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Abstract 14 

Chloride ingress by diffusion is the major deterioration process of reinforced concrete (RC) structures exposed 15 

to the marine environment. These structures have significant lengths or surfaces exposed to the outside 16 

environment. Due to the material variability (different concrete batches, vibrations) and exposure variability, 17 

the material experiences a spatial variability of the deterioration process. This paper presents the geostatistical 18 

analysis of in-situ chloride profiles, leading to the assessment of the spatial variability (SV) of both the chloride 19 

ingress itself and the parameters of the widely used Fick diffusion law (the average surface chloride content, 20 

𝐶𝑠𝑎 , and the average chloride diffusion coefficient, 𝐷𝑎). 37 chloride profiles measured on both sides of the 21 

same spandrel beam of an RC wharf are studied, as well as the associated estimates of 𝐶𝑠𝑎  and 𝐷𝑎. From an 22 

initial selection of random field models, the geostatistical analysis consists in the evaluation of model 23 

parameters using a procedure that tests both data and model assumptions on the fly (ergodicity, stationarity, 24 

random field modeling). Combined with the calculation of information criteria for each model, this procedure 25 

allows to provide relevant geostatistical models for chloride ingress, 𝐶𝑠𝑎  and 𝐷𝑎, which render SV as well as 26 

measurement error. It is noteworthy that the estimation error can be neglected when focusing on the SV for 27 

the range of chloride content studied in this paper. The SV of the chloride content seems to depend on the 28 

depth, with a large variability within the convection zone, and much less and more stable in the diffusion zone 29 

with a practical range of about 70 cm. This order of magnitude is consistent with the range of SV calculated 30 

for 𝐶𝑠𝑎  (50 to 73 cm).  31 

Keywords: Chloride ingress, Reinforced concrete, Marine environment, Spatial variability, 32 

Random field, Statistical analysis. 33 

1. Introduction 34 

Chloride ingress is among the main causes of degradation of reinforced concrete (RC) structures 35 

where the deterioration is more perceptible in marine environment. That leads to major maintenance 36 

costs (Bastidas-Arteaga & Schoefs, 2015; Stewart & Val, 2003). These structures offer to the 37 

environment important lengths or surfaces. Due to the variabilities of both the material (different 38 

concrete batches, vibrations) and exposure, they experience a spatial variability of their deterioration 39 

process. Accounting for realistic spatial correlation of the different parameters in structural safety 40 

models may lead to more realistic estimates on structural reliability and maintenance planning, 41 

knowing that reliability assessment is affected by spatial correlation (Schoefs et al., 2022; Stewart, 42 

2004; Stewart & Mullard, 2007). Moreover, quantifying this property allows optimizing inspection 43 



meshing on a structure (Gomez-Cardenas et al., 2015; Oumouni & Schoefs, 2021b; Schoefs et al., 44 

2017a). 45 

The variability of the degradation parameters and their measurements can be described at 46 

different scales: 47 

• the point scale, characterizing the repeatability of measurements;  48 

• the local scale of the material, characterizing the heterogeneity of the material for a scale 49 

lower than the Representative Elementary Volumes (REV) associated with each of the 50 

quantities of interest (Hill, 1963); 51 

• higher scales (structural elements, structure), characterizing the degree of spatial 52 

heterogeneity of the material and/or environmental conditions (exposure, loading, …) for 53 

scales above the REVs. 54 

The restitution of point and local variabilities requires a statistical modeling, translating the 55 

hypothesis of independence, respectively on (i) the measurements of parameters between distinct 56 

measurements and for a same measurement point and (ii) the parameter values between similar 57 

structures for the same REV dimension. The spatial variability (taking into account local and larger 58 

scales) cannot be solely captured by a statistical modelling because of the hypothesis of the existence 59 

of a certain degree of heterogeneity, i.e. spatial correlation, between measurements or between 60 

parameter values associated with different measurement points or REV on the same structure. This 61 

can only be translated by geostatistical modeling. The major challenge of those models is to determine 62 

stochastic properties of the Random Fields (RF), namely their marginal distributions, stationarity and 63 

the spatial correlations.  64 

Chloride ingress has been investigated deeply since the 70’s and it has been shown how 65 

complex is the process physically and chemically (Glasser et al., 2008; Kaushik & Islam, 1995; Ragab 66 

et al., 2016; Safhi et al., 2019; Wegian, 2010) and the role the material complexity (porosity) is 67 



playing (Qu et al., 2021). For the moment, available models of transfer and knowledge don’t allow 68 

to represent accurately the spatial variability of pollutant in concrete (Ravahatra et al., 2017). That is 69 

the main reason why direct or indirect assessment of chlorides in situ is the only way to measure, 70 

analyze and model the spatial variability of chloride ingress. Then, two kinds of quantities of interest 71 

can be considered: 72 

• the total chloride content 𝐶 at several depths; 73 

• their mean diffusion parameters 𝐶𝑠𝑎 and 𝐷𝑎, estimated from profiles of chloride content. 74 

During the last decades sensors have experiences significant progresses (Biondi et al., 2021; 75 

Torres-Luque et al., 2014, 2017; Watanabe et al., 2021; Zaki et al., 2015) but there are few concepts 76 

that measure the spatial distribution of chloride ingress (Fares et al., 2018; Lecieux et al., 2015, 2019) 77 

and their implementation is rare (Priou et al., 2019) even if their interest in terms of the value of 78 

information they provide was shown (Schoefs et al., 2022) especially because they allow to filter the 79 

signal (Oumouni & Schoefs, 2021a). Moreover, these sensors have to be installed at the building 80 

stage and are not suitable for existing structures. 81 

That is the main reason why spatial variability is assessed through Non-Destructive Testing 82 

(NDT) tools or Semi-Destructive Techniques (SDT). On-site indirect assessment of chlorides through 83 

NDT-techniques is affected by errors of assessment and sensitivity to other parameters (humidity, 84 

temperature) which makes it difficult to assess the spatial variability of chlorides (Bonnet et al., 2017; 85 

Bourreau et al., 2019; Schoefs et al., 2023). This error affects the optimization of measurements for 86 

assessing spatial variability (Oumouni & Schoefs, 2021b).That is why, the rare studies are based on 87 

the semi destructive techniques (SDT) i.e. direct weighting of chlorides from cores (O’Connor & 88 

Kenshel, 2013; Othmen et al., 2018) reviewed 10 published studies from 2004 to 2016 with only 3 89 

concerning more than 30 measurements and in all cases the distance between measurement was too 90 

large in view to assess the spatial correlation. Two main quantities of interest are investigated: 91 

chloride content at a given depth and parameters of a model of chloride ingress after post-processing 92 



of chloride profiles. 93 

Because of the complexity and cost for making a large amount of cores in a beam, only a few 94 

amounts of data is available for each and the distance between cores is too large: 5 cores with a 95 

distance of about 1 m in the study of (O’Connor & Kenshel, 2013). That leads to a significant 96 

numerical error of assessment of the spatial correlation (Schoefs et al., 2017b). Moreover, the 97 

underlying assumptions for RF modelling that are stationarity and ergodicity are not checked. Finally, 98 

the error of measurement is usually not considered when identifying correlations. That is a drawback 99 

because it is well known that SDT measurements for existing structures (Schoefs et al., 2023) and 100 

even for concrete in laboratory (Bonnet et al., 2017; Hunkeler et al., 2000) are affected by a significant 101 

error. To overcome these limits, this paper relies on two pillars: first, a unique database and second, 102 

a geostatistical analysis that allows to provide geostatistical parameters (namely spatial correlation 103 

assessments as well as measurement error) by using a recent method of RF identification (SCAP1D, 104 

