostics based
on extreme learning machine and fuzzy clustering. IEEE Transactions on Cybernetics, 45(12),
2626–2639.

Juesas, P., & Ramasso, E. (2016). Ascertainment-adjusted parameter estimation approach to improve
robustness against misspecification of health monitoring methods. Mechanical Systems and Signal
Processing, 81, 387–401.

Kim, C. J. (1994). Dynamic linear models with Markov-switching. Journal of Econometrics, 60, 1–22.
Koenig, S., & Simmons, R. G. (1996). Unsupervised learning of probabilistic models for robot navigation.

Proceedings of IEEE International Conference on Robotics and Automation, IEEE, 3, 2301–2308.
Kuck, K., & Schweikert, K. (2017). A Markov regime-switching model of crude oil market integration.

Journal of Commodity Markets, 6, 16–31.
Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of station-

arity against the alternative of a unit root: How sure are we that economic time series have a unit
root? Journal of Econometrics, 54(1–3), 159–178.

Lhuissier, S. (2019). Bayesian inference for Markov-switching skewed autoregressive models. Banque
de France working paper #726.

Li, K., & Fu, Y. (2012). ARMA-HMM: A new approach for early recognition of human activity. In 21st
International Conference on Pattern Recognition (ICPR) (pp 1779–1782).

Lim, P., Goh, C. K., Tan, K. C., & Dutta, P. (2015). Multimodal degradation prognostics based on
switching Kalman filter ensemble. IEEE Transactions on Neural Networks and Learning Systems,
28(1), 136–148.

97Machine Learning (2023) 112:45–97	

1 3

Michalek, S., Wagner, M., & Timmer, J. (2000). A new approximate likelihood estimator for ARMA-
filtered Hidden Markov Models. IEEE Transactions on Signal Processing, 48(6), 1537–1547.

Morwal, S., Jahan, N., & Chopra, D. (2012). Named entity recognition using hidden Markov model
(HMM). International Journal on Natural Language Computing (IJNLC), 1(4), 15–23.

Mouhcine, R., Mustapha, A., & Zouhir, M. (2018). Recognition of cursive Arabic handwritten text using
embedded training based on HMMs. Journal of Electrical Systems and Information Technology,
5(2), 245–251.

Noman, F., Alkawsi, G., Alkahtani, A. A., Al-Shetwi, A. Q., Tiong, S. K., Alalwan, N., et al. (2020).
Multistep short-term wind speed prediction using nonlinear auto-regressive neural network with
exogenous variable selection. Alexandria Engineering Journal, 60, 1221–1229.

Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2),
335–346.

Pinto, C., & Spezia, L. (2015). Markov switching autoregressive models for interpreting vertical move-
ment data with application to an endangered marine apex predator. Methods in Ecology and Evolu-
tion. https://​doi.​org/​10.​1111/​2041-​210X1​2494.

Pohle, J., Langrock, R., van Beest, F., & Schmidt, N. (2017). Selecting the number of states in hidden
Markov models: Pragmatic solutions illustrated using animal movement. Journal of Agricultural, Bio-
logical and Environmental Statistics, 22(3), 270–293.

Psaradakis, Z., & Spagnolo, N. (2003). On the determination of the number of regimes in Markov-switching
autoregressive models. Journal of Time Series Analysis, 24(2), 237–252.

Psaradakis, Z., & Spagnolo, N. (2006). Joint determination of the state dimension and autoregressive order
for models with Markov regime switching. Journal of Time Series Analysis, 27(5), 753–766.

Ramasso, E. (2014). Investigating computational geometry for failure prognostics. International Journal of
Prognostics and Health Management, 5(1), 005.

Ramasso, E. (2016). Segmentation of CMAPSS health indicators into discrete states for sequence-based
classification and prediction purposes. Tech. rep., 6839, FEMTO-ST Institute.

Ramasso, E., & Denoeux, T. (2013). Making use of partial knowledge about hidden states in HMMs: An
approach based on belief functions. IEEE Transactions on Fuzzy Systems, 22(2), 395–405.

