Chloride ingress Spatial Variability assessment : towards accurate maintenance policies optimization

Romain Clerc^a, F. Schoefs^a, M. Oumouni^a, I. Othmen^b, S. Bonnet^b ^a: UBL, Université de Nantes, GeM TRUST Team, CNRS UMR 6183, France ^b: UBL, Université de Nantes, GeM IEG Team, CNRS UMR 6183, France

COST TU1402: Quantifying the Value of Structural Health Monitoring, Fact Sheet No. WG3-##

- Structure manager issues
 - optimally plan inspection/preventive repair/curative repair in space & time

COST TU1402: Quantifying the Value of Structural Health Monitoring, Fact Sheet No. WG3-##

- Structure manager issues
 - optimally plan inspection/preventive repair/curative repair in space & time
 - get accurate prior inputs :
 - statistical modeling
 - geostatistical modeling
 - spatio-temporal statistical modeling

COST TU1402: Quantifying the Value of Structural Health Monitoring, Fact Sheet No. WG3-##

- Structure manager issues
 - optimally plan inspection/preventive repair/curative repair in space & time
 - get accurate prior inputs :
 - statistical modeling
 - geostatistical modeling
 - spatio-temporal statistical modeling

COST TU1402: Quantifying the Value of Structural Health Monitoring, Fact Sheet No. WG3-##

Chilès, J.-P., Delfiner, P., 2012. Geostatistics: modeling spatial uncertainty, 2. ed. ed, Wiley series in probability and statistics. Wiley, Hoboken, NJ.

- Structure manager issues
 - optimally plan inspection/preventive repair/curative repair in space & time
 - get accurate prior inputs :
 - statistical modeling
 - geostatistical modeling
 - spatio-temporal statistical modeling

COST TU1402: Quantifying the Value of Structural Health Monitoring, Fact Sheet No. WG3-##

Romain Clerc

- Marine structures
 - Main q.i : chloride concentration (pitting corrosion [Stewart, 2004])

COST TU1402: Quantifying the Value of Structural Health Monitoring, Fact Sheet No. WG3-##

Stewart, M.G., 2004. Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure. *Structural Safety* 26, 453–470.

- Marine structures
 - Main q.i : chloride concentration (pitting corrosion [Stewart, 2004])
 - Literature : geostatistical modeling of Fick law's parameters
 - constant chloride range in depth (common hypothesis)
 - arbitrary or poorly estimated ranges

COST TU1402: Quantifying the Value of Structural Health Monitoring, Fact Sheet No. WG3-##

- Marine structures
 - Main q.i : chloride concentration (pitting corrosion [Stewart, 2004])
 - Literature : geostatistical modeling of Fick law's parameters
 - constant chloride range in depth (common hypothesis)
 - arbitrary or poorly estimated ranges

COST TU1402: Quantifying the Value of Structural Health Monitoring, Fact Sheet No. WG3-##

• Research questions

- is chloride range constant with depth?
- are literature Fick parameters spatial models consistent with chloride spatial variability?

- Motivation & Context
- Chloride concentration data base
- Range estimation
 - estimation procedure
 - model & estimation technique selection
 - range estimations
- Conclusion Further work

Inspected structure

- river Loire coal terminal wharf RC beam
- tidal range : 0-5.80m from beam bottom
- 28 years old in 2011 (meas. date)

Inspected structure

- river Loire coal terminal wharf RC beam
- tidal range : 0-5.80m from beam bottom
- 28 years old in 2011 (meas. date)

Chloride database

- Exploitable cores
 - 53% Face Ext (16)
 - 70% Face Ext (21)

Inspected structure

- river Loire coal terminal wharf RC beam
- tidal range : 0-5.80m from beam bottom
- 28 years old in 2011 (meas. date)

Chloride database

- Exploitable cores
 - 53% Face Ext (16)
 - 70% Face Ext (21)

Experimental Standard deviation profiles

Othmen, I., Bonnet, S., Schoefs, F., 2018. Statistical investigation of different analysis methods for chloride promes within a real structure in a marine environment. *Ocean Engineering* 157, 96–107.