Clerc et al. 2019), that accounts for uncertainty of measurements, checks ergodicity and accounts for 105 

the non-stationarity of the RF. 106 

Concerning the first pillar, marine structures can be exposed in various environments: 107 

atmospheric, spatter or splash, tidal and underwater (BS 6349-1:2000, 2000) which were defined 108 

according to the tide range (Bourreau et al., 2020). In this work, 30 cores carried out every 30 cm on 109 

the same 28-year beam (Othmen et al., 2018) are analyzed. The beam is located in the worst 110 

environment that is splash zone (Angst et al., 2009), and the cores are through its width giving access 111 

to profiles from each side i.e., exposure conditions (exposed, sheltered). 112 

Concerning the second pillar, two objectives are targeted: the assessment of spatial variability 113 

of the total chloride content 𝐶, depending on depth and exposure on one hand and the assessment of 114 

the spatial variability of the mean diffusion parameters 𝐶𝑠𝑎 and 𝐷𝑎 on the second one. First, taking 115 

benefit of the availability of 𝐶 at several depth, the objective is to provide estimates of its geostatistical 116 

parameters and to answer the following questions: (i) Is the spatial variability (SV) of 𝐶 a function of 117 



depth? (ii) Is the SV of 𝐶 a function of the exposure conditions? Second, knowing the age of the 118 

structure (28-year), geostatistical parameters of mean diffusion parameters are estimated to answer 119 

the following question: Is the SV of 𝐶𝑠𝑎 and 𝐷𝑎 a function of the exposure conditions? The latter 120 

question arises because 𝐶𝑠𝑎 and 𝐷𝑎 are directly dependent on the chloride profiles, which vary 121 

markedly between the exposed and sheltered faces. 122 

Section 2 introduces the geostatistical formalism in a theoretical way before presenting a state 123 

of the art of RF modeling, simulation methods and spatial variability estimation methods. An attention 124 

is paid to the underlying assumptions of the estimation methods and to the consequences of their 125 

neglect on the estimated spatial variability, especially in the frequent case of non-stationary 126 

measurements due to spatially variable exposure conditions. Section 3 presents the structure and the 127 

available data. Sections 4 and 5 give the results at two levels: total chloride contents, and mean 128 

diffusion parameters of total chlorides. Section 6 concludes the paper with some extension to other 129 

structures or other exposures. 130 

2. Geostatistical methods for spatial variability assessment of concrete structures 131 

2.1. Modelling of spatial variability 132 

2.1.1. Random Field modeling 133 

Practical modeling of spatial variability implies modeling spatially variable quantities of interest (QI) 134 

as Second-Order Intrinsic Stationary Random Fields (RF) (Chilès & Delfiner, 2012). Following the 135 

geostatistical formalism, such an RF 𝑍 is defined on a domain 𝐷𝑛 of ℝn and on a probability space 136 

(𝛺, 𝐴, 𝑃) such that:   137 

• ∀𝒙 ∈ 𝐷𝑛 , 𝑍(𝒙,⋅)=𝑍𝒙 is a multivariate random variable of 𝜔 ∈ 𝛺 with a joint probability density 138 

function (PDF) 𝑓𝑍(𝒎,𝜮), where 𝒎 and 𝜮 are the mean vector and the covariance matrix of 𝑍𝒙, 139 

respectively; 140 



• ∀𝒙 ∈ 𝐷𝑛  and ∀𝜔 ∈ 𝛺, 𝑍(𝒙,𝜔) = 𝑍𝒙
𝜔  is a realization of 𝑍 georeferenced by the vector 𝒙, also 141 

called a trajectory (in practice, a set of measurements from a unique structure and at a unique 142 

time). 143 

• ∀(ℎ, 𝑥) ∈ 𝐷2, 𝔼[𝑍𝑥+ℎ − 𝑍𝑥] = 0 and 𝑉𝑎𝑟(𝑍𝑥+ℎ − 𝑍𝑥) = 2𝛾(ℎ) where 𝛾(⋅) is the semi-144 

variogram function of 𝑍 and ℎ is any distance-lag (distance between two points of 𝐷). 145 

This definition reflects both the variability of the input parameter between structures and its spatial 146 

variability within the same structure, which are embedded in the covariance matrix 𝜮 and the semi-147 

variogram. 148 

In this paper, data are modeled as (i) unidimensional (ii) noisy (iii) trend-stationary (iv) Gaussian 149 

Random Field (GRF). Indeed, (i) the data are unidimensional along the sides of the beam; (ii) if the 150 

spacing between measurements is greater than the REV, the RF model must be able to reproduce the 151 

point and local variabilities, which have no correlation structure and can be modeled by white noise; 152 

(iii) materials and environmental conditions may vary along the sides of the beam. It is then very 153 

likely that the mean of the quantities of interest will vary with space; (iv) GRFs are very convenient 154 

because they allow modeling most natural variabilities (following normal or lognormal marginal 155 

laws) with only a model for the mean and the covariance (Chilès & Delfiner, 2012). 156 

Mathematically, ∀𝒙 ∈ 𝐷𝑛 we thus consider 𝑍 such that 157 

𝑍𝒙 = 𝒎𝒙 +𝑊𝒙 + 𝑌𝒙 (1) 

 with 𝒎𝒙 a deterministic trend, 𝑊𝒙 ∼ 𝑁(𝟎, 𝑡 × 𝟏𝒏) a white noise of variance 𝑡; 𝑌𝒙 ∼ 𝑁(𝟎,𝜮𝒀) a 158 

centered GRF, i.e 𝑌𝑥 a multivariate normal variable such that 159 

∀(ℎ, 𝑥) ∈ 𝐷2 , Σ𝑌𝑥+ℎ,𝑥 ≡ 𝐶𝑜𝑣(𝑌𝒙+𝒉, 𝑌𝑥) ≡ 𝐶𝑌(ℎ) ≡ 𝑠 × 𝜌𝑌  (ℎ) (2) 

where 𝐶𝑌(⋅) is the covariance function of 𝑌, 𝑠 is its variance, 𝜌𝑌(⋅) is its autocorrelation function, and 160 

ℎ is any distance-lag between the data (equivalences due to the Second-Order Stationarity of the 161 

GRFs). 162 



This formalism is illustrated in Figure 1 and Figure 2, where trajectories, correlation plots, 163 

autocorrelation functions, and semivariograms are plotted for 𝑌 and 𝑍 respectively, defined such that: 164 

1) 𝑌𝒙 ∼ 𝑁(𝟎,𝜮𝒀) with Σ𝑌𝑥+ℎ,𝑥 = 𝑠 × exp (−1.73‖ℎ‖
2/𝑟95), 𝜌𝑌(ℎ) = 

Σ𝑌𝑥+ℎ,𝑥

𝑠
, 𝛾𝑌(ℎ) = 𝑠 −165 

Σ𝑌𝑥+ℎ,𝑥, 𝑠 = 10 and 𝑟95 = 20; 166 

2) 𝑍 = 𝑊 + 𝑌 with 𝑊𝒙 ∼ 𝑁(𝟎, 𝑡 × 𝟏𝒏), Σ𝑍𝑥+ℎ,𝑥 = 𝑡 × 𝛿𝑥+ℎ,𝑥 + Σ𝑌𝑥+ℎ,𝑥, 𝜌𝑧(ℎ) =
Σ𝑍𝑥+ℎ,𝑥

𝑠+𝑡
, 167 

𝛾𝑍(ℎ) = 𝑠 + 𝑡 − Σ𝑍𝑥+ℎ,𝑥, and 𝑡 = 5 (𝛿𝑖𝑗 is the Kronecker delta). 168 

2.1.2. Autocorrelation models and parameters 169 

 170 

  171 



3. Embedded Tables 172 

 Table 5 and Figure 1 present and illustrate the exponential and Gaussian autocorrelation functions, 173 

widely used in the literature. According to Equation (2), such functions are positive definite, so that 174 

they asymptotically decay as a function of the distance-lag ℎ. The evolution of this decay is mainly 175 

determined by the value of their scale parameter 𝑎 > 0, which parametrizes the extent of the spatial 176 

correlation, i.e. the distance threshold below which the QI are strongly correlated.  177 

