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Abstract 14 

Chloride ingress via diffusion is the main deterioration process of reinforced concrete (RC) structures exposed 15 

to marine environment. These structures offer to the environment important lengths or surfaces. Due to the 16 

material variability (different concrete batches, vibrations) and exposure variability, the material experiences 17 

a spatial variability of the deterioration process. This paper presents the geostatistical analysis of in-situ 18 

chloride profiles, leading to the assessment of spatial variability (SV) of both the chloride ingress itself and the 19 

parameters of the widely used Fick diffusion law (the average surface chloride content, 𝐶𝑠𝑎 , and the average 20 

chloride diffusion coefficient 𝐷𝑎). 37 chloride profiles measured on both sides of the same spandrel beam of a 21 

RC wharf are studied, as well as the related estimates of 𝐶𝑠𝑎  and 𝐷𝑎. From an initial selection of random fields 22 

models, the geostatistical analysis consists in assessing model parameters using a procedure which tests both 23 

data and model assumptions on the fly (ergodicity, stationarity, random field modelling). Combined to the 24 

computation of information criteria for each model, this procedure allows providing relevant geostatistical 25 

models for chloride ingress, 𝐶𝑠𝑎  and 𝐷𝑎, which render SV as well as measurement error. It is noticeably found 26 

that the error of assessment can be neglected when focusing on SV for the range of chloride content studied in 27 

the paper. The SV of chloride content seems to depend on the depth, with a large variability within the 28 

convection zone, and much less and more stable in the diffusion zone with a practical range of about 70cm. 29 

This order of magnitude is consistent with the range of SV computed for 𝐶𝑠𝑎  (50 tà 73 cm).  30 

Keywords: Chloride ingress, Reinforced concrete, Marine environment, Spatial variability, 31 

Random field, Statistical analysis. 32 

1. Introduction 33 

Chloride ingress is among the main causes of degradation of reinforced concrete (RC) structures 34 

where the deterioration is more perceptible in marine environment. That leads to major maintenance 35 

costs (Bastidas-Arteaga & Schoefs, 2015; Stewart & Val, 2003). These structures offer to the 36 

environment important lengths or surfaces. Due to the variabilities of both the material (different 37 

concrete batches, vibrations) and exposure, they experience a spatial variability of their deterioration 38 

process. Accounting for realistic spatial correlation of the different parameters in structural safety 39 

models may lead to more realistic estimates on structural reliability and maintenance planning, 40 

knowing that reliability assessment is affected by spatial correlation (Schoefs et al., 2022; Stewart, 41 

2004; Stewart & Mullard, 2007). Moreover, quantifying this property allows optimizing inspection 42 

meshing on a structure (Gomez-Cardenas et al., 2015; Oumouni & Schoefs, 2021b; Schoefs et al., 43 



2017a). 44 

The variability of the degradation parameters and their measurements can be described at 45 

different scales: 46 

• the point scale, characterizing the repeatability of measurements;  47 

• the local scale of the material, characterizing the heterogeneity of the material for a scale 48 

lower than the Representative Elementary Volumes (REV) associated with each of the 49 

quantities of interest (Hill, 1963); 50 

• higher scales (structural elements, structure), characterizing the degree of spatial 51 

heterogeneity of the material and/or environmental conditions (exposure, loading, …) for 52 

scales above the REVs. 53 

The restitution of point and local variabilities requires a statistical modeling, translating the 54 

hypothesis of independence, respectively on (i) the measurements of parameters between distinct 55 

measurements and for a same measurement point and (ii) the parameter values between similar 56 

structures for the same REV dimension. The spatial variability (taking into account local and larger 57 

scales) cannot be solely captured by a statistical modelling because of the hypothesis of the existence 58 

of a certain degree of heterogeneity, i.e. spatial correlation, between measurements or between 59 

parameter values associated with different measurement points or REV on the same structure. This 60 

can only be translated by geostatistical modeling. The major challenge of those models is to determine 61 

stochastic properties of the Random Fields (RF), namely their marginal distributions, stationarity and 62 

the spatial correlations.  63 

Chloride ingress has been investigated deeply since the 70’s and it has been shown how 64 

complex is the process physically and chemically (Glasser et al., 2008; Kaushik & Islam, 1995; Ragab 65 

et al., 2016; Safhi et al., 2019; Wegian, 2010) and the role the material complexity (porosity) is 66 

playing (Qu et al., 2021). For the moment, available models of transfer and knowledge don’t allow 67 



to represent accurately the spatial variability of pollutant in concrete (Ravahatra et al., 2017). That is 68 

the main reason why direct or indirect assessment of chlorides in situ is the only way to measure, 69 

analyze and model the spatial variability of chloride ingress. Then, two kinds of quantities of interest 70 

can be considered: 71 

• the total chloride content 𝐶 at several depths; 72 

• their mean diffusion parameters 𝐶𝑠𝑎 and 𝐷𝑎, estimated from profiles of chloride content. 73 

During the last decades sensors have experiences significant progresses (Biondi et al., 2021; 74 

Torres-Luque et al., 2014, 2017; Watanabe et al., 2021; Zaki et al., 2015) but there are few concepts 75 

that measure the spatial distribution of chloride ingress (Fares et al., 2018; Lecieux et al., 2015, 2019) 76 

and their implementation is rare (Priou et al., 2019) even if their interest in terms of the value of 77 

information they provide was shown (Schoefs et al., 2022) especially because they allow to filter the 78 

signal (Oumouni & Schoefs, 2021a). Moreover, these sensors have to be installed at the building 79 

stage and are not suitable for existing structures. 80 

That is the main reason why spatial variability is assessed through Non-Destructive Testing 81 

(NDT) tools or Semi-Destructive Techniques (SDT). On-site indirect assessment of chlorides through 82 

NDT-techniques is affected by errors of assessment and sensitivity to other parameters (humidity, 83 

temperature) which makes it difficult to assess the spatial variability of chlorides (Bonnet et al., 2017; 84 

Bourreau et al., 2019; Schoefs et al., 2023). This error affects the optimization of measurements for 85 

assessing spatial variability (Oumouni & Schoefs, 2021b).That is why, the rare studies are based on 86 

the semi destructive techniques (SDT) i.e. direct weighting of chlorides from cores (O’Connor & 87 

Kenshel, 2013; Othmen et al., 2018) reviewed 10 published studies from 2004 to 2016 with only 3 88 

concerning more than 30 measurements and in all cases the distance between measurement was too 89 

large in view to assess the spatial correlation. Two main quantities of interest are investigated: 90 

chloride content at a given depth and parameters of a model of chloride ingress after post-processing 91 

of chloride profiles. 92 



Because of the complexity and cost for making a large amount of cores in a beam, only a few 93 

amounts of data is available for each and the distance between cores is too large: 5 cores with a 94 

distance of about 1 m in the study of (O’Connor & Kenshel, 2013). That leads to a significant 95 

numerical error of assessment of the spatial correlation (Schoefs et al., 2017b). Moreover, the 96 

underlying assumptions for RF modelling that are stationarity and ergodicity are not checked. Finally, 97 

the error of measurement is usually not considered when identifying correlations. That is a drawback 98 

because it is well known that SDT measurements for existing structures (Schoefs et al., 2023) and 99 

even for concrete in laboratory (Bonnet et al., 2017; Hunkeler et al., 2000) are affected by a significant 100 

error. To overcome these limits, this paper relies on two pillars: first, a unique database and second, 101 

a geostatistical analysis that allows to provide geostatistical parameters (namely spatial correlation 102 

assessments as well as measurement error) by using a recent method of RF identification (SCAP1D, 103 