HeaMES 2019, Glasgow

Inspected structure

- river Loire coal terminal wharf RC beam
- tidal range : 0-5.80m from beam bottom
- 28 years old in 2011 (meas. date)

Chloride database

- Exploitable cores
 - 53% Face Ext (16)
 - 70% Face Ext (21)

Romain Clerc

- Motivation & Context
- Chloride concentration data base
- Range estimation
 - estimation procedure
 - model & estimation technique selection
 - range estimations
- Conclusion Further work

Romain Clerc

HeaMES 2019, Glasgow

16

Estimation procedure

Face Int : 12 trajectories

Romain Clerc

HeaMES 2019, Glasgow

Estimation procedure

Estimation procedure

Covered data model: Box-Cox transformation of

$$[\mathrm{Cl}^{-}](x) = m(x) + \sigma G(x) + \tau B(x)$$

- m: piecewise-constant or piecewise linear mean
- G: spatial random signal
- B: noise

Designed for assessment from few data points

Clerc, R., Oumouni, M., Schoefs, F., 2019. SCAP-1D : A Spatial Correlation Assessment Procedure from Unidimensional Discrete Data. *Reliability Engineering & System Safety* 106498.

Romain Clerc

- Motivation & Context
- Chloride concentration data base
- Range estimation
 - estimation procedure
 - model & estimation technique selection
 - range estimations
- Conclusion Further work

Gel

• law: $[Cl^-] \sim \log \mathcal{N}$ [Othmen et al., 2018]

- law: $[Cl^-] \sim \log \mathcal{N}$ [Othmen et al., 2018]
- error: chloride measurements are biased [Bonnet et al., 2017]

$$[Cl^{-}]_{mes} = [Cl^{-}] + b + \varepsilon$$

$$b = -0.37e^{-3}, \ \varepsilon \sim GeV \left(k = 0.16, \sigma = 9.3e^{-5}, \mu = -8.4e^{-5}\right)$$

- law: $[Cl^-] \sim \log \mathcal{N}$ [Othmen et al., 2018]
- error: chloride measurements are biased [Bonnet et al., 2017]

 $[\mathrm{Cl}^-]_{mes} = [Cl^-] + b + \varepsilon$

$$b = -0.37e^{-3}, \ \varepsilon \sim GeV(k = 0.16, \sigma = 9.3e^{-5}, \mu = -8.4e^{-5})$$

- 2 model options with analytical pdf (required for MLE)
 - Model a
 - chloride distribution compromise
 - noise adaptation

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0, 1)}^{\checkmark} + b$$

 ε

- law: $[Cl^-] \sim \log \mathcal{N}$ [Othmen et al., 2018]
- error: chloride measurements are biased [Bonnet et al., 2017]

$$[\mathrm{Cl}^-]_{mes} = [Cl^-] + b + \varepsilon$$

$$b = -0.37e^{-3}, \ \varepsilon \sim GeV\left(k = 0.16, \sigma = 9.3e^{-5}, \mu = -8.4e^{-5}\right)$$

- 2 model options with analytical pdf (required for MLE)
 - Model a
 - chloride distribution compromise
 - noise adaptation

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0,1)}^{\checkmark} + b$$

 ${\mathcal E}$

- Model b
 - noise compromise

$$[\mathrm{Cl}^-]_{mes} \sim \log \mathcal{N}(\mu(x), \Sigma) + b$$

- law: $[Cl^-] \sim \log \mathcal{N}$ [Othmen et al., 2018]
- error: chloride measurements are biased [Bonnet et al., 2017]

$$[\mathrm{Cl}^-]_{mes} = [Cl^-] + b + \varepsilon$$

$$b = -0.37e^{-3}, \ \varepsilon \sim GeV\left(k = 0.16, \sigma = 9.3e^{-5}, \mu = -8.4e^{-5}\right)$$

- 2 model options with analytical pdf (required for MLE)
 - Model a
 - chloride distribution compromise
 - noise adaptation

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0,1)}^{\checkmark} + b$$

 ${\mathcal E}$

- Model b
 - noise compromise

$$[\mathrm{Cl}^-]_{mes} \sim \log \mathcal{N}(\mu(x), \Sigma) + b$$

MODEL CHOICE?