The distance at which events are weakly correlated is referred to as the inspection distance threshold 178 

with a spatial correlation threshold definition of 30% in (Schoefs et al., 2016). Several notations and 179 

parameters coexist in the literature to describe this threshold, sometimes with some confusion. In the 180 

case of isotropic fields, the following three notations are commonly used: (i)  Cressie (1993, p. 118) 181 

proposed the fluctuation range 𝜃, which is defined as 𝜃 = ∫ 𝜌(ℎ)𝑑ℎ
+∞

−∞
 ; (ii) (Cressie, 1993, p. 88) 182 

proposed the practical range 𝑟95, which is defined as 𝜌(𝑟95) = 5% (see Figure 1 and Figure 2) ; (iii)  183 

many authors proposed the correlation length 𝑙𝑐, which is not strictly defined and alternatively taken 184 

to be equal to 𝑎, 𝜃, 𝑟95 or some other particular range. In order to avoid any confusion and to facilitate 185 

comparison and interpretation, we give in  186 

  187 



4. Embedded Tables 188 

 Table 5 the expression of 𝜃 and 𝑟95 as a function of 𝑎 for the exponential and Gaussian models and 189 

the corresponding autocorrelation values 𝜌. Note that in Figure 1 𝑌 is obtained from a Gaussian 190 

autocorrelation function. 191 

4.1. Identification of spatial variability from measurements 192 

4.1.1. Empirical identification 193 

RF models behind a trajectory can be identified in the case of its ergodicity, which can be seen as a 194 

mixture of stationarity and asymptotic independence. In this case, the spatial variability can be 195 

assessed from empirical representations of the semivariogram, the covariance function, or the 196 

autocorrelation function, called the empirical semivariogram, covariogram and autocorrelogram, 197 

respectively.  198 

The Semivariogram, denoted �̂�(ℎ), is used because its estimation does not require complementary 199 

ones (such as mean or variance), and it allows to visually identify (i) the Second-Order Stationarity 200 

property, (ii) the ergodicity property, and (iii) the presence and magnitude of local variabilities. 201 

Indeed, (i) �̂�(ℎ) asymptotically tends to the variance for Second-Order Stationary RF, while otherwise 202 

whereas it increases with ℎ; (ii) ergodicity is verified when �̂�(ℎ) reaches an asymptote in the limit of 203 

half of the domain 𝐷 (Cressie, 1993, p. 57); (iii) white noise is easily identified by a nugget effect, 204 

i.e. a non-zero value for ℎ = 0 (see Figure 2). 205 

A common estimator of �̂�(ℎ) is defined by Equation (3) for a given trajectory 𝑍𝒙
𝜔, where 𝑆ℎ is the set 206 

of pairs (𝑥𝑝, 𝑥𝑞) of 𝐷2 that are away from ℎ modulo a given tolerance, and 𝑁ℎ is the cardinal of 𝑆ℎ. 207 

�̂�(ℎ) =
1

2𝑁ℎ
∑ (𝑍𝑥𝑝

𝜔 − 𝑍𝑥𝑞
𝜔 )

2

(𝑥𝑝,𝑥𝑞)∈𝑆ℎ

 (3) 

We point out that when ℎ becomes close to the dimension of 𝐷 , statistical inference is no longer 208 

valid because the number of point pairs away from ℎ is very small. Therefore, geostatisticians 209 

recommend plotting this graph only for distances ℎ such that 𝑁ℎ  ≥  30 (Cressie, 1993). In practice, 210 



in civil engineering, several authors recommend limiting to values of ℎ less than half of the size of 211 

the domain (Arnaud & Emery, 2000, Schoefs et al., 2016). 212 

4.1.2. Estimates of model parameters 213 

Once an RF model is selected from empirical identification, its parameters (collected in a vector 𝒑) 214 

must be estimated.  Several methods are available: 215 

• Maximum Likelihood Estimation (MLE), which allows to estimate 𝒑 from raw data, given an RF 216 

marginal distribution model, and as the following properties: (i) asymptotically unbiased, (ii) 217 

consistent, (iii) equivariant, (iv) asymptotically efficient, and (v) asymptotically normal 218 

(Wasserman, 2004, para. 9.4); 219 

• Least-Squares Estimate (LSE), which allows estimating 𝒑 from semivariogram, covariogram or 220 

autocorrelogram given models of them; 221 

• Weighted LSE (WLSE), similar to LSE, where each of the residuals is weighted by its variance. 222 

This allows to increase the weight of the residuals computed from many data (low distance-lag ℎ 223 

values, for which 𝑁ℎ is larger). 224 

Usually, LSE and WLSE fit the covariograms well and the use of WLSE implies a better description 225 

of them for small distances, associated with more data1. However, covariograms are not necessarily 226 

representative of the effective covariance parameters of the field, which can lead to significant relative 227 

errors in their estimation. Because it considers only raw data, MLE provides more accurate estimates, 228 

with smaller relative errors. The trade-off is computational time, as MLE is more time consuming 229 

than WLSE and LSE, up to 10 times faster. Therefore, and because it is a priori complex to have an 230 

initial idea of the scale parameter, a two-phase estimation method of Second-Order Stationary RF 231 

parameters is preferred:  232 

 

1 In this case, 𝛾(ℎ) = 1 − 𝐶(ℎ), so estimates on the covariogram or the semivariogram are equivalent. 



1. WLSE pre-estimation of the parameters with the following initial values: (i) for 𝑠, the empirical 233 

variance; (ii) for 𝑎, a value such that the fluctuation scale is less than a quarter of the maximum 234 

lag-distance (so as to respect the ergodic assumption); 235 

2.  MLE estimation of the parameters using the Nelder-Mead simplex minimization algorithm with 236 

the WLSE estimates as initial values. 237 

This approach allows to obtain accurate estimates while minimizing the cost of the MLE due to the 238 

definition of initial values close to the real values of the parameters (Clerc et al., 2019, para. 4.4). 239 

4.1.3. Choice of best RF model 240 

Although the plot of the empirical semi-variogram allows the selection of an RF model, its estimator 241 

nature leads to an imperfect representation of the SV. This is all the more true when the number of 242 

measurements is small. Therefore, when there is insufficient scientific evidence to support a specific 243 

RF model for a QI, which is the case for chloride content and diffusion parameters (Gomez-Cardenas 244 

et al., 2015), we can rely on data-based methods for model selection.  245 

In the following, the Akaike Information Criterion (AIC) is preferred because it is much more robust 246 

than the 𝑅2 coefficient of determination (Burnham & Anderson, 2010). The AIC allows to compare, 247 

with the parsimony criterion, the relevance of any RF model 𝑀𝑍 with 𝐾 parameters 𝑝1,…,𝐾 to describe 248 

the hidden RF 𝑍 at the origin of a set of 𝑛 data 𝑍𝒙
𝜔 (e.g., a trajectory). This criterion assumes that the 249 

best model is the one that provides the most accurate description with the fewest possible parameters 250 

(Burnham & Anderson, 2010, para. 1.4). 251 

In particular, when 𝑛/𝐾 < 40 and (which is the case below) we use the corrected information 252 

criterion (AICC). When the 𝒑 estimate �̂� is computed with MLE, it writes: 253 

𝐴𝐼𝐶𝑐 = −2 ln(𝐿(�̂�|𝑍𝒙
𝜔)) + 2𝐾⏟              

𝐴𝐼𝐶

+
2𝐾(𝐾 + 1)

𝑛 − 𝐾 − 1⏟      
correction

 254 

where 𝐿(�̂�|𝑍𝒙
𝜔) is the likelihood of �̂� with respect to the data. The best model among a set of 255 

considered models is then the one that minimizes the AICC, i.e. the one that has both a high goodness 256 

of fit (high likelihood) and a limited complexity (limited number of parameters). 257 



In practice, the easiest way to compare the relevance of models based on their AICC is via the 258 

Evidence Ratio (ER) (Burnham & Anderson, 2010, para. 2.10). This is defined such that, for any 259 

model 𝑀𝑍,𝑖 among 𝑁𝑚 models, 260 

𝐸𝑅𝑖 = exp (
1

2
[𝐴𝐼𝐶𝑐𝑖 − 𝑚𝑖𝑛

𝑗=1,…,𝑁𝑚
(𝐴𝐼𝐶𝑐𝑗)⏟          

best 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 model

]) 261 

The ER is therefore 1 for the best a priori model and grows exponentially as the models become less 262 

fit. From an expert perspective, an ER of 2 for a given model does not justify preferring the best a 263 

priori model over it, whereas an ER of 18 clearly favors the best a priori model (Burnham & 264 