Clerc et al. 2019), that accounts for uncertainty of measurements, checks ergodicity and accounts for 104 

the non-stationarity of the RF. 105 

Concerning the first pillar, marine structures can be exposed in various environments: 106 

atmospheric, spatter or splash, tidal and underwater (BS 6349-1:2000, 2000) which were defined 107 

according to the tide range (Bourreau et al., 2020). In this work, 30 cores carried out every 30 cm on 108 

the same 28-year beam (Othmen et al., 2018) are analyzed. The beam is located in the worst 109 

environment that is splash zone (Angst et al., 2009), and the cores are through its width giving access 110 

to profiles from each side i.e., exposure conditions (exposed, sheltered). 111 

Concerning the second pillar, two objectives are targeted: the assessment of spatial variability 112 

of the total chloride content 𝐶, depending on depth and exposure on one hand and the assessment of 113 

the spatial variability of the mean diffusion parameters 𝐶𝑠𝑎 and 𝐷𝑎 on the second one. First, taking 114 

benefit of the availability of 𝐶 at several depth, the objective is to provide estimates of its geostatistical 115 

parameters and to answer the following questions: (i) Is the spatial variability (SV) of 𝐶 a function of 116 

depth? (ii) Is the SV of 𝐶 a function of the exposure conditions? Second, knowing the age of the 117 

structure (28-year), geostatistical parameters of mean diffusion parameters are estimated to answer 118 



the following question: Is the SV of 𝐶𝑠𝑎 and 𝐷𝑎 a function of the exposure conditions? The latter 119 

question arises because 𝐶𝑠𝑎 and 𝐷𝑎 are directly dependent on the chloride profiles, which vary 120 

markedly between the exposed and sheltered faces. 121 

Section 2 introduces the geostatistical formalism in a theoretical way before presenting a state 122 

of the art of RF modeling, simulation methods and spatial variability estimation methods. An attention 123 

is paid to the underlying assumptions of the estimation methods and to the consequences of their 124 

neglect on the estimated spatial variability, especially in the frequent case of non-stationary 125 

measurements due to spatially variable exposure conditions. Section 3 presents the structure and the 126 

available data. Sections 4 and 5 give the results at two levels: total chloride contents, and mean 127 

diffusion parameters of total chlorides. Section 6 concludes the paper with some extension to other 128 

structures or other exposures. 129 

2. Geostatistical methods for spatial variability assessment of concrete structures 130 

2.1. Modelling of spatial variability 131 

2.1.1. Random Field modeling 132 

Practical modelling of spatial variability implies to model spatially variable quantity of interest (q.i) 133 

as Second Order Intrinsic Stationary Random Fields (RF) (Chilès & Delfiner, 2012). Following 134 

geostatistical formalism, such a RF 𝑍 is defined on a domain 𝐷 of ℝn and on a probability space 135 

(𝛺, 𝐴, 𝑃) such that:   136 

• ∀𝒙 ∈ 𝐷𝑛  and ∀(𝑝, 𝑞) ∈ [1; 𝑛]2, 𝑍(𝒙,⋅)=𝑍𝒙 is a multivariate random variable of 𝜔 ∈ 𝛺 with joint 137 

probability density function (pdf) 𝑓𝑍(𝒎,𝚺); 138 

• ∀𝒙 ∈ 𝐷𝑛  and ∀𝜔 ∈ 𝛺, 𝑍(𝒙,𝜔) = 𝑍𝒙
𝜔  is a realization of 𝑍 georeferenced by vector 𝒙, also called 139 

trajectory (in practice, one set of measurements from a unique structure and at a unique time). 140 

• ∀(ℎ, 𝑥) ∈ 𝐷2, 𝔼[𝑍𝑥+ℎ − 𝑍𝑥] = 0 and 𝑉𝑎𝑟(𝑍𝑥+ℎ − 𝑍𝑥) = 2𝛾(ℎ) with 𝛾(⋅) the semi-variogram of 141 

𝑍 and ℎ any space lag; 142 



This definition reflects both the variability of input parameter between structures and its spatial 143 

variability within the same structure, which are embedded into the covariance matrix 𝜮 and the semi-144 

variogram. 145 

In this paper, data are modeled as (i) unidimensional (ii) noisy (iii) trend-stationary (iv) Gaussian 146 

Random Field (GRF). Indeed, (i) data are unidimensional along beam sides; (ii) if the spacing 147 

between measurements is larger than the REV, the RF model must be able to reproduce the point and 148 

local variabilities, which do not have a correlation structure and can be modeled by white noise; (iii) 149 

materials and environmental conditions may vary along beam sides. It is then highly probable that 150 

the mean of the quantities of interest varies with space; (iv) GRF are very handy as they allow to 151 

model most natural variabilities (following normal or lognormal marginal laws) with only a model 152 

for the mean and the covariance (Chilès & Delfiner, 2012). 153 

Mathematically, ∀𝒙 ∈ 𝐷𝑛 we thus consider 𝑍 such that 154 

𝑍𝒙 = 𝒎𝒙 +𝑊𝒙 + 𝑌𝒙 (1) 

 With 𝒎𝒙 a deterministic trend, 𝑊𝒙 ∼ 𝑁(𝟎, 𝑡 × 𝟏𝒏) a white noise of variance 𝑡; 𝑌𝒙 ∼ 𝑁(𝟎, 𝜮𝒀) a 155 

centered GRF, i.e 𝑌𝑥 a multivariate normal variable such that 156 

∀(ℎ, 𝑥) ∈ 𝐷2 , Σ𝑌𝑥+ℎ,𝑥 ≡ 𝐶𝑜𝑣(𝑌𝒙+𝒉, 𝑌𝑥) ≡ 𝐶𝑌(ℎ) ≡ 𝑠 × 𝜌𝑌  (ℎ) (2) 

with 𝐶𝑌(⋅) the covariance function of 𝑌, 𝑠 its variance, 𝜌𝑌(⋅) its autocorrelation function, and ℎ any 157 

distance-lag between data (equivalences due to the Second Order Stationarity of GRF). 158 

This formalism is illustrated on Figure 1 and Figure 2, where trajectories, correlation diagrams, 159 

autocorrelation functions and semi-variograms are plotted for 𝑌 and 𝑍 respectively, defined such that 160 

(1) 𝑌𝒙 ∼ 𝑁(𝟎,𝜮𝒀) with Σ𝑌𝑥+ℎ,𝑥 = 𝑠 × exp (−1.73‖ℎ‖
2/𝑟95), 𝑠 = 10 and 𝑟95 = 20, and (2) 𝑍 = 𝑊 +161 

𝑌 with 𝑊𝒙 ∼ 𝑁(𝟎, 𝑡 × 𝟏𝒏) and 𝑡 = 5. 162 



 163 

Figure 1 - Illustration of the geostatistical formalism: GRF 𝑌 164 

 165 

Figure 2 - Illustration of the geostatistical formalism: noisy GRF 𝑍 166 

 167 



2.1.2. Autocorrelation models and parameters 168 

Table 1 and Figure 1 respectively presents and illustrates the exponential and Gaussian 169 

autocorrelation functions, widely used in the literature. In accordance with Equation (2) such 170 

functions are positive definite such that they asymptotically decrease as a function of the distance-lag 171 

ℎ. The evolution of this decay is mainly driven by the value of their scale parameter 𝑎 > 0, which 172 

parametrizes the extent of the spatial correlation, i.e. the spacing threshold below which the q.i are 173 

strongly correlated.  174 

The distance for which events are weakly correlated is called the Inspection Distance Threshold with 175 

a definition of a Spatial Correlation Threshold of 30% in (Schoefs et al., 2016). Several notations and 176 

parameters coexist in the literature to describe this threshold, sometimes with some confusion. In the 177 

case of isotropic fields, (i)  Cressie (1993, p. 118) defines the fluctuation range 𝜃, such that 𝜃 =178 

∫ 𝜌(ℎ)𝑑ℎ
+∞

−∞
 ; (ii) the same author (p. 88) defines by the practical range 𝑟95, such that 𝜌(𝑟95) = 5% 179 

(see Figure 1 and Figure 2) and (iii)  the correlation length 𝑙𝑐 is not strictly defined and alternatively 180 

taken equal to 𝑎, 𝜃, 𝑟95 or any other particular range. In order to avoid any confusion and to simplify 181 

comparison and interpretations, we specify in Table 1 the expression of 𝜃 and 𝑟95 as a function of 𝑎 182 

for the exponential and Gaussian models and the associated autocorrelation values 𝜌. Note that on 183 

Figure 1 𝑌 is obtained from a Gaussian autocorrelation function. 184 

Table 1 - Exponential and Gaussian autocorrelation functions, and relations between their scale parameter, 185 

fluctuation scale and practical range 186 

Name Model 𝜃 𝜌(ℎ = 𝜃) 𝑟95 𝜌(ℎ = 𝑟95) 

exponential 𝜌(ℎ) = exp (−‖ℎ‖/𝑎) 2𝑎 0.135 3𝑎 0.05 

Gaussian 𝜌(ℎ) = exp (−‖ℎ‖2/𝑎) √𝜋𝑎 0.043 1.73𝑎 0.05 

𝑎: scale parameter; 𝜃: fluctuation parameter; 𝑟95: practical range;  