U

UNIVERSITÉ DE NANTE

Model a

Gel

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0, 1)}^{\mathcal{E}} + b$$

• compromise on chloride distribution to use MLE

Model a

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0,1)}^{\mathcal{E}} + b$$

- compromise on chloride distribution to use MLE
- choice of estimation technique :

estimator	wLSE	MLE
Mean		
Standard deviation		

Model a

•

Ge

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0, 1)}^{\varepsilon} + b$$

compromise on chloride distribution to use MLE •

estimator	wLSE	MLE
Mean		~
Standard deviation		

Romain Clerc

HeaMES 2019, Glasgow

2

Model a

Ge

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0,1)}^{\mathcal{E}} + b$$

compromise on chloride distribution to use MLE •

z (mm)

estimator	wLSE	MLE
Mean	~	
Standard deviation		

Romain Clerc

HeaMES 2019, Glasgow

2

E

ъ

Model a

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0, 1)}^{\mathcal{E}} + b$$

- compromise on chloride distribution to use MLE
- choice of estimation technique :

estimator	wLSE	MLE
Mean		
Standard deviation		

Model a

•

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0, 1)}^{c} + b$$

 \subset

- compromise on chloride distribution to use MLE
- choice of estimation technique :

Signal to Noise Ratio computation

MLE

31

Model a

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0, 1)}^{c} + b$$

MLE

 \subset

- compromise on chloride distribution to use MLE
- choice of estimation technique :
- Signal to Noise Ratio computation

Romain Clerc

Model a

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0, 1)}^{\varepsilon} + b$$

- compromise on chloride distribution to use MLE
- choice of estimation technique :

MLE

- Signal to Noise Ratio computation
 - SNR > 1e2 for most trajectories
 - no need for noise consideration

E

ഹ

Model a

$$[\mathrm{Cl}^-]_{mes} \sim \mathcal{N}(\mu(x), \Sigma) + \overbrace{\tau.B(0, 1)}^{\varepsilon} + b$$

- compromise on chloride distribution to use MLE
- choice of estimation technique :

MLE

- Signal to Noise Ratio computation
 - SNR > 1e2 for most trajectories
 - no need for noise consideration
 - MLE with logN model practicable

E

ഹ

Gel

 $[\mathrm{Cl}^-]_{mes} \sim \log \mathcal{N}(\mu(x), \Sigma) + b$

• no compromise on chloride distribution

 $[\mathrm{Cl}^-]_{mes} \sim \log \mathcal{N}(\mu(x), \Sigma) + b$

- no compromise on chloride distribution
- estimation technique : MLE

 $[\mathrm{Cl}^-]_{mes} \sim \log \mathcal{N}(\mu(x), \Sigma) + b$

- no compromise on chloride distribution
- estimation technique : MLE
- checking mean & variance profiles :

HeaMES 2019, Glasgow

 $[\mathrm{Cl}^-]_{mes} \sim \log \mathcal{N}(\mu(x), \Sigma) + b$

- no compromise on chloride distribution
- estimation technique : MLE

HeaMES 2019, Glasgow

- Motivation & Context
- Chloride concentration data base
- Range estimation
 - estimation procedure
 - model & estimation technique selection
 - range estimations
- Conclusion Further work

Model b : range assessment

Face Ext

- poor estimation (16 pts/trajectory)
 - 60% valid estimations (SCAP1D)
 - 46% exploitable
- no specific trend
 - OdM : 1m-3m

Model b : range assessment

Face Ext

- poor estimation (16 pts/trajectory)
 - 60% valid estimations (SCAP1D)
 - 46% exploitable
- no specific trend
 - OdM : 1m-3m

Face Int

- better estimation (21 pts/trajectory)
 - 92% valid (SCAP1D) & exploitable estimations
- low range near surface
 - env. phenomena superposition (Central Limit thm)
- constant trend 20mm-65mm
 - OdM : 60cm-1m

Model b : range assessment

Face Ext

- poor estimation (16 pts/trajectory)
 - 60% valid estimations (SCAP1D)
 - 46% exploitable
- no specific trend
 - OdM : 1m-3m

Face Int

- better estimation (21 pts/trajectory)
 - 92% valid (SCAP1D) & exploitable estimations
- low range near surface
 - env. phenomena superposition (Central Limit thm)
- constant trend 20mm-65mm
 - OdM : 60cm-1m

general vibrations spacing : 30cm-60cm [SETRA, InfoCiment]