Anderson, 2010, para. 2.10). 265 

4.1.4. SCAP1D: a robust estimation procedure 266 

The methods presented assume an adequate RF model to avoid estimation errors: without modeling 267 

precautions, they are only valid under the condition that the data can be described by an SSO and 268 

ergodic RF. However, since classical regression techniques coupled with generic autocorrelation 269 

models can easily approximate autocorrelograms and covariograms, the estimation of RF model 270 

parameters is typically performed by LSE on raw data without prior verification of these two 271 

hypotheses (O’Connor & Kenshel, 2013; Ravahatra et al., 2017; Schoefs et al., 2016). Such a 272 

procedure can then lead to significant errors, in especially in the estimation of the scale parameter 𝑎, 273 

and especially in cases of non-stationarity in the mean and/or significant measurement noise. This 274 

point is demonstrated in a case study by (Clerc, 2021, p. 143): from a given realization of a standard 275 

GRF, adding a noise and/or a mean trend and performing an LSE of 𝑎 without prior verification of 276 

the SSO and ergodic hypotheses led to estimation errors of up to 994%.  277 

To avoid these errors, we use here the SCAP-1D procedure2 (Clerc et al., 2019). Based on previously 278 

presented tools, it allows to estimate, from a single trajectory with few measurement points, the 279 

 

2 Spatial Correlation Assessment Procedure for Unidimensional Data 



parameters of a unidimensional noisy trend-stationary RF with piecewise polynomial mean, constant 280 

variance and constant autocorrelation model. 281 

The concept of SCAP-1D is to ensure the reliability of the parameters’ estimates by testing and 282 

validating the following hypotheses: 283 

• H1: validity of the RF mean model and its parameter estimates, i.e. Second-Order Stationarity of 284 

the centered RF; 285 

• H2: validity of both the joint PDF and autocorrelation function models of the RF and of the 286 

estimation of their parameters; i.e., normality of the standard source GRF, obtained by 287 

isoprobabilistic transformation of the RF from estimates considering the a priori model; 288 

• H3: ergodicity of the trajectory; i.e., non-correlation of the data at infinity or determination of all 289 

geostatistical parameters from this trajectory. 290 

The SCAP-1D flowchart is shown in Figure 3. It is divided into four consecutive steps, which can be 291 

repeated if the estimates do not validate the hypotheses on the RF model: 292 

• Step I) Choice of SCAP-1D parameters, namely piecewise polynomial mean model (regression 293 

degree, number of changepoints), RF joint PDF and autocorrelation function. We recommend to 294 

plot the trajectory, its histogram and its experimental semivariogram to facilitate this step. 295 

• Step II) Estimation of the mean and geostatistical parameters: changepoints in the mean and their 296 

significance are determined using the PELT (Pruned Exact Linear Time) optimal partitioning 297 

algorithm of (Killick et al., 2012). Estimation of the RF parameters is then performed using the 298 

approach presented in 4.1.23. 299 

• Step III) Checking of the underlying mathematical hypotheses: the plausibility of the estimated 300 

model is verified by checking ergodicity and performing stationarity tests (DF-test (Dickey & 301 

Fuller, 1981), KPSS-test (Kwiatkowski et al., 1992)) and normality tests (χ2, KS-test 302 

(Kolmogorov-Smirnov)) on the standardized trajectory, based on the Step II estimates. 303 

 

3 or by WLSE on the experimental semivariogram in the case of non-explicit density models. 



• Step IV) Analysis: based on the Step III tests, the model selected in Step I and the estimates made 304 

in Step II are either accepted (algorithm stops) or rejected (modification of Step I parameters is 305 

required). 306 

In Step III, the standardization of the trajectory is done by the Cholesky transformation, taking into 307 

account either:  308 

• the empirical covariance matrix: in this case, we only test H1, since the tests results depend only 309 

on the data and the estimates of the mean. The tests are then called 𝛴𝑒𝑥𝑝-tests; 310 

• or the modeled covariance matrix: in this case, we test H1 to H3 together, since the tests results 311 

depend on the total estimates. The tests are then called 𝛴𝑚𝑜𝑑-tests. 312 

4.1.5. Interpretability criterion 313 

In Step IV of SCAP-1D, the estimates must be analyzed for their physical consistency. In particular, 314 

an interpretability criterion can be defined for the estimated practical range. The point is to ensure, 315 

with respect to the distance ∆𝑥 between measurements, that the variability thus described is indeed a 316 

spatial variability and not a local or point variability. This is illustrated in Figure 4, where the 317 

Gaussian autocorrelogram is plotted on a measurement grid of step ∆𝑥 =  5 for three practical range 318 

values (𝑟95 < 2∆𝑥, 𝑟95 ≃ ∆𝑥, and 𝑟95 > 2∆𝑥): 319 

• when 𝑟95 ≥ 2∆𝑥 (curves c3 and c2): the variability described is spatial variability, since there is 320 

at least one significant intermediate spatial correlation value between the total correlation of a 321 

point with itself and the minimum 5% correlation associated with the practical range; 322 

• when 𝑟95 < 2∆𝑥 (curve c1): the variability described may be local or point variability since there 323 

is no significant intermediate spatial correlation value to account for the spatial variability. 324 



Therefore, care will also be taken to ensure that the criterion 𝑟95  ≥  2∆𝑥 is met when applying SCAP-325 

1D4. 326 

5. Presentation of the structure and the measurements 327 

5.1. Presentation of the wharf, the beam and its material 328 

The reinforced concrete beam inspected within the framework of the APOS research project is a T 329 

hyperstatic beam called "J-beam", whose dimensions and reinforcement are shown in Figure 5. It is 330 

located on lane 51 of the gangway 5 of the Montoir-de-Bretagne coal terminal (Loire-Atlantique 331 

department, France) with GPS coordinates: 47.32°N, -2.17°E. This terminal, built between 1981 and 332 

1983 on the banks of the Loire and less than 7 km from the Atlantic Ocean, is 234.4 m long and 20.7 333 

m wide and is located at +8.40 m NGF (Figure 6). This proximity to the ocean implies the existence 334 

of a tidal phenomenon with an amplitude of 5.80 m and a salinity of the water corresponding to 335 

maritime conditions at high tide (about 30 g Cl-/L). Thus, at the highest tidal coefficients, the lower 336 

face of beam J, located 5.80 m above the level of the Loire, is in contact with the water for about 2 337 

days per month. Finally, one of the peculiarities of the J-beam is its location at the edge of the quay. 338 

It has a side exposed to the wetting-drying cycles, marked Ext, and a sheltered side, marked Int (see 339 

Figure 6). 340 

 341 

Data from the construction archives indicate that the concrete used to build the structure is a Portland 342 

cement concrete CEMI 42.5N dosed at 350 kg/m3. The mass fraction of 𝑚𝑐𝑙  clinker is therefore 343 

higher than 90% and that of secondary constituents such as gypsum does not exceed 5%. The 344 

aggregates used are sand 0/6, and gravel 5/10 and 10/25. Concrete water porosity 휀, measured on the 345 

central part of 5 specimens used for chloride titration, was 13.7% on average, with minimum and 346 

 

4 This criterion is constructed similarly to that of (Der Kiureghian & Ke, 1987) on the ability of a discretization grid to 

reproduce the spatial variability properties of an RF. 



maximum values of 11.3% and 15.9%, respectively. The average compressive strength 𝑓𝑐𝑚, measured 347 

on 4 specimens of 5 cm diameter and 10 cm length, was 43.5 MPa, with minimum and maximum 348 

values of 38.5 MPa and 48.9 MPa, respectively. 349 

5.2. Total chloride content measurements at 28 years 350 

5.2.1. Available data set 351 

Chloride content measurements were performed on 30 through cylindrical cores extracted on the J-352 

beam at the same height of 30 cm and with a lateral spacing of 30 cm (see Figure 7) (Othmen et al., 353 

2018). The extraction was performed in 2011-2012, after 28 years of exposure. From initial 354 

dimensions of 50 mm in diameter and 400 mm in length, each core was divided into 5 slices 355 

(identified in Figure 7). Slices 1, 2, 4 and 5 were used to determine the chloride profiles according to 356 

the procedure recommended by the RILEM TC 178-TMC (Vennesland et al., 2013). Slices 1 and 2 357 

are related to the outer side (collected in Ext specimens) and slices 4 and 5 are related to the inner 358 

side (collected in Int specimens). While deep slices 2 and 4 were 40 mm thick with measurements in 359 