𝜌(⋅): autocorrelation function 

 187 



2.2. Identification of spatial variability from measurements 188 

2.2.1. Empirical identification 189 

RF models behind a trajectory can be identified in case of its ergodicity, which can be seen as a 190 

mixture of stationarity and asymptotic independence. In that case, special variability can be assessed 191 

from empirical representations of the semi-variogram, the covariance function, or the autocorrelation 192 

function, respectively called empirical semi-variogram, covariogram and autocorrelogram.  193 

Semi-variogram, noted 𝛾̂(ℎ), is used as its estimate does not require supplementary ones (like mean 194 

or variance), and it allows to visually identify (i) Second-Order Stationarity property, (ii) ergodicity 195 

property, and (iii) presence and magnitude of local variabilities. Indeed, (i) 𝛾̂(ℎ) asymptotically tends 196 

toward variance for Second-Order Stationary RF whereas it increases with ℎ otherwise; (ii) ergocidity 197 

is verified if 𝛾̂(ℎ) reaches an asymptote in the limit of half of the domain 𝐷 (Cressie, 1993, p. 57); 198 

(iii) white noise is easily identified by a nugget effect, i.e a non-zero value for ℎ = 0 (see Figure 2) 199 

Common estimator of 𝛾̂(ℎ) is defined by Equation (3) for a given trajectory 𝑍𝒙
𝜔, where 𝑆ℎ is the set 200 

of pairs (𝑥𝑝, 𝑥𝑞) of 𝐷2 distant from ℎ modulo a given tolerance and 𝑁ℎ is the cardinal of 𝑆ℎ. 201 

𝛾̂(ℎ) =
1

2𝑁ℎ
∑ (𝑍𝑥𝑝

𝜔 − 𝑍𝑥𝑞
𝜔 )

2

(𝑥𝑝,𝑥𝑞)∈𝑆ℎ

 (3) 

We point out that when ℎ becomes close to the dimension of 𝐷 , statistical inference is no longer 202 

valid because the number of pairs of points distant from ℎ is very small. Therefore, geostatisticians 203 

recommend plotting this graph only for spacings ℎ such that 𝑁ℎ  ≥  30 (Cressie, 1993). In practice, 204 

in Civil Engineering, several authors recommend limiting to values of ℎ less than half of the size of 205 

the domain (Arnaud & Emery, 2000, Schoefs et al., 2016). 206 

2.2.2. Estimates of model parameters 207 

Once a RF model is chosen from empirical identification, parameters 𝒑 have to be estimated.  Several 208 

methods are available: 209 



• Maximum Likelihood Estimation (MLE), which allows to estimate 𝒑 from raw data given a RF 210 

marginal distribution model, and as the following properties: (i) asymptotically unbiased, (ii) 211 

consistent, (iii) equivariant, (iv) asymptotically efficient, and (v) asymptotically normal 212 

(Wasserman, 2004, para. 9.4); 213 

• Least-Square Estimate (LSE), which allows to estimate 𝒑 from semi-variogram, covariogram or 214 

autocorrelogram given models of these; 215 

• Weighted LSE (wLSE), similar to LSE, each of the residues being weighted by its variance. This 216 

allows increasing the weight of the residuals computed from many data (low distance-lag ℎ 217 

values, for which 𝑁ℎ is greater). 218 

Usually, LSE and wLSE fit well the covariograms and the use of wLSE implies a better description 219 

of these for small spacing, associated with more data1. However, covariograms are not necessarily 220 

representative of the effective covariance parameters of the field, which can lead to significant relative 221 

errors in their estimation. Because it only considers raw data, MLE provides more accurate estimates, 222 

with smaler relative errors. The counterpart is the computation time, since MLE is more time-223 

consuming than wLSE and LSE, up to 10 times faster. Thus, and since it is a priori complex to have 224 

an initial idea of the scale parameter, a two-phase estimation method of Second-Order Stationary RF 225 

parameters is prefered:  226 

1. wLSE pre-estimation of the parameters with the following initial values: (i) for 𝑠, the empirical 227 

variance; (ii) for 𝑎, a value such that the fluctuation scale is less than a quarter of the maximum 228 

lag-distance (so as to respect the ergodic assumption); 229 

2.  MLE estimation of the parameters with wLSE estimates as initial values. 230 

This approach allows to obtain accurate estimates while minimizing the cost of the MLE due to the 231 

definition of initial values close to the real values of the parameters (Clerc et al., 2019, para. 4.4). 232 

 

1 In this case 𝛾(ℎ) = 1 − 𝐶(ℎ), so estimates on covariogram or semi-variogram are equivalent. 



2.2.3. Choice of best RF model 233 

Although plotting empirical semi-variogram allows to choose a RF model, its estimator nature 234 

induces an imperfect representation of the SV. This is all the truer when the number of measurements 235 

is small. Thus, when there is insufficient scientific evidence to support a specific RF model for a q.i, 236 

which is the case for chloride content and diffusion parameters (Gomez-Cardenas et al., 2015), we 237 

can rely on data-based methods of model choice.  238 

In the following, the Akaike information criterion (AIC) is preferred, as it is much more robust than 239 

the 𝑅2 coefficient of determination (Burnham & Anderson, 2010). The AIC allows to compare, with 240 

the parsimony criterion, the relevance of any RF model 𝑀𝑍 with 𝐾 parameters 𝑝1,…,𝐾 to describe the 241 

hidden RF 𝑍 at the origin of a set of 𝑛 data 𝑍𝒙
𝜔 (for example a trajectory). This criterion assumes that 242 

the best model is the one that allows the most accurate description with the fewest possible parameters 243 

(Burnham & Anderson, 2010, para. 1.4). 244 

When 𝑛/𝐾 < 40 and (which is the case hereafter) we use in particular the corrected information 245 

criterion (AICc). When 𝒑 estimate 𝒑̂ is computed with MLE, it writes: 246 

𝐴𝐼𝐶𝑐 = −2 ln(𝐿(𝑝̂|𝑍𝒙
𝜔)) + 2𝐾⏟              

𝐴𝐼𝐶

+
2𝐾(𝐾 + 1)

𝑛 − 𝐾 − 1⏟      
correction

 247 

With 𝐿(𝒑̂|𝑍𝒙
𝜔) the likelihood of 𝒑̂ with respect to the data. The best model among a set of considered 248 

models is then the one that minimizes the AICc, i.e the one that has both a high goodness of fit (high 249 

likelihood) and a limited complexity (limited number of parameters). 250 

In practice, the easiest way to compare the relevance of models based on their AICc is via the 251 

Evidence Ratio (ER) (Burnham & Anderson, 2010, para. 2.10). This is defined such that, for any 252 

model 𝑀𝑍,𝑖 among 𝑁𝑚 models, 253 

𝐸𝑅𝑖 = exp (
1

2
[𝐴𝐼𝐶𝑐𝑖 − 𝑚𝑖𝑛

𝑗=1,…,𝑁𝑚
(𝐴𝐼𝐶𝑐𝑗)⏟          

best 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 model

]) 254 

The ER is therefore 1 for the best a priori model and grows exponentially as the models become less 255 

and less adapted. From expert knowledge an ER of 2 for a given model does not justify giving 256 



preference to the best a priori model over it, whereas an ER of 18 clearly favors the best a priori 257 

model (Burnham & Anderson, 2010, para. 2.10). 258 

2.2.4. SCAP1D: a robust estimation procedure 259 

The methods presented are supposes to get an adequate RF model to avoid estimates errors: without 260 

modeling precaution, they are only valid under the condition that the data can be described by an SSO 261 

and ergodic RF. However, since classical regression techniques coupled with generic autocorrelation 262 

models can easily approximate autocorrelograms and covariograms, the estimates of RF model 263 

parameters are generally carried out by LSE on raw data without prior verification of these two 264 

hypotheses (O’Connor & Kenshel, 2013; Ravahatra et al., 2017; Schoefs et al., 2016). Such a 265 

procedure can then lead to important errors, in particular on the estimation of the scale parameter 𝑎, 266 

and in particular in the cases of non-stationarity in the mean and/or of important measurement noise 267 