Sateesh Babu, G., Zhao, P., & Li, X. (2016). Deep convolutional neural network based regression approach
for estimation of remaining useful life. In International conference on database systems for advanced
applications (pp. 214–228).

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for aircraft engine
run-to-failure simulation. In International conference on prognostics and health management (pp. 1–9).

Scheffer, T., & Wrobel, S. (2001). Active learning of partially hidden Markov models. In Proceedings of the
ECML/PKDD workshop on instance selection.

Schuller, B., Rigoll, G., & Lang, M. (2003). Hidden Markov model-based speech emotion recognition. In
IEEE International Conference on Multimedia and Expo (ICME) (pp. 401–404).

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
Smith, A., Naik, P., & Tsai, C. L. (2006). Markov-switching model selection using Kullback-Leibler diver-

gence. Journal of Econometrics, 134(2), 553–577.
Ubilava, D., & Helmers, C. G. (2013). Forecasting ENSO with a smooth transition autoregressive model.

Environmental Modelling & Software, 40, 181–190.
Wang, P., Wang, H., & Yan, R. (2019). Bearing degradation evaluation using improved cross recurrence

quantification analysis and nonlinear auto-regressive neural network. IEEE Access, 7, 38937–38946.
Wang, T., Yu, J., Siegel, D., & Lee, J. (2008). A similarity-based prognostics approach for remaining useful

life estimation of engineered systems. In International Conference on Prognostics and Health Man-
agement (pp. 1–6).

Wold, H. (1954). A study in the analysis of stationary time series (2nd ed.). Almqvist and Wiksell Book Co.
Wu, Y., Yuan, M., Dong, S., Lin, L., & Liu, Y. (2018). Remaining useful life estimation of engineered sys-

tems using vanilla LSTM neural networks. Neurocomputing, 275, 167–179.
Yu, L., Zhou, L., Tan, L., Jiang, H., Wang, Y., Wei, S., & Nie, S. (2014). Application of a new hybrid model with

seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network
(NARNN) in forecasting incidence cases of HFMD in Shenzhen, China. PLoS ONE, 9(6), e98241.

Zhao, S., Zhang, Y., Wang, S., Zhou, B., & Cheng, C. (2019). A recurrent neural network approach for
remaining useful life prediction utilizing a novel trend features construction method. Measurement,
146, 279–288.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1111/2041-210X12494

	Partially Hidden Markov Chain Multivariate Linear Autoregressive model: inference and forecasting—application to machine health prognostics
	Abstract
	1 Introduction
	2 Related work
	2.1 Partially Hidden Markov Chain—PHMC(K)
	2.2 Linear AutoRegressive model—LAR(p)

	3 The PHMC-MLAR model
	3.1 Notations
	3.2 Modelling the state process
	3.3 Modelling the dynamics under each state

	4 Learning PHMC-MLAR models
	4.1 Estimation of the PHMC-MLAR parameters
	4.1.1 Single training time series
	4.1.2 Sketch of EM algorithm: several training time series

	4.2 Hyper-parameter selection

	5 Hidden state inference
	6 Forecasting
	7 Experiments
	7.1 Simulated datasets
	7.1.1 Generative model
	7.1.2 Precursor sets for the test-set and training datasets

	7.2 Implementation
	7.3 Influence of the percentage of observed states
	7.3.1 Hidden state inference
	7.3.2 Forecasting

	7.4 Influence of labelling error
	7.4.1 Inference of hidden states
	7.4.2 Forecasting

	8 Application to machine health prognostics
	8.1 Data description
	8.2 Machine health prognostics using PHMC-LAR models
	8.2.1 Engine operational states—model training
	8.2.2 RUL prediction
	8.2.3 Performance metrics

	8.3 Results and analysis
	8.3.1 Model selection
	8.3.2 Feature prediction performance
	8.3.3 RUL prediction performance

	9 Conclusion
	Acknowledgements
	References