10 mm increments, slices 1 and 2 were 45 mm thick with measurements in 5 mm increments to 360 

capture the value at the surface. Slice 3 was used for further investigations such as porosity, 361 

compressive strength and estimation of the initial chloride content. Out of a total of 30 samples per 362 

side, 16 were usable on the Ext Face (53%), and 21 on the Int Face (70%). Furthermore, of the 555 363 

total chloride contents of the 30 samples considered, only 460 were usable (83%, or 51% of the total 364 

originally planned measurements).  365 

 366 

Figure 9 hereafter then represents the remaining set of total chloride measurements at 28 years finally 367 

considered (marked 𝐶 in the following). The evolution of the empirical mean and standard deviation 368 

by depth and by face is shown in Figure 8. 369 



5.2.2. Constitution of trajectories 370 

In the following, the evolution of the SV of 𝐶 is analyzed as a function of depth and exposure 371 

conditions. SCAP-1D is then applied to horizontal trajectories of measurements made on the same 372 

face and at the same embedding depth 𝑧. The estimation of geostatistical parameters for each 373 

trajectory then allows plotting their evolutions as functions of 𝑧 and exposure face. This study 374 

principle is illustrated in Figure 9. 375 

5.3. Average diffusion parameters at 28 years  376 

The 37 total chloride profiles were post-processed to determine the associated Fick’s second law 377 

average diffusion parameters at the reference time 𝑡𝑟 of 28 years, denoted 𝐶𝑠𝑎 and 𝐷𝑎. The fitting 378 

procedure to the peak of the profiles is described in (Othmen et al., 2018) and implemented in 379 

(Schoefs et al., 2023). Thus, one trajectory for each diffusion parameter per side is constructed at a 380 

height of 30 cm. These include 16 points for the Ext Side and 21 points for the Int Side, with a 381 

minimum distance of 30 cm between measurement points.  382 

Table 6 summarizes this information and Figure 10 shows the trajectories. Note that the log function 383 

is applied to each parameter to (i) simplify the representation and visual analysis as they are assumed 384 

to be lognormally distributed, (ii) use identification procedures (see section 4.2) available for 385 

normally distributed random fields. 386 

6. Spatial variability estimates of total chloride content in J-beam and physical 387 

understanding  388 

6.1. Preamble: trajectories conditioning (kriging, debiasing) 389 

Taking into account the non-usable or missing measurements per sample and in order to take into 390 

account the maximum number of points per trajectory, these are first enriched by ordinary kriging of 391 

the available data (Baillargeon, 2005, Chapter 4; Chilès & Delfiner, 2012, Chapter 3).The preliminary 392 

plot of the raw trajectories does not show any obvious non-stationarity (Figure 11), and the 393 

expectation of the associated RF is not known. 394 



The kriging is then performed from the Weighted Least-Square Estimate (WLSE) identification on 395 

the semivariograms of the initial trajectories. We consider an exponential covariance model and the 396 

presence of an additive measurement error, identified by (Bonnet et al., 2017). In addition, (Bonnet 397 

et al., 2017) also identified a measurement bias 𝑏 = 0.37 x 10-3 (kg/kg concrete) associated with the 398 

measurement protocol used and with human errors during its implementation. All the measurements 399 

are therefore debiased before kriging so that the data considered are now 𝐶 + 𝑏. In order to limit the 400 

influence of the kriged data on the estimation of the SV of 𝐶, only the trajectories for which their 401 

proportion is less than 25% are considered. 402 

In total, 13 trajectories with 16 points can be considered on the Ext side (𝑧 ∈ [2.5; 75] mm) and 12 403 

trajectories with 21 points on the Int side (𝑧 ∈ [2.5; 65] mm). The number of kriged data per trajectory 404 

is detailed in Table 1 in the Appendix, and the selected debiased trajectories are shown in Figure 12. 405 

Less than 25% of the data are kriged to 65 mm depth for both sides. We point out that due to the 406 

absence of measurements on the abscissae of the non-exploitable specimens, the trajectory grids are 407 

irregular, with 30% of measurements missing for the Int side and 53% for the Ext side. The 408 

performance of the SCAP-1D normality tests is therefore affected (Clerc et al., 2019), and special 409 

care must be taken to ensure the consistency of the estimation results. 410 

6.2. Geostatistical pre-study and choice of parameters (Step I):  411 

We recall that the studied trajectories are debiased. We then denote  𝑍 the RF of 𝐶 such that 412 

𝑍 = 𝑍 − 𝑏  |  𝑏 = −0.37 × 10−3 kg/kg concrete (4) 

In addition, (Othmen et al., 2018) have previously determined that the marginal law of 𝐶 is lognormal, 413 

and (Bonnet et al., 2017) have identified the "measurement error" introduced by the measurement 414 

protocol, but only for a mortar. This is distributed according to a generalized extremum law 415 

(GeV, (Johnson et al., 1995, p. 3)) with the parameters 𝑘 = 0.16, 𝜎 = 9.3 × 10−5, and 𝜇 =416 

−8.4 × 10−5. (Schoefs et al., 2023) recently pointed out that the error model varies with chloride 417 

content. Consequently, the error should vary according to each trajectory. For simplicity, it is 418 



considered constant in this paper and its standard deviation is an average of the potential standard 419 

deviations (Schoefs et al., 2023). 420 

The best-fitting RF model for  �̃� is then the sum of a log-normal RF 𝑌 and a GeV random variable  421 

𝑊 such that, according to Equation (1), 𝑍 = 𝑌 +𝑊. 422 

However, the joint PDF of such an RF is not explicit, and SCAP-1D cannot simplys be applied. 423 

The small number of points per trajectory also precludes an estimation by WLSE on semivariograms 424 

(see 4.1.2). 425 

Two modeling compromises are then possible in order to ensure explicitness: 426 

• Model a: consider a normal marginal distribution of the total chloride content and a normal 427 

distribution of the error, so that 428 

𝑍 ∼ 𝑁(𝜇(𝑥), 𝑠. 𝑅(𝑎))⏟          
𝐺1

+ 𝑡. 𝑁(0, 𝐼) 
(5) 

where s and t are respectively the empirical variance of the signal and the error and R(a) is the 429 

autocorrelation matrix. 430 

• Model b: do not consider the measurement error, whose standard deviation (1.55 × 10−4 kg/kg 431 

concrete according to the model of (Bonnet et al., 2017) ) would induce a maximum CoV of 8.3% 432 

(on trajectory 13; Ext side, 𝑧 = 75 mm). For this model, 433 

𝑍 ∼ exp (𝑁(𝜇(𝑥), 𝑠. 𝑅(𝑎))⏟          
𝐺2

)

⏞              
𝐿𝑁

 
(6) 

𝐺1 and 𝐿𝑁 are then the RF describing the SV of 𝐶, with 𝐺2 being the source GRF of 𝐿𝑁. 434 

Since the first approximation of the maximum CoV according to the model of (Bonnet et al., 2017) 435 

is significant, we then apply SCAP-1D considering both models, so that : 436 

• if the Signal-to-Noise Ratio (SNR) associated with model a is low, the error is not negligible and 437 

model a is retained; 438 

• if the SNR associated with model a is high, the error is considered negligible and model b is 439 

retained. 440 



Due to the absence of non-stationarities visible in Figure 12, the trajectories are a priori assumed to 441 

be stationary, so that 𝜇(𝑥) = 𝜇. We also recall that the model of the autocorrelation function chosen 442 

for 𝐺1 and 𝐿𝑁 is exponential. According to (Chilès & Delfiner, 2012, p. 106), to guarantee such 443 

a model for the autocorrelation function 𝜌𝐿𝑁(𝑎) of 𝐿𝑁, the autocorrelation function 𝜌𝐺2  of 𝐺2 must 444 

be written as follows 445 

𝜌𝐺2(⋅) = ln(𝜌𝐿𝑁(⋅). [𝑒 − 1] + 1) (7) 

According to (Chilès & Delfiner, 2012, p. 106), the mean 𝑚𝐿𝑁  and the variance 𝜎𝐿𝑁
2  of 𝐿𝑁 are 446 

then written as follows 447 

𝑚𝐿𝑁 = exp (𝜇 +
1

2
𝑠) (8) ; 𝜎𝐿𝑁

2 = 𝑚𝐿𝑁
2 (exp(𝑠) − 1) (9) 