(Clerc et al., 2019) 268 

To prevent these errors, we use here the SCAP-1D procedure2 (Clerc et al., 2019). Based on 269 

previously presented tools, it allows, from a single trajectory with few measurement points, the 270 

estimation of parameters of a unidimensional noisy Trend-Stationary RF with piecewise polynomial 271 

mean, constant variance and constant autocorrelation model. 272 

The concept behind SCAP-1D is to ensure the reliability of the parameters’ estimates by testing and 273 

validating the following hypotheses: 274 

• H1: validity of the RF mean model and its parameter estimates; i.e. Second-Order Stationarity of 275 

centered RF; 276 

• H2: validity of both the joint pdf and autocorrelation function models of the RF and of the 277 

estimation of their parameters; i.e., normality of the standard source GRF, obtained by 278 

isoprobabilistic transformation of the RF from estimates considering the a priori model; 279 

 

2 Spatial Corelation Assessment Procedure for Unidimensional Data 



• H3: ergodicity of the trajectory; i.e., non-correlation of the data at infinity or determination of all 280 

geostatistical parameters from this trajectory. 281 

The SCAP-1D flowchart is shown in Figure 3. It is organized into four successive steps, which may 282 

be repeated when the estimates do not validate hypotheses on the RF model: 283 

• Step I) Choice of SCAP-1D parameters, namely piecewise polynomial mean model (regression 284 

degree, number of changepoints), RF joint pdf and autocorrelation function. We recommend to 285 

plot the trajectory, its histogram and its experimental semivariogram to facilitate it. 286 

• Step II) Estimation of the mean and geostatistical parameters: changepoints in the mean and their 287 

significancy are determined using PELT (Pruned Exact Linear Time) optimal partitioning 288 

algorithm of (Killick et al., 2012). Estimation of RF parameters is then performed by the approach 289 

presented in 2.2.23. 290 

• Step III) Checking of underlying mathematical hypotheses: plausibility of estimated model is 291 

checked by checking ergodicity and performing stationarity tests (DF-test (Dickey & Fuller, 292 

1981), KPSS-test (Kwiatkowski et al., 1992)) and normality tests (χ2, KS-test (Kolmogorov-293 

Smirnov)) on standardized trajectory, based on Step II estimates. 294 

• Step IV) Analysis: based on Step III tests, model chosen in Step I and estimates made in Step II 295 

are either accepted (algorithm ends) or rejected (modification on Step I parameters is required). 296 

 

3 or by wLSE on the experimental semi-variogram in the case of non-explicit density models. 



 297 

Figure 3 - General flowchart of SCAP-1D 298 

In Step III, standardization of the trajectory is done by Cholesky transformation considering either:  299 

• the empirical covariance matrix: in that case, we only test H1 as tests results only depend on data 300 

and estimates of the mean. Tests are then called 𝛴𝑒𝑥𝑝-tests; 301 

• or the modeled covariance matrix: in that case, we test H1 to H3 together as tests results depend 302 

on the whole estimates. Tests are then called 𝛴𝑚𝑜𝑑-tests. 303 

2.2.5. Interpretability criterion 304 

In step IV of SCAP-1D, estimates must be analyzed for their physical consistency. In particular, an 305 

interpretability criterion can be defined for the estimated practical range. The point is to ensure, with 306 

respect to the spacing ∆𝑥 between measurements, that the variability thus described is indeed a spatial 307 

variability and not a local or point variability. This is illustrated in Figure 4, where the Gaussian 308 

autocorrelogram is plotted on a measurement grid of step ∆𝑥 =  5 for three practical range values 309 

(𝑟95 < 2∆𝑥, 𝑟95 ≃ ∆𝑥, and 𝑟95 > 2∆𝑥): 310 



• when 𝑟95 ≥ 2∆𝑥 (curves c3 and c2): the variability described is spatial variability since there is 311 

at least one significant intermediate spatial correlation value between a point's total correlation 312 

with itself and the minimal 5% correlation associated with the practical range; 313 

• when 𝑟95 < 2∆𝑥 (curve c1): the variability described may be local or point variability since there 314 

is no significant intermediate spatial correlation value to account for spatial variability. 315 

Therefore, care will also be taken to ensure that the criterion 𝑟95  ≥  2∆𝑥 is met when applying SCAP-316 

1D4. 317 

 318 

Figure 4 - Interpretability of practical range, measurement step 𝛥𝑥 = 5 319 

3. Presentation of the structure and the measurements 320 

3.1. Presentation of the wharf, the beam and its material 321 

The reinforced concrete beam inspected in the framework of the APOS research operation is a T 322 

hyperstatic beam named "J beam" whose dimensions and reinforcement are presented in Figure 5. It 323 

is located on lane 51 of the gangway 5 of the coal terminal of Montoir-de-Bretagne (Loire-Atlantique 324 

department, France) with GPS coordinates: 47.32°N, -2.17°E. This terminal, built between 1981 and 325 

1983 on the banks of the Loire and less than 7km from the Atlantic Ocean, is 234.4m long and 20.7m 326 

 

4 This criterion is constructed similarly to that of (Der Kiureghian & Ke, 1987) on the ability of a discretization grid to 

render the spatial variability properties of a RF. 



wide and is located at +8.40m NGF (Figure 6). This proximity to the ocean implies the existence of 327 

a tidal phenomenon with an amplitude of 5.80m and a salinity of the water equivalent to maritime 328 

conditions at high tide (about 30g Cl-/L). Thus, at the highest tidal coefficients, the lower face of 329 

beam J, located 5.80m above the Loire level, is in contact with the water about 2 days per month. 330 

Finally, one of the particularities of the J-beam is its location on the edge of the quay. It has a side 331 

exposed to the wetting-drying cycles, noted Ext, and a sheltered side, noted Int (see Figure 6). 332 

 
 

Figure 5 - Size and position of rebars of the “J-beam” 333 

Data from the construction archives indicate that the concrete used to build the structure is a Portland 334 

cement concrete CEMI 42.5N dosed at 350kg/m3. The mass fraction of 𝑚𝑐𝑙  clinker is thus higher 335 

than 90% and that of secondary constituents such as gypsum does not exceed 5%. The aggregates 336 

used are sand 0/6, and gravel 5/10 and 10/25. Concrete water porosity 𝜀, measured on the central part 337 

of 5 specimens used for chloride titration was 13.7% in average and minimum and maximum values 338 

were 11.3% and 15.9% respectively. The average compressive strength 𝑓𝑐𝑚, measured on 4 specimens 339 

of 5 cm diameter and 10 cm length was 43.5MPa, with minimum and maximum values of 38.5 MPa 340 

and 48.9 MPa, respectively. 341 



 342 

Figure 6 - Different views: a) Aerial view, b) Sketch of bridge 3, 4 and 5, c) Beam J, d) Exposed (Ext) and 343 

sheltered (Int) side of beam J. 344 

3.2. Total chloride content measurements at 28 years 345 

3.2.1. Available data set 346 

Chloride content measurements were performed on 30 through cylindrical cores extracted on the J- 347 

beam at the same height of 30 cm and with lateral spacing of 30 cm (see Figure 7) (Othmen et al., 348 

2018). Extraction was carried out in 2011-2012, after 28 years of exposure. From initial dimensions 349 

of 5 cm in diameter and 40 cm in length, each core was divided into 5 slices (identified on Figure 7). 350 

Slices 1, 2, 4 and 5 were used to determine the chloride profiles, using the procedure recommended 351 

by the RILEM TC 178-TMC (Vennesland et al., 2013). Slices 1 and 2 are associated to the exterior 352 

side (gathered in Ext specimens) and slices 4 and 5 to the interior side (gathered in Int specimens). 353 

Whereas deep slices 2 and 4 were 40-mm thick with measures in 10 mm increments, slices 1 and 2 354 

were 45mm-thick with measures in 5-mm increments to catch the value at the surface. Slice 3 was 355 

used for further investigation such as porosity, compressive strength and estimation of the initial 356 

chloride content. Out of a total of 30 specimens per side, 16 were usable on the Ext Face (53%), and 357 
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21 on the Int Face (70%). Moreover, out of the 555 total chloride content from the 30 specimens thus 358 

considered, only 460 were usable (83%, i.e., 51% of all the measurements initially planned).  359 