Beevertoolhire.co.uk

Comparison with literature Cs, D ranges

Our results on chloride ranges along concrete cover:

- constant trend 20mm-65mm
- OdM : 60cm-1m

Literature results:

parameter	structure	database	model	range	ref.
Cs	specimens	-	-	0.2-0.5m	[Hergeröder, 1992]
Deff	cross beams	3 sets of data	-	3.5m	[Karimi, 2001]
Cs	Marine bridge cross beams	Marine bridge 9 trajectories of 4-5	N	1 2m	[O'Connor & Kenshel, 2013]
Dapp		points	IN	T-5111	

- Motivation & Context
- Chloride concentration data base
- Range estimation
 - estimation procedure
 - model & estimation technique selection
 - range estimations
- Conclusion Further work

Conclusions

- number of points/trajectory required to perform robust assessment : >20
- measurement random error negligible for lab-tested cores
- constant chloride spatial variability along concrete cover : ~1m
 - exception of convective zones
- similarity of chloride and Fick parameters law's spatial variability

Conclusion – Further Work

Conclusions

- number of points/trajectory required to perform robust assessment : >20
- measurement random error negligible for lab-tested cores
- constant chloride spatial variability along concrete cover : ~1m
 - exception of convective zones
- similarity of chloride and Fick parameters law's spatial variability

Further work

- confirm matching of chloride and Fick parameters law's spatial variability with samples analyses
- use estimated spatial variability models as inputs of inspection plan optimization algorithms:

References

Related papers

Clerc, R., Oumouni, M., Schoefs, F., 2019. SCAP-1D : A Spatial Correlation Assessment Procedure from Unidimensional Discrete Data. *Reliability Engineering & System Safety* 106498. https://doi.org/10.1016/j.ress.2019.106498

Othmen, I., Bonnet, S., Schoefs, F., 2018. Statistical investigation of different analysis methods for chloride profiles within a real structure in a marine environment. *Ocean Engineering* 157, 96–107. https://doi.org/10.1016/j.oceaneng.2018.03.040

Bonnet, S., Schoefs, F., Salta, M., 2017. Sources of uncertainties for total chloride profile measurements in concrete: quantization and impact on probability assessment of corrosion initiation. *European Journal of Environmental and Civil Engineering* 1–16. https://doi.org/10.1080/19648189.2017.1375997

Stewart, M.G., 2004. Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure. *Structural Safety* 26, 453–470. https://doi.org/10.1016/j.strusafe.2004.03.002

Hergenröder, M., Rackwitz, R., 1992. Zur statistischen Instandhaltungsplanung fuer bestehende Betonbauwerke. *Bauingenieur* 67.

Karimi, A.R., 2002. Probabilistic assessment of deterioration and strength of concrete bridge beams and slabs. *Imperial College London*, London.

O'Connor, A.J., Kenshel, O., 2013. Experimental Evaluation of the Scale of Fluctuation for Spatial Variability Modeling of Chloride-Induced Reinforced Concrete Corrosion. *Journal of Bridge Engineering* 18, 3–14. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000370

Chloride ingress Spatial Variability assessment : towards accurate maintenance policies optimization

QUESTIONS?

contact : romain.clerc@univ-nantes.fr

Romain Clerc^a, F. Schoefs^a, M. Oumouni^a, I. Othmen^b, S. Bonnet^b ^a: UBL, Université de Nantes, GeM TRUST Team, CNRS UMR 6183, France ^b: UBL, Université de Nantes, GeM IEG Team, CNRS UMR 6183, France

Backup material

- Inspected structure
 - Structure location
 - Age at inspection
- Chloride database
 - Rate of valid cores/face
 - Size of core discs
 - Nb of traj/face
- Project
 - Related publications

HeaMES 2019, Glasgow

Model a & b : range comparison

a : [Cl-] ~ N(mu,Sigma) + tau.B(0,1) + b

- Face Ext : no specific trend
- Face Int : OdM~1m from 20 to 70mm, fluctuations
- model : high uncertainties

b : [Cl-] ~ logN(mu,Sigma) + b

- Face Ext : no specific trend
- Face Int : OdM~60cm from 20 to 70mm
- model : lower uncertainties