6.3. Model a: Parameter estimation, hypothesis testing and analysis (Steps II, III 448 

and IV)  449 

Preliminary note: Prior to estimation, the trajectory data, of order 10−3, are multiplied by a factor 450 

𝑘 = 104 to facilitate the convergence of the MLE. The estimates of 𝑡, 𝑠 and 𝜇 are then transformed 451 

accordingly before analysis. 452 

Table 2 in the Appendix details the results of the SCAP-1D implementation considering model a. 453 

Only the results of the Σ𝑚𝑜𝑑-tests are considered due to the small number of points per trajectory. 454 

Analyzing these, the estimates for trajectories 4 and 5 are rejected due to the rejection of the 455 

stationarity hypothesis by the KPSS-test and because the estimated error and practical range are 456 

zero and well below 2Δ𝑥, respectively, so that the spatial correlation of the data cannot be described 457 

(see 4.1.5). This is also the case for trajectories 2, 11, 12, and 13 and can be explained by their very 458 

small number of points. Similarly, the estimates associated with trajectories 15, 17, and 24 are not 459 

considered because the estimated practical range is zero. Finally, no valid and convergent estimate 460 

can be obtained for trajectory 14. As a first step, for each selected trajectory, we plot the estimates 461 



�̂� of the mean with their 95% MLE-based confidence intervals in Figure 13 (a)5, and the estimates 462 

√�̂� + �̂� of the standard deviation, for which the distribution is unknown, in Figure 13 (b). We then 463 

note that these are consistent with the statistical mean and standard deviation profiles previously 464 

plotted in Figure 8: the values estimated by kriging (see 4.1) do not produce perturbations of these 465 

statistical estimates. 466 

As a second step, we plot in Figure 14 (a) the standard deviation estimates  �̂� = √�̂� and �̂� = √�̂� of 467 

the error and signal, respectively, and the standard deviation 𝜏𝜀 associated with the error model of 468 

(Bonnet et al., 2017). Trajectories for which the estimated error is zero are not considered. We then 469 

compare the roots of the experimental SNRs �̂�/𝑠 and the fixed error SNRs 𝜏𝜀
2/𝑠 in Figure 14 (b). 470 

Thus, we find that 75% of the roots of the experimental SNRs are greater than 100 and show no 471 

specific trend along. The fixed error SNRs are logically lower than the experimental ones 472 

because the error was calculated for mortars, for which the evaluation error is larger (Schoefs et 473 

al., 2023). 474 

Therefore, in accordance with the previously stated modeling assumptions, we consider the 475 

measurement error to be negligible and retain model b for the SCAP-1D trajectory study. 476 

6.4. Model b: Parameter estimation, hypothesis testing and analysis (Steps II, III, IV) 477 

Preliminary note: Since the RF considered in model b is log-normal, the data considered for the 478 

SCAP-1D implementation are the logarithms of the debiased data to consider a normal joint PDF. 479 

The estimators of 𝑚𝐿𝑁, 𝜎𝐿𝑁
2  and 𝑟95,𝐿𝑁  are then calculated from Equations (7) to (9) and from the 480 

estimators �̂�, �̂� and �̂�. 481 

Table 3 in the Appendix shows the result of the SCAP-1D implementation considering model b. Only 482 

the results of the Σ𝑚𝑜𝑑-tests are considered due to the small number of points per trajectory. The 483 

analysis shows that the estimates for trajectories 3, 4, 5, and 16 are rejected due to the rejection of the 484 

 

5 some values are missing due to the singularity of the Fisher matrix 



stationarity hypothesis by the KPSS-test. A model of the mean and covariance function that satisfies 485 

the hypothesis cannot be found, so no geostatistical parameter estimates are available for these 486 

trajectories. 77% of the estimates are then valid on the Ext side (10/13) and 92% on the Int side 487 

(11/12). 488 

The estimates �̂�𝑳𝑵 and �̂�𝑳𝑵 of the means and standard deviations are plotted with their confidence 489 

intervals (CIs) for each trajectory in Figure 15. Note that the estimates are consistent with the 490 

statistical mean and standard deviation profiles previously plotted in Figure 8. Meanwhile, the 491 

estimates �̂�𝟗𝟓,𝑳𝑵 of the practical ranges are plotted with their CIs in Figure 16. 492 

In the case of the trajectories associated with the Ext side, only 8 out of 10 estimates retained by 493 

SCAP-1D (i.e., 47% of all estimates) are finally retained after filtering out the outliers. These 494 

estimates all satisfy the interpretability criterion (see 4.1.5) with values between 100 and 300 cm for 495 

a minimum measurement step of 30 cm. However, contrary to the assumptions made at the beginning 496 

of the study, there is no trend in the evolution of �̂�95,𝐿𝑁 as a function of the depth. 497 

In the case of the trajectories associated with the Int side, all the estimates retained by SCAP-1D can 498 

be considered after filtering out the outliers (i.e., 92% of all the estimates). In accordance with the 499 

hypotheses formulated at the beginning of the study, we observe a practical range of zero near the 500 

surface, then a quasi-constant value around 60 cm-100 cm from 20 mm depth, respecting the 501 

interpretability criterion. This tendency reflects a transition from a purely random quantity of interest 502 

(QI) at the surface to a spatially correlated QI. at depth. We propose the following explanation: 503 

• At the surface, many spatiotemporally random material (microcracks, …), physicochemical (local 504 

runoff, …), and environmental phenomena (biofouling, …) contribute to the supply and 505 

convection of chlorides, so that, in coherence with the central limit theorem, the chloride 506 

concentration at the surface can be considered completely random, at least at the scale of the 30 507 

cm spatial discretization studied; 508 

• at depth, the phenomenon of diffusion and fixation of 𝐶 gradually takes precedence over their 509 

distribution within the coating, so that the fixation and diffusion properties of the concrete become 510 



predominant with respect to the external and surface phenomena. Since the concrete has a certain 511 

spatial homogeneity, it is then consistent that 𝐶 is spatially correlated. 512 

Furthermore, it is noted that the value of �̂�95,𝐿𝑁 at the rebar depth is of the same order as the as the  513 

conventional spacing of the vibrations during concrete pouring, from 30 to 60 cm (Guiraud, 2018; 514 

SETRA, 2005, p. 199). This observation then reinforces the idea that the spatial correlation of 𝐶 is 515 

strongly related to the homogeneity properties of the concrete. 516 

6.5. Model b: construction of a unique autocorrelation model of chloride content 517 

The results obtained from the study of the Int side trajectories are much more convincing than those 518 

obtained from the study of the Ext side trajectories. In order to propose a unique autocorrelation 519 

model of 𝐶 for the diffusion region, we then perform an MLE on the set of reduced centered 520 

trajectories of the Int side (without the first 10 mm), considering a unique scaling parameter 𝑎. Due 521 

to the non-stationarity of the mean and variance of 𝐶 as a function of depth, we consider the 522 

trajectories independent of each other (we therefore neglect the SV along the 𝑧-axis). Still considering 523 

an exponential covariance model, the estimated practical range is �̂�95 = 71 cm, i.e. �̂� = 24 cm. 524 

We then state that the Gaussian model of identical practical range has the scale parameter 𝑎 = 41 cm. 525 

However, the calculation of the ER from the AICC does not allow us to distinguish between the two 526 

models from the data, either by considering each trajectory or by estimating the MLE over all 527 

trajectories. In fact, their values are between 1 and 1.29. They are reported in Table 4 in the Appendix. 528 

Considering only the estimation results from the Int side, which are considered more robust due to 529 

the larger amount of data per trajectory, we can partially answer the questions raised in the 530 

introduction of this study. The SV of the chloride content seems indeed to depend on the depth, with 531 

a large variability within the convection zone, and much less and more stable in the diffusion zone 532 

with a practical range of about 70 cm. However, this value is more than two to three times lower 533 

than the practical range values of the average diffusion parameters 𝐶𝑠𝑎  and 𝐷𝑎  reported in the 534 

literature, between 176 and 264 cm (Engelund & Sørensen, 1998; Karimi, 2002; O’Connor & 535 