 360 

Figure 7 - Samples taken for chloride titration (J-beam): a) Locations, b) Cross-section, c) Slices  361 

Figure 9 hereafter represents then the set of remaining measurements of total chloride content at 28 362 

years finally considered (noted 𝐶 in the following). Evolutions of empirical mean and standard 363 

deviation by depth and by face are represented on Figure 8. 364 

 365 

Figure 8- Profiles of the evolution of the statistical mean and standard deviation of total chloride 366 

concentrations according to the depth of embedding 367 
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3.2.2. Constitution of trajectories 369 

In the following, the evolution of the SV of 𝐶 is analyzed as a function of depth and exposure 370 

conditions. SCAP-1D is then applied to horizontal trajectories of measurements performed on the 371 

same face and at the same embedding depth 𝑧. The estimation of geostatistical parameters for each 372 

trajectory allows then plotting their evolution as a function of 𝑧 and exposure face. This study 373 

principle is illustrated in Figure 9. 374 

 375 

Figure 9 - Total chloride concentration database and illustration of the principle of implementing SCAP-1D 376 

on total chloride concentration data 377 

3.3. Average diffusion parameters at 28 years  378 

The 37 total chloride profiles were post-processed for determining associated Fick’s second law 379 

average diffusion parameters at reference time 𝑡𝑟 of 28 years, noted 𝐶𝑠𝑎 and 𝐷𝑎. The fitting procedure 380 

to the peak of the profiles is described by (Othmen et al., 2018) and implemented in Schoefs et al. 381 

(2023). Thus, a trajectory for each diffusion parameter per side, located at a height of 30 cm, is built. 382 

These include 16 points for the Ext Side and 21 points for the Int Side, with a minimum spacing of 383 

30 cm between measurement points. Table 2 summarizes this information and Figure 10 shows 384 



trajectories. Note that log function is applied to each parameter for (i) simplifying the representation 385 

and visual analysis because they are assumed to be lognormally distributed, (ii) using procedures of 386 

identification (see section 4.2) available for normally distributed random fields. 387 

Table 2- Numbering of the trajectories of average scattering parameters (J-beam) 388 

trajectory Side number of measurement points 

log (𝐶𝑠𝑎) 1 Int 21 

log (𝐷𝑎) 1 Int 21 

log (𝐶𝑠𝑎) 1 Ext 16 

log (𝐷𝑎) 2 Ext 16 

 389 

 
 

(a) Trajectories and statistical means of logarithms of 
the 28-year average surface concentrations of total 
chlorides - beam J 

(b) trajectories and statistical means of the logarithms 
of the mean diffusivities of total chlorides at 28 years 
- beam J 

Figure 10 - Trajectories and statistical averages of the logarithms of the mean diffusion parameters at 28 390 

years (J-beam) 391 

4. Spatial variability estimates of total chloride content in J-beam and physical 392 

understanding  393 

4.1. Preamble: trajectories conditioning (kriging, debiasing) 394 

Taking into account the non-usable or missing measurements per specimen and in order to consider 395 

the maximum number of points per trajectory, these are first enriched by ordinary kriging of the 396 

available data (Baillargeon, 2005, Chapter 4; Chilès & Delfiner, 2012, Chapter 3).The preliminary 397 

plot of raw trajectories does not reveal any apparent non-stationarity (Figure 11) and the expectation 398 

of their associated RF is not known. 399 



 400 

Figure 11 - Raw trajectories and associated statistical means - trajectory number / depth correspondences 401 

presented in Table 5 402 

The kriging is then performed from the identification by weighted Least-Square Estimate (wLSE) of 403 

the semi-variograms of the initial trajectories. We consider an exponential covariance model and the 404 

existence of an additive measurement error, identified by (Bonnet et al., 2017). Moreover, (Bonnet et 405 

al., 2017) also identified a measurement bias 𝑏 = 0.37 x 10-3 (kg/kg concrete) associated with the 406 

measurement protocol used and with human errors during its implementation. All the measurements 407 

are therefore debiased before kriging so that the data considered are now 𝐶 + 𝑏. In order to limit the 408 

influence of the kriged data on the estimation of the SV of 𝐶, only the trajectories for which their 409 

proportion is lower than 25% are considered. 410 

A total of 13 trajectories of 16 points can be considered on the Ext side (𝑧 ∈ [2.5; 75] mm) and 12 411 

trajectories of 21 points on the Int side (𝑧 ∈ [2.5; 65] mm). The number of kriged data per trajectory 412 

is detailed in Table 5 in Appendix, and the selected debiased trajectories are shown in Figure 12. Less 413 

than 25% data are kriged until 65-mm depth for both sides. We point out that due to the absence of 414 

measurements at the abscissae of the non-exploitable specimens, the trajectory grids are irregular, 415 

with 30% of measurements missing for the Int side and 53% for the Ext side. The performances of 416 

the SCAP-1D normality tests are therefore affected (Clerc et al., 2019) and particular care must be 417 

taken to ensure the consistency of the estimation results. 418 



 419 

Figure 12 - Selected trajectories and associated statistical means 420 

4.2. Geostatistical pre-study and choice of parameters (Step I):  421 

We recall that the trajectories studied are debiased. We then denote  𝑍 the RF of 𝐶 such that 422 

𝑍 = 𝑍 − 𝑏  |  𝑏 = −0.37 × 10−3 kg/kg concrete (4) 

Moreover, (Othmen et al., 2018) have previously determined that the marginal law of 𝐶 is lognormal 423 

and (Bonnet et al., 2017) have identified the "measurement error" introduced by the measurement 424 

protocol, but for a mortar only. This is distributed according to a generalized extremum law 425 

(GeV, (Johnson et al., 1995, p. 3)) with parameters 𝑘 = 0.16, 𝜎 = 9.3 × 10−5 and 𝜇 =426 

−8.4 × 10−5. Schoefs et al. (2023) have recently highlighted that the model of error varies 427 

according to the chloride content. As a consequence, the error should vary according to each 428 

trajectory. For simplicity, it is considered as constant in the paper and its standard deviation is 429 

an average of the potential standard deviations (Schoefs et al., 2023).  430 

The best fitting RF model for  𝑍̃ is then the sum of a log-normal RF 𝑌 and a GeV random variable 431 

(r.v) 𝑊 so that, following Equation (1), 𝑍 = 𝑌 +𝑊 . 432 

However, the joint pdf of such a RF is not explicit and SCAP-1D cannot then be simply applied. 433 

The small number of points per trajectory also excludes an estimation by wLSE on semi-variograms 434 

(see 2.2.2). 435 

Two modeling compromises are then possible in order to guarantee explicitness: 436 



• Model a: consider a normal marginal distribution of total chloride content and a normal 437 

distribution of the error, so that 438 

𝑍 ∼ 𝑁(𝜇(𝑥), 𝑠. 𝑅(𝑎))⏟          
𝐺1

+ 𝑡. 𝑁(0, 𝐼) 
(5) 

where s and t are respectively the empirical variance of the signal and the error and R(a) is the 439 

autocorrelation matrix. 440 

• Model b: do not consider the measurement error, whose standard deviation (1.55 × 10−4 kg/kg 441 

concrete according to the model of (Bonnet et al., 2017) ) would induce a maximum CoV of 8.3% 442 

(on trajectory 13; Ext side, 𝑧 = 75 mm). For this model, 443 

𝑍 ∼ exp (𝑁(𝜇(𝑥), 𝑠. 𝑅(𝑎))⏟          
𝐺2

)

⏞              
𝐿𝑁

 
(6) 

𝐺1 and 𝐿𝑁 are then the RF describing the SV of 𝐶, with 𝐺2 the source GRF of 𝐿𝑁. 444 

The first approximation of the maximum CoV according to the model of (Bonnet et al., 2017) being 445 

significant, we subsequently apply SCAP-1D considering both models so that : 446 

• if the Signal-to-Noise Ratio (SNR) associated with model a is low, the error is non-negligible and 447 

model a is retained; 448 

• if the SNR associated with model a is high, the error is considered negligible and model b is 449 

retained. 450 

Because of the absence of non-stationarities visible in Figure 12, the trajectories are a priori assumed 451 

to be stationary, so that 𝜇(𝑥) = 𝜇. We also recall that the autocorrelation function model chosen for 452 

𝐺1 and 𝐿𝑁 is exponential. According to (Chilès & Delfiner, 2012, p. 106), to guarantee such a 453 

model for the autocorrelation function 𝜌𝐿𝑁(𝑎) of 𝐿𝑁, the autocorrelation function 𝜌𝐺2  of 𝐺2 must 454 

be written 455 

𝜌𝐺2(⋅) = ln(𝜌𝐿𝑁(⋅). [𝑒 − 1] + 1) (7) 

Still according to (Chilès & Delfiner, 2012, p. 106), the mean 𝑚𝐿𝑁  and the variance 𝜎𝐿𝑁
2  of 𝐿𝑁 456 

are then written 457 



𝑚𝐿𝑁 = exp (𝜇 +
1

2
𝑠) (8) ; 𝜎𝐿𝑁

2 = 𝑚𝐿𝑁
2 (exp(𝑠) − 1) (9) 

4.3. Model a: Parameter estimation, hypothesis testing and analysis (Steps II, III 458 

and IV)  459 

Preliminary note: Before estimation, the trajectory data, of order 10−3, are multiplied by a factor 460 

𝑘 = 104 to facilitate the convergence of the MLE. The estimates of 𝑡, 𝑠 and 𝜇 are then transformed 461 

accordingly before analysis. 462 

Table 6 in Appendix details the results of the SCAP-1D implementation considering model a. Only 463 

the results of the Σ𝑚𝑜𝑑-tests are considered due to the small number of points per trajectory. 464 

Analyzing these, the estimates for trajectories 4 and 5 are rejected due to the rejection of the 465 

stationarity hypothesis by the KPSS-test and because the estimated error and practical range are 466 

zero and well below 2Δ𝑥, respectively, so that the spatial correlation of the data cannot be described 467 

(see 2.2.5). This is also the case for trajectories 2, 11, 12, and 13 and can be explained by their very 468 

small numbers of points. Similarly, the estimates associated with trajectories 15, 17 and 24 are not 469 

considered because the estimated practical range is zero. Finally, no valid and convergent estimate 470 

can be obtained for trajectory 14. As a first step, we plot for each selected trajectory the estimates 471 

𝜇̂ of the mean with their 95% MLE-based confidence intervals in Figure 13 (a)5, and the estimates 472 

√𝑠̂ + 𝑡̂ of the standard deviation in Figure 13 (b), for which the distribution is unknown. We then 473 

note that these are consistent with the statistical mean and standard deviation profiles previously 474 

plotted in Figure 8: the estimated values through kriging (see 4.1) do not create disturbance of these 475 

statistical estimates. 476 

As a second step, we plot in Figure 14 (a) the standard deviation estimates  𝜏̂ = √𝑡̂ and 𝜎̂ = √𝑠̂ of 477 

the error and the signal respectively as well as the standard deviation 𝜏𝜀 associated with the error 478 

model of (Bonnet et al., 2017). Trajectories for which the estimated error is zero are not considered. 479 

 

5 some values are missing due to the singularity of the Fisher matrix 



We then compare in Figure 14 (b) the roots of the experimental SNRs 𝑡̂/𝑠 and the fixed error SNRs 480 

𝜏𝜀
2/𝑠. Thus, we note that 75% of the roots of the experimental SNRs are greater than 100 and with 481 

no specific trend of evolution along . The fixed error SNRs are logically lower than the 482 

experimental ones because the error was computed for mortars for which the error of assessment 483 

is larger (Schoefs et al., 2023). 484 

In accordance with the previously stated modeling assumptions, we therefore consider the 485 

measurement error negligible and retain model b for the SCAP-1D trajectory study. 486 

 487 

(a) (b) 

Figure 13 - Profiles of the evolution of the mean and standard deviation of total chloride content according 488 

to the depth - model a 489 

  

(a) (b) 



Figure 14 - Study of the Signal to Noise Ratio - model a 490 

 491 

4.4. Model b: Parameter estimation, hypothesis testing and analysis (Steps II, III, IV) 492 

Preliminary note: Since the RF considered in model b is log-normal, the data considered for the 493 

SCAP-1D implementation are the logarithms of the debiased data to consider a normal joint pdf. The 494 

estimators of 𝑚𝐿𝑁, 𝜎𝐿𝑁
2  and 𝑟95,𝐿𝑁  are then calculated from Equations (7) to (9) and from the 495 

estimators 𝑠̂, 𝑡̂ and 𝑎̂. 496 

Table 7 in Appendix shows the result of the SCAP-1D implementation considering model b. Only 497 

the results of the Σ𝑚𝑜𝑑-tests are considered due to the small number of points per trajectory. Analyzing 498 

these, the estimates for trajectories 3, 4, 5 and 16 are rejected due to the rejection of the stationarity 499 

hypothesis by the KPSS-test. A model of the mean and covariance function that satisfies the 500 

hypothesis cannot be found, so no geostatistical parameter estimates are available for these 501 

trajectories. 77% of the estimates are then valid on Ext side (10/13) and 92% on Int side (11/12). 502 

The estimates 𝒎̂𝑳𝑵 and 𝝈̂𝑳𝑵 of the means and standard deviations are plotted with their confidence 503 

intervals (CIs) for each trajectory in Figure 15. Note that the estimates are consistent with the 504 

statistical mean and standard deviation profiles previously plotted in Figure 8. The estimates 𝒓̂𝟗𝟓,𝑳𝑵 505 

of the practical ranges, meanwhile, are plotted with their CIs in Figure 16. 506 

  

Figure 15 - Profiles of the evolution of the mean and standard deviation of total chloride concentrations 507 

according to the depth of embedding - model b 508 

 509 



 510 

Figure 16 - Practical range profiles of total chloride concentration trajectories as a function of embedment 511 

depth - model b 512 

In the case of the trajectories associated with the Ext side, only 8 out of 10 estimates retained by 513 

SCAP-1D (i.e., 47% of all estimates) are finally retained after filtering out the outliers. These 514 

estimates all meet the interpretability criterion (see 2.2.5) with values between 1 and 3 m for a 515 

minimum measurement step of 30 cm. Contrary to the assumptions made at the beginning of the 516 

study, however, there is no trend in the evolution of 𝑟̂95,𝐿𝑁 as a function of the depth. 517 

In the case of the trajectories associated with the Int side, all the estimates retained by SCAP-1D can 518 

be considered after filtering out the outliers (i.e., 92% of all the estimates). In accordance with the 519 

hypotheses formulated at the beginning of the study, we observe a zero practical range near the 520 

surface, then a quasi-constant value around 60 cm-1 m from 20 mm depth, respecting the 521 

interpretability criterion. This tendency reflects a transition from a purely random quantity of interest 522 

(q.i) at the surface to a spatially correlated q.i. at depth. We propose following explanation: 523 

• At the surface, many spatio-temporally random material (micro-cracks, …), physico-chemical 524 

(local runoff, …),  and environmental phenomena (biofouling, …) contribute to the supply and 525 

convection of chlorides so that, in coherence with the central limit theorem, the concentration of 526 

chlorides at the surface can be considered totally random, at least at the scale of the 30 cm spatial 527 

discretization studied; 528 



• at depth, the phenomenon of diffusion and fixation of 𝐶 gradually takes precedence over their 529 

distribution within the coating, so that the fixation and diffusion properties of the concrete become 530 

predominant compared to the external and surface phenomena. Since the concrete has a certain 531 

spatial homogeneity, it is then consistent that 𝐶 is spatially correlated. 532 

Furthermore, it is noted that the value of 𝑟̂95,𝐿𝑁 at the rebar depth is of the same order as the as the  533 

conventional spacing of the vibrations during concrete pouring, from 30 to 60 cm (Guiraud, 2018; 534 

SETRA, 2005, p. 199). This remark then reinforces the idea that the spatial correlation of 𝐶 is strongly 535 

related to the homogeneity properties of concrete. 536 

4.5. Model b: construction of a unique autocorrelation model of chloride content 537 

The results obtained from the study of the Int side trajectories are much more convincing than those 538 

from the study of the Ext side ones. In order to propose a unique autocorrelation model of 𝐶 for the 539 

diffusion region, we then perform an MLE on the set of reduced centered trajectories of the Int side 540 