Kenshel, 2013). However, it should be noted that the latter are obtained with less robust methods than 536 

SCAP-1D and with even smaller data sets. 537 

However, the question of the influence of the exposure conditions on the SV of the chloride content 538 

remains open due to the inconsistency of the practical range estimates on the Ext side. However, 539 

given the interpretation of the results for the Int side, it can be expected to have an influence only 540 

near the surface, where the chloride contents are already spatially decorrelated. However, this 541 

suggestion needs to be confirmed by studying an even richer database in order to increase the 542 

robustness of the estimates.  543 

7. Spatial variability estimation of chloride diffusion parameters of J-beam and physical 544 

analysis  545 

7.1. Geostatistical pre-study and choice of procedure parameters (Step I):  546 

The trajectories of log(𝐶𝑠𝑎) and log(𝐷𝑎) are shown in Figure 17 to Figure 20, as well as their 547 

means and the histograms and experimental semivariogams of centered trajectories. These curves 548 

are plotted for each trajectory in three cases: (i) stationary mean (no changepoint); (ii) piecewise 549 

stationary mean with one changepoint determined via the PELT algorithm (Killick et al., 2012); 550 

(iii) piecewise stationary average at two changepoints determined via the PELT algorithm.  551 

The presence of sills on the experimental semi-variograms allows identifying the a priori 552 

stationary centered trajectories and thus the most appropriate non-stationarity model for each. 553 

The shapes of the histograms and semi-variograms (nugget effect, tangent to the origin, …) 554 

allows identifying models of joint density and a priori autocorrelation function that are adequate 555 

to the geostatistical description of the data. 556 

Since the amount of data per trajectory is limited, especially for the Ext side, Step I could only 557 

be executed for the trajectories log(𝐶𝑠𝑎  )  1 and log(𝐷𝑎)  1. The observations made as well as the 558 

models considered a priori are presented in Table 7. 559 



7.1.1. Fields models 560 

Although the histogram of the centered trajectory log(𝐶𝑠𝑎  )  1  is asymmetric, this may be due to 561 

the spatial correlation of the data. The histogram of log(𝐷𝑎  )  1 is centered. Moreover, we do not 562 

notice any nugget effect. This is due to the fact that the measurement noise of the chloride data is 563 

negligible (see 6.3). For simplicity and consistency with the results of the literature, a Gaussian 564 

Random Field model (GRF) is used to estimate spatial variability. This model is also retained by 565 

default for the log(𝐶𝑠𝑎  ) 2 and log(𝐷𝑎  ) 2 trajectories. 566 

7.1.2. Averaging models: apparent non-stationarity 567 

The trajectories are a priori globally stationary since the experimental semi-variograms without any 568 

changepoint in the mean present a sill. A constant mean model is therefore retained. 569 

7.1.3. Covariance function models 570 

Due to the large between measurement points, the spatial resolution is insufficient to visualize the 571 

presence of a tangent at the origin of the experimental semi-variograms. We therefore retain both the 572 

Gaussian and exponential covariance models without a priori preference. 573 

This choice does not allow accounting for the correlation between log(𝐶𝑠𝑎 ) and log(𝐷𝑎  ), well 574 

identified by (Othmen et al., 2018) and which should be modeled via a cross-correlated Random Field 575 

(XRF) (Chilès & Delfiner, 2012, p. 332). It is however justified as XRF modelling requires additional 576 

parameters (cross-correlation coefficient and cross-scale parameter(s)) which leads to 577 

overparameterization and unsuccessful assessment attempts due to the limited amount of data6. 578 

7.2. Parameter estimation, hypothesis testing and analysis (Steps II, III and IV) 579 

SCAP-1D steps II and III are applied to the trajectories of log(𝐷𝑎  ) considering the models kept in 580 

7.1. This allows the most appropriate covariance model to be determined from the calculation of 581 

 

6 MLE on raw data and MLE on data enriched via Metropolis-Hastings sampling did not give satisfactory results 



Evidence Ratios (ER). These are computed from the AICC. Table 8 shows the results of SCAP-1D 582 

execution by trajectory. The models are ranked by increasing value of their ER. 583 

First no estimate is rejected by the hypothesis tests. The estimates computed from the exponential 584 

and Gaussian models are then consistent for each of the trajectories except for the trajectory log(𝐶𝑠𝑎) 585 

2 (relative errors of respectively 21%, 63%, 9% and 21% between the practical ranges of the 586 

Gaussian model and those of the exponential model). Furthermore, the exponential and Gaussian 587 

covariance models cannot be distinguished from the ERs (maximum difference observed for the 588 

log(𝐶𝑠𝑎) 1 trajectory with a ratio of 1 for the Gaussian model and a ratio of 2.13 for the 589 

exponential model). However, the Gaussian model leads to smaller coefficients of variation of the 590 

geostatistical parameters (up to a factor of 2.5 for the scale parameter of trajectory log(𝐶𝑠𝑎) 1). 591 

Second, the majority of the practical range estimates do not meet the interpretability criterion (see 592 

4.1.5). All of the estimates of 𝑟95 made on the log(𝐷𝑎) trajectories as well as the estimate made on 593 

the log(𝐶𝑠𝑎) 2 trajectories are indeed of the order of 30 cm, which is the minimum spacing 594 

between measurements. 595 

Therefore, only the estimates made on the log(𝐶𝑠𝑎) 1 trajectory are retained. The estimated practical 596 

range is indeed 50 to 63 cm depending on the chosen covariance model, exponential or Gaussian 597 

(i.e., a ratio 𝑟95/𝐿 of 0.05 to 0.07). The latter can then be preferred a priori because of its minimal 598 

ER even if exponential model is close. 599 

Thus, due to the too large spacing between measurement points compared to the hidden value of their 600 

practical range, the question of whether the SV of the scattering parameters is a function of the 601 

exposure conditions cannot be answered here. 602 

Furthermore, the interpretable estimates of practical ranges differ significantly from the 100 to 200 603 

cm values estimated by (O’Connor & Kenshel, 2013) on a bridge exposed to chloride ion penetration. 604 

Such a difference can be explained by the fact that these authors significantly enriched their initial 605 

kriging database (number of points multiplied by 7) before producing their estimates, which may have 606 

influenced them significantly. 607 



8. Conclusion 608 

In this paper, a new database is proposed for analysis of the spatial variability of chloride ingress into 609 

concrete. A total of 460 measurements was available, belonging to 2 exposures zones: 12 trajectories 610 

of 21 points for each profile on the Internal side (sheltered from wetting-drying cycles) and 13 611 

trajectories of 16 points on the External side. This data base was uses to analyze the spatial variability 612 

of (i) chloride content, (ii) parameters of a model of chloride diffusion. The analysis is performed on 613 

the basis of a complete framework (SCAP-1D) which raises, rigorously for the first time, questions 614 

of stationarity, marginal distribution and auto-correlation. 615 

The application to the total chloride content data showed that: 616 

• the measurement error on total chloride content is negligible for the estimation of their spatial 617 

variability; 618 

• near the surface, spatio-temporally random physico-chemical and environmental phenomena 619 

contribute to the diffusion and convection of chlorides so that, in coherence with the central limit 620 

theorem, total chloride content at the surface can be considered totally random; 621 

• in depth (from about 20 mm), total chlorides diffusion and fixation gradually take precedence 622 

over their distribution within the coating, so that fixation and diffusion properties of concrete 623 

become predominant compared to the external and surface phenomena. Total chloride content is 624 

then spatially correlated with an estimated general practical range of 71 cm (scale parameter of 625 

24 cm) which is of the same order as the conventional vibration spacing during concrete pouring 626 

(30-60 cm (Guiraud, 2018; SETRA, 2005, p. 199)). This supports the fact that total chloride 627 

content spatial correlation in depth is strongly related to the homogeneity properties of the 628 

concrete resulting from pouring.  629 

The application to the identification of diffusion parameters showed that: 630 

The application to the chloride diffusion parameters data was presented in section 7. It allowed 631 

estimation of geostatistical parameters only for the logarithm of the average surface chlorides 632 

concentration. This is due to a limited number of points per trajectory (from 16 to 21) and a too large 633 



spacing between measurement points (30 cm). The estimated practical range value is nevertheless 634 

consistent with that of the total chloride content in depth since it is between 50 and 63 cm.  635 