(without the first 10 mm), considering a unique scaling parameter 𝑎. Because of the non-stationarity 541 

in mean and variance of 𝐶 according to depth, we consider the trajectories independent of each other 542 

(we therefore neglect SV along 𝑧-axis). Still considering an exponential covariance model, the 543 

estimated practical range is 𝑟̂95 = 0.71 m, i.e, 𝑎̂ = 0.24 m. 544 

We then state that the Gaussian model of identical practical range has the scale parameter 𝑎̂ = 0.41 545 

m. The calculation of the ER from the AICc however, does not allow distinguishing between the two 546 

models from the data, either by considering each trajectory or from the MLE estimate over all 547 

trajectories. Indeed, their values lie between 1 and 1.29. These are reported in Table 8 in Appendix. 548 

By considering only the estimation results from the Int side, which are considered more robust due to 549 

the larger amount of data per trajectory, we can partially answer the questions raised in the 550 

introduction of this study. The SV of chloride content indeed seems to depend on the depth, with a 551 

large variability within the convection zone, and much less and more stable in the diffusion zone with 552 

a practical range of about 70cm. This value is however more than two to three times lower than 553 



the practical range values of the average diffusion parameters 𝐶𝑠𝑎  and 𝐷𝑎  reported in the 554 

literature, between 1.76 and 2.64m (Engelund & Sørensen, 1998; Karimi, 2002; O’Connor & 555 

Kenshel, 2013). However, we recall that the latter are obtained with less robust methods than SCAP-556 

1D and with even smaller measurement sets. 557 

The question of the influence of exposure conditions on the SV of chloride content remains open, 558 

however, because of the inconsistency of the practical range estimates on the Ext side. Given the 559 

interpretation of the results for the Int side, however, it can be expected that it has an influence only 560 

near the surface, for which the chloride contents are already spatially decorrelated. However, this 561 

proposal needs to be confirmed by studying an even richer database in order to increase the 562 

robustness of the estimates.  563 

5. Spatial variability estimation of chloride diffusion parameters of J-beam and physical 564 

analysis  565 

5.1. Geostatistical pre-study and choice of procedure parameters (Step I):  566 

The trajectories of log(𝐶𝑠𝑎) and log(𝐷𝑎) are shown in Figure 17 to Figure 20, as well as their 567 

means and the histograms and experimental semivariogams of centered trajectories. These curves 568 

are plotted for each trajectory in three cases: (i) stationary mean (no changepoint); (ii) piecewise 569 

stationary mean with one changepoint determined via the PELT algorithm (Killick et al., 2012); 570 

(iii) piecewise stationary average at two changepoints determined via the PELT algorithm.  571 

The presence of sills on the experimental semi-variograms allows identifying the a priori 572 

stationary centered trajectories and thus the most appropriate non-stationarity model for each. 573 

The shapes of the histograms and semi-variograms (nugget effect, tangent to the origin, …) 574 

allows identifying models of joint density and a priori autocorrelation function that are adequate 575 

to the geostatistical description of the data. 576 



Since the amount of data per trajectory is limited, especially for the Ext side, Step I could only 577 

be executed for the trajectories log(𝐶𝑠𝑎  )  1 and log(𝐷𝑎)  1. The observations made as well as the 578 

models considered a priori are presented in Table 3. 579 

Table 3- Geostatistical pre-study of the trajectories of the logarithms of the average diffusion parameters – 580 

J-beam 581 

 analysis of experimental semi-variograms and histograms models considered 

trajectory chgpt(*) nugget oscillations original tangent histogram shape average field covariance 

log (𝐶𝑠𝑎) 1 0 no no insufficient resolution asymmetrical cste GRF Gauss or expon 

log (𝐷𝑎) 1 0 no no insufficient resolution symmetrical cste GRF Gauss or expon 

log (𝐶𝑠𝑎) 2 - - - - - cste GRF Gauss or expon 

log (𝐷𝑎) 2 - - - - - cste GRF Gauss or expon 

(*) : changepoints necessary for the experimental semi-variogram to have a sill 

 582 



 583 

Figure 17- Data and averages of trajectory 1 of log mean surface concentration; histograms of trajectories so 584 

centered; experimental semivariogams of trajectories so centered 585 

 586 

Figure 18- Data and averages of trajectory 1 of logarithm of mean diffusivity; histograms of trajectories so 587 

centered; experimental semivariogams of trajectories so centered 588 

 589 



 590 

Figure 19- Data and averages of logarithm of mean surface concentration trajectory 2; histograms of 591 

trajectories so centered; experimental semivariogams of trajectories so centered 592 

 593 

Figure 20- Data and averages of trajectory 2 of logarithm of mean diffusivity; histograms of trajectories so 594 

centered; experimental semivariogams of trajectories so centered 595 

5.1.1. Fields models 596 

Although the histogram of the centered trajectory log(𝐶𝑠𝑎  )  1  is asymmetric, this may be due to 597 

the spatial correlation of the data. The histogram of log(𝐷𝑎  )  1 is centered. Moreover, we do not 598 

notice any nugget effect. This is due to the fact that the measurement noise of the chloride data is 599 

negligible (see 4.3). For simplicity and consistency with the results of the literature, a Gaussian 600 

Random Field model (GRF) is used to estimate spatial variability. This model is also retained by 601 

default for the log(𝐶𝑠𝑎  ) 2 and log(𝐷𝑎  ) 2 trajectories. 602 



5.1.2. Averaging models: apparent non-stationarity 603 

The trajectories are a priori globally stationary since the experimental semi-variograms without any 604 

changepoint in the mean present a sill. A constant mean model is therefore retained. 605 

5.1.3. Covariance function models 606 

Due to the large between measurement points, the spatial resolution is insufficient to visualize the 607 

presence of a tangent at the origin of the experimental semi-variograms. We therefore retain both the 608 

Gaussian and exponential covariance models without a priori preference. 609 

This choice does not allow accounting for the correlation between log(𝐶𝑠𝑎 ) and log(𝐷𝑎  ), well 610 

identified by (Othmen et al., 2018) and which should be modeled via a cross-correlated Random Field 611 

(XRF) (Chilès & Delfiner, 2012, p. 332). It is however justified as XRF modelling requires additional 612 

parameters (cross-correlation coefficient and cross-scale parameter(s)) which leads to 613 

overparametrization and unsuccessful assessment attempts due to the limited amount of data6. 614 

5.2. Parameter estimation, hypothesis testing and analysis (Steps II, III and IV) 615 

SCAP-1D steps II and III are applied to the trajectories of log(𝐷𝑎  ) considering the models kept in 616 

5.1. This allows the most appropriate covariance model to be determined from the calculation of 617 

Evidence Ratios (ER). These are computed from the AICc. Table 4 shows the results of SCAP-1D 618 

execution by trajectory. The models are ranked by increasing value of their ER. 619 

Table 4- Geostatistical parameter estimates of the trajectories of the logarithms of the mean scattering 620 

parameters by SCAP-1D 621 

  model 𝚺𝒆𝒙𝒑-tests 𝚺𝒎𝒐𝒅-tests estimates CoV model selection range 

traj 
# model cov chg reg 𝝌𝟐  KS KPSS DF 𝝌𝟐  KS KPSS DF α1  s  

a1 
(cm) α1 s a1 AICc ER 

r95 

(cm) r95/L 

log(𝐶𝑠𝑎) 1 
1 GRF expon 0 0 0 0 0 1 0 0 0 1 -4,82 0,13 17 0,02 0,31 0,81 -14,08 2,13 50 0,05 

2 GRF gauss 0 0 0 0 0 1 0 0 0 1 -4,81 0,15 37 0,02 0,39 0,33 -15,59 1,00 63 0,07 

log(𝐶𝑠𝑎) 2 
1 GRF expon 0 0 0 0 0 1 0 0 0 1 -5,20 0,07 19 0,01 0,36 1,20 -19,22 1,00 57 0,06 

2 GRF gauss 0 0 0 0 0 1 0 0 0 1 -5,20 0,07 20 0,01 0,36 0,80 -19,11 1,06 35 0,04 

log(𝐷𝑎) 1 
1 GRF expon 0 0 0 0 0 1 0 0 0 1 -27,48 0,31 10 0,00 0,31 1,65 3,78 1,01 29 0,03 