Implementation of SCAP-1D on these two datasets allowed to note that when the number of points 636 

per trajectory is limited but not small (≥ 20), it is more efficient to first consider the results of 637 

statistical tests performed on the standardized trajectory from the empirical covariance matrix, and 638 

then in a second step those performed on the standardized trajectory from the modeled covariance 639 

matrix. This allows to first assess the validity of the mean model, then those of the marginal density 640 

model and the estimates of the geostatistical parameters of the source Random Field. On the contrary, 641 

when the number of points per trajectory is small (< 20), it is preferable to consider only the results 642 

of the statistical tests performed on the standardized trajectory from the modeled covariance matrix, 643 

in order to guarantee its positivity of the latter. 644 

  645 



10. Appendix – Detailed tables of estimation process data 646 

Table 1- Definition of trajectories and proportion of kriged data per trajectory – Ext side and Int side 647 

kriged data -  Ex side  kriged data - Int side 

trajectory depth (mm) number percentage  trajectory depth (mm) number percentage 

1 2.5 0 0%  16 2.5 0 0% 

2 7.5 0 0%  17 7.5 1 5% 

3 12.5 0 0%  18 12.5 1 5% 

4 17.5 0 0%  19 17.5 1 5% 

5 22.5 0 0%  20 22.5 2 10% 

6 27.5 0 0%  21 27.5 1 5% 

7 32.5 0 0%  22 32.5 2 10% 

8 37.5 2 13%  23 37.5 2 10% 

9 42.5 3 19%  24 42.5 4 19% 

10 47.5 4 25%  25 47.5 3 14% 

11 55 1 6%  26 55 4 19% 

12 65 1 6%  27 65 4 19% 

13 75 3 19%  28 75 9 43% 

14 85 9 56%  29 85 15 71% 

15 95 10 63%  30 95 17 81% 
 Total 33 14%   Total 66 21% 

Table 2 - Estimation of geostatistical parameters of total chloride concentration trajectories by SCAP-1D - 648 

model a 649 

 650 



Table 3 - Estimation of geostatistical parameters of the logarithm of total chloride concentration trajectories 651 

by SCAP-1D – model b 652 

 653 

Table 4 - Computation of the evidence ratios associated with the exponential and Gaussian covariance 654 

models for model b using the corrected Akaike criterion 655 

trajectory model Corrected Akaike criteria Evidence Ratios 

# Face z (mm) Npts model reg chg cov gauss cov expon cov gauss cov expon 

17 Int 17.5 21 G 0 0 -3.21E+01 -3.22E+01 1.04 1.00 

18 Int 22.5 21 G 0 0 -3.89E+01 -3.89E+01 1.00 1.05 

19 Int 27.5 21 G 0 0 -3.59E+01 -3.55E+01 1.00 1.21 

20 Int 32.5 21 G 0 0 -3.05E+01 -3.07E+01 1.11 1.00 

21 Int 37.5 21 G 0 0 -2.39E+01 -2.39E+01 1.00 1.01 

22 Int 42.5 21 G 0 0 -2.89E+01 -2.94E+01 1.29 1.00 

23 Int 47.5 21 G 0 0 -3.14E+01 -3.18E+01 1.18 1.00 

24 Int 55 21 G 0 0 -4.21E+01 -4.18E+01 1.00 1.14 

25 Int 65 21 G 0 0 -4.22E+01 -4.18E+01 1.00 1.26 

G : gaussian 

 656 

  657 
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14. Embedded Tables 836 

 Table 5 - Exponential and Gaussian autocorrelation functions, and relations between their scale parameter, 837 

fluctuation scale and practical range 838 

Name Model 𝜃 𝜌(ℎ = 𝜃) 𝑟95 𝜌(ℎ = 𝑟95) 

exponential 𝜌(ℎ) = exp (−‖ℎ‖/𝑎) 2𝑎 0.135 3𝑎 0.05 

Gaussian 𝜌(ℎ) = exp (−‖ℎ‖2/𝑎) √𝜋𝑎 0.043 1.73𝑎 0.05 

𝑎: scale parameter; 𝜃: fluctuation parameter; 𝑟95: practical range;  

𝜌(⋅): autocorrelation function 

 839 

Table 6- Numbering of the trajectories of average scattering parameters (J-beam) 840 

trajectory Side number of measurement points 

log (𝐶𝑠𝑎) 1 Int 21 

log (𝐷𝑎) 1 Int 21 

log (𝐶𝑠𝑎) 1 Ext 16 

log (𝐷𝑎) 2 Ext 16 

 841 

Table 7- Geostatistical pre-study of the trajectories of the logarithms of the average diffusion parameters – 842 

J-beam 843 

 analysis of experimental semi-variograms and histograms models considered 

trajectory chgpt(*) nugget oscillations original tangent histogram shape average field covariance 

log (𝐶𝑠𝑎) 1 0 no no insufficient resolution asymmetrical cste GRF Gauss or expon 

log (𝐷𝑎) 1 0 no no insufficient resolution symmetrical cste GRF Gauss or expon 

log (𝐶𝑠𝑎) 2 - - - - - cste GRF Gauss or expon 

log (𝐷𝑎) 2 - - - - - cste GRF Gauss or expon 

(*) : changepoints necessary for the experimental semi-variogram to have a sill 

 844 

Table 8- Geostatistical parameter estimates of the trajectories of the logarithms of the mean scattering 845 

parameters by SCAP-1D 846 

  model 𝚺𝒆𝒙𝒑-tests 𝚺𝒎𝒐𝒅-tests estimates CoV model selection range 

traj 
# model cov chg reg 𝝌𝟐  KS KPSS DF 𝝌𝟐  KS KPSS DF α1  s  

a1 
(cm) α1 s a1 AICc ER 

r95 

(cm) r95/L 

log(𝐶𝑠𝑎) 1 
1 GRF expon 0 0 0 0 0 1 0 0 0 1 -4,82 0,13 17 0,02 0,31 0,81 -14,08 2,13 50 0,05 

2 GRF gauss 0 0 0 0 0 1 0 0 0 1 -4,81 0,15 37 0,02 0,39 0,33 -15,59 1,00 63 0,07 

log(𝐶𝑠𝑎) 2 
1 GRF expon 0 0 0 0 0 1 0 0 0 1 -5,20 0,07 19 0,01 0,36 1,20 -19,22 1,00 57 0,06 

2 GRF gauss 0 0 0 0 0 1 0 0 0 1 -5,20 0,07 20 0,01 0,36 0,80 -19,11 1,06 35 0,04 

log(𝐷𝑎) 1 
1 GRF expon 0 0 0 0 0 1 0 0 0 1 -27,48 0,31 10 0,00 0,31 1,65 3,78 1,01 29 0,03 

2 GRF gauss 0 0 0 0 0 1 0 0 0 1 -27,48 0,31 18 0,00 0,31 0,77 3,76 1,00 32 0,03 

log(𝐷𝑎) 2 1 GRF expon 0 0 0 0 0 1 0 0 0 1 -27,56 0,29 13 0,01 0,35 1,40 4,19 1,00 40 0,04 
2 GRF gauss 0 0 0 0 0 1 0 0 0 1 -27,56 0,29 19 0,01 0,35 0,72 4,21 1,01 33 0,04 
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Figure 7 - Samples taken for chloride titration (J-beam): a) Locations, b) Cross-section, c) Slices  903 
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Figure 9 - Total chloride concentration database and illustration of the principle of implementing SCAP-1D 910 
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Figure 14 - Study of the Signal to Noise Ratio - model a 927 
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Figure 15 - Profiles of the evolution of the mean and standard deviation of total chloride concentrations 929 

according to the depth of embedding - model b 930 
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Figure 16 - Practical range profiles of total chloride concentration trajectories as a function of embedment 933 

depth - model b 934 
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Figure 19- Data and averages of logarithm of mean surface concentration trajectory 2; histograms of 944 

trajectories so centered; experimental semivariogams of trajectories so centered 945 
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Figure 20- Data and averages of trajectory 2 of logarithm of mean diffusivity; histograms of trajectories so 947 

centered; experimental semivariogams of trajectories so centered 948 
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