2 GRF gauss 0 0 0 0 0 1 0 0 0 1 -27,48 0,31 18 0,00 0,31 0,77 3,76 1,00 32 0,03 

log(𝐷𝑎) 2 1 GRF expon 0 0 0 0 0 1 0 0 0 1 -27,56 0,29 13 0,01 0,35 1,40 4,19 1,00 40 0,04 
2 GRF gauss 0 0 0 0 0 1 0 0 0 1 -27,56 0,29 19 0,01 0,35 0,72 4,21 1,01 33 0,04 

 

6 MLE on raw data and MLE on data enriched via Metropolis-Hastings sampling did not give satisfactory results 



First no estimate is rejected by the hypothesis tests. The estimates computed from the exponential 622 

and Gaussian models are then consistent for each of the trajectories except for the trajectory log(𝐶𝑠𝑎) 623 

2 (relative errors of respectively 21%, 63%, 9% and 21%  between the practical ranges of the 624 

Gaussian model and those of the exponential model). Furthermore, the exponential and Gaussian 625 

covariance models cannot be distinguished from the ERs (maximum difference observed for the 626 

log(𝐶𝑠𝑎) 1 trajectory with a ratio of 1 for the Gaussian model and a ratio of 2.13 for the 627 

exponential model). However, the Gaussian model leads to smaller coefficients of variation of the 628 

geostatistical parameters (up to a factor of 2.5 for the scale parameter of trajectory log(𝐶𝑠𝑎) 1). 629 

Second, the majority of the practical range estimates do not meet the interpretability criterion (see 630 

2.2.5). All of the estimates of 𝑟95 made on the log(𝐷𝑎) trajectories as well as the estimate made on 631 

the log(𝐶𝑠𝑎) 2 trajectories are indeed of the order of 30 cm, which is the minimum spacing 632 

between measurements. 633 

Therefore, only the estimates made on the log(𝐶𝑠𝑎) 1 trajectory are retained. The estimated practical 634 

range is indeed 50 to 63 cm depending on the chosen covariance model, exponential or Gaussian 635 

(i.e., a ratio 𝑟95/𝐿 of 0.05 to 0.07). The latter can then be preferred a priori because of its minimal 636 

ER even if exponential model is close. 637 

Thus, due to the too large spacing between measurement points compared to the hidden value of their 638 

practical range, the question of whether the SV of the scattering parameters is a function of the 639 

exposure conditions cannot be answered here. 640 

Furthermore, the interpretable estimates of practical ranges differ significantly from the 1 to 2 m 641 

values estimated by (O’Connor & Kenshel, 2013) on a bridge exposed to chloride ion penetration. 642 

Such a difference can be explained by the fact that these authors significantly enriched their initial 643 

kriging database (number of points multiplied by 7) before producing their estimates, which may have 644 

influenced them significantly. 645 



6. Conclusion 646 

In this paper, a new database is proposed for analysis of the spatial variability of chloride ingress into 647 

concrete. A total of 460 measurements was available, belonging to 2 exposures zones: 12 trajectories 648 

of 21 points for each profile on the Internal side (sheltered from wetting-drying cycles) and 13 649 

trajectories of 16 points on the External side. This data base was uses to analyze the spatial variability 650 

of (i) chloride content, (ii) parameters of a model of chloride diffusion. The analysis is performed on 651 

the basis of a complete framework (SCAP-1D) which raises, rigorously for the first time, questions 652 

of stationarity, marginal distribution and auto-correlation. 653 

The application to the total chloride content data showed that: 654 

• the measurement error on total chloride content is negligible for the estimation of their spatial 655 

variability; 656 

• near the surface, spatio-temporally random physico-chemical and environmental phenomena 657 

contribute to the diffusion and convection of chlorides so that, in coherence with the central limit 658 

theorem, total chloride content at the surface can be considered totally random; 659 

• in depth (from about 2 cm), total chlorides diffusion and fixation gradually take precedence over 660 

their distribution within the coating, so that fixation and diffusion properties of concrete become 661 

predominant compared to the external and surface phenomena. Total chloride content is then 662 

spatially correlated with an estimated general practical range of 71 cm (scale parameter of 24 cm) 663 

which is of the same order as the conventional vibration spacing during concrete pouring (30-60 664 

cm (Guiraud, 2018; SETRA, 2005, p. 199)). This supports the fact that total chloride content 665 

spatial correlation in depth is strongly related to the homogeneity properties of the concrete 666 

resulting from pouring.  667 

The application to the identification of diffusion parameters showed that: 668 

The application to the chloride diffusion parameters data was presented in section 5. It allowed 669 

estimation of geostatistical parameters only for the logarithm of the average surface chlorides 670 

concentration. This is due to a limited number of points per trajectory (from 16 to 21) and a too large 671 



spacing between measurement points (30 cm). The estimated practical range value is nevertheless 672 

consistent with that of the total chloride content in depth since it is between 50 and 63 cm.  673 

Implementation of SCAP-1D on these two datasets allowed to note that when the number of points 674 

per trajectory is limited but not small (≥ 20), it is more efficient to first consider the results of 675 

statistical tests performed on the standardized trajectory from the empirical covariance matrix, and 676 

then in a second step those performed on the standardized trajectory from the modeled covariance 677 

matrix. This allows to first assess the validity of the mean model, then those of the marginal density 678 

model and the estimates of the geostatistical parameters of the source Random Field. On the contrary, 679 

when the number of points per trajectory is small (< 20), it is preferable to consider only the results 680 

of the statistical tests performed on the standardized trajectory from the modeled covariance matrix, 681 

in order to guarantee its positivity of the latter. 682 

  683 



7. Appendix – Detailed tables of estimation process data 684 

Table 5- Definition of trajectories and proportion of kriged data per trajectory – Ext side and Int side 685 

kriged data -  Ex side  kriged data - Int side 

trajectory depth (mm) number percentage  trajectory depth (mm) number percentage 

1 2.5 0 0%  16 2.5 0 0% 

2 7.5 0 0%  17 7.5 1 5% 

3 12.5 0 0%  18 12.5 1 5% 

4 17.5 0 0%  19 17.5 1 5% 

5 22.5 0 0%  20 22.5 2 10% 

6 27.5 0 0%  21 27.5 1 5% 

7 32.5 0 0%  22 32.5 2 10% 

8 37.5 2 13%  23 37.5 2 10% 

9 42.5 3 19%  24 42.5 4 19% 

10 47.5 4 25%  25 47.5 3 14% 

11 55 1 6%  26 55 4 19% 

12 65 1 6%  27 65 4 19% 

13 75 3 19%  28 75 9 43% 

14 85 9 56%  29 85 15 71% 

15 95 10 63%  30 95 17 81% 
 Total 33 14%   Total 66 21% 

Table 6 - Estimation of geostatistical parameters of total chloride concentration trajectories by SCAP-1D - 686 

model a 687 

 688 



Table 7 - Estimation of geostatistical parameters of the logarithm of total chloride concentration trajectories 689 

by SCAP-1D – model b 690 

 691 

Table 8 - Computation of the evidence ratios associated with the exponential and Gaussian covariance 692 

models for model b using the corrected Akaike criterion 693 

trajectory model Corrected Akaike criteria Evidence Ratios 

# Face z (mm) Npts model reg chg cov gauss cov expon cov gauss cov expon 

17 Int 17.5 21 G 0 0 -3.21E+01 -3.22E+01 1.04 1.00 

18 Int 22.5 21 G 0 0 -3.89E+01 -3.89E+01 1.00 1.05 

19 Int 27.5 21 G 0 0 -3.59E+01 -3.55E+01 1.00 1.21 

20 Int 32.5 21 G 0 0 -3.05E+01 -3.07E+01 1.11 1.00 

21 Int 37.5 21 G 0 0 -2.39E+01 -2.39E+01 1.00 1.01 

22 Int 42.5 21 G 0 0 -2.89E+01 -2.94E+01 1.29 1.00 

23 Int 47.5 21 G 0 0 -3.14E+01 -3.18E+01 1.18 1.00 

24 Int 55 21 G 0 0 -4.21E+01 -4.18E+01 1.00 1.14 

25 Int 65 21 G 0 0 -4.22E+01 -4.18E+01 1.00 1.26 

G : gaussian 

 694 

  695 
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