
HAL Id: hal-04367490
https://nantes-universite.hal.science/hal-04367490

Submitted on 12 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monitoring the Spatial and Interannual Dynamic of
Zostera noltei

Salma Benmokhtar, Marc Robin, Mohamed Maanan, Soilam Boutoumit,
Bouabid Badaoui, Hocein Bazairi

To cite this version:
Salma Benmokhtar, Marc Robin, Mohamed Maanan, Soilam Boutoumit, Bouabid Badaoui, et al..
Monitoring the Spatial and Interannual Dynamic of Zostera noltei. Wetlands, 2023, 43 (5), pp.43.
�10.1007/s13157-023-01690-7�. �hal-04367490�

https://nantes-universite.hal.science/hal-04367490
https://hal.archives-ouvertes.fr


Vol.:(0123456789)1 3

Wetlands (2023) 43:43 
https://doi.org/10.1007/s13157-023-01690-7

COASTAL WETLANDS

Monitoring the Spatial and Interannual Dynamic of Zostera noltei

Salma Benmokhtar1  · Marc Robin2 · Mohamed Maanan2 · Soilam Boutoumit1 · Bouabid Badaoui1 · 
Hocein Bazairi1,3

Received: 9 November 2022 / Accepted: 15 April 2023 / Published online: 1 May 2023 
© The Author(s), under exclusive licence to Society of Wetland Scientists 2023

Abstract
Seagrass is a vital structural and functional element of the marine environment worldwide and is highly valued for its ecologi-
cal benefits. Monitoring the evolution of the seagrass habitat is essential to understand how this coastal ecosystem changes, 
and to develop good environmental management practices. For the present study, two remote sensing methods were used to 
map and monitor Zostera noltei Hornemann, 1832 (Z. noltei), in the Merja Zerga lagoon from 2010 to 2020. These methods 
which are the random forest algorithm and the object-oriented classification, were convenient to provide significant results. 
The first approach employed Sentinel-2 images from 2018 to 2020, which were used to extract information on changes in 
Z. noltei (commonly called dwarf eelgrass) distribution and aboveground biomass estimation. The second involved three 
orthophotography (orthophoto) mosaics from the years 2010, 2016, and 2018, which were analyzed to map the distribution 
of the species. It was revealed that Z. noltei coverage has increased by 212 ha since 2010, with most of the growth occurring 
in the center and upstream part of the lagoon. The mean aboveground biomass of dwarf eelgrass in the lagoon was 78.5 
DW/m² in 2018, 92.6 DW/m² in 2019, and 115.2 g DW/m² in 2020. The approach used in this study has provided important 
insights into the dynamic and mean biomass of Z. noltei in the Merja Zerga lagoon. It is therefore a valuable, non-destructive 
method that uses freely-available Sentinel-2 satellite data.

Keywords Zostera noltei biomass and mapping · Remote sensing · Orthophoto mosaics and Sentinel-2 satellite data · RF 
algorithm and OBIA

Introduction

Seagrass is one of the most valuable coastal ecosystems, 
sustaining a diverse variety of ecologically and economically 
important marine species (Zulkifli et al. 2021). Vegetated 
coastal ecosystems, particularly seagrass meadows, are also 
highly productive and have an extraordinary capacity for car-
bon dioxide (CO2) sequestration (Orth et al. 2006; Serrano 
et al. 2019). The dwarf eelgrass Zostera noltei Hornemann, 

1832 (Z. noltei) is one of the most common intertidal sea-
grass species representing the land-sea interface (Short and 
Coles 2001). It extends from Mauritania to southern Norway 
and the Kattegat in the eastern Atlantic, and is found in the 
Mediterranean, the Black Sea, the Sea of Azov, the Cas-
pian Sea, the Aral Sea, and the Canary Islands (Green and 
Short 2003; Diekmann et al. 2010). Z. noltei beds provide 
an extended juvenile habitat for some of the most important 
species in the food web, and can contribute quantitatively 
to the function of tidal flats (Polte et al. 2005). Although the 
International Union for the Conservation of Nature (IUCN) 
lists Z. noltei as a species of little concern, the overall popu-
lation is said to be falling. The species is particularly sensi-
tive to anthropogenic pressures and climate-change-related 
impacts in semi-enclosed coastal environments (Cabaço 
et al. 2011). For example, sea water temperature and sea 
level rise (SLR) are two pressures that hinder the state, com-
position, and evolution of the areas occupied by Z. noltei, 
changing it from homogeneous sectors to sparse, patchy 
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spots (Short and Neckles 1999; Chust et al. 2011; Dalloyau 
2020).

In Morocco, this species is the main type of seagrass in 
the Atlantic semi-enclosed coastal systems (SECSs): the 
Merja Zerga, Sidi Moussa, Oualidia, and Khnifiss lagoons 
and the bay of Dakhla, which are all Ramsar sites. Many 
authors have demonstrated the significant contribution that 
Z. noltei makes to the biological, ecological, and environ-
mental value of these protected yet vulnerable areas (Ham-
mada 2007; Maanan et al. 2013; Boutahar et al. 2019; Bou-
ouarour et al. 2021).

Several authors have effectively assessed spatial distri-
bution and spatio-temporal changes in seagrass ecosystems 
using remote sensing data, one of the most widespread tech-
niques in this research field (Short and Coles 2001; Hos-
sain et al. 2015; Hossain and Hashim 2019; Rende et al. 
2020). The characteristics of the habitats have been assessed 
using aerial photos (Ferguson et al. 1993; Kirkman 1996; 
Kendrick et al. 2002), satellite optical images and airborne 
sensors (Phinn et al. 2008; Lyons et al. 2011, 2013; Pu 
and Bell 2013; Kovacs et al. 2018; Topouzelis et al. 2018; 
Benmokhtar et al. 2021), and more recently drone imagery 
(Duffy et al. 2018). Many recent studies have also demon-
strated how to map seagrass carbon stores using multispec-
tral imaging and deep learning algorithms (Hossain et al. 
2015; Misbari and Hashim 2016; Tamondong et al. 2018; 
Pham et al. 2019a; Ha et al. 2021; Stankovic et al. 2021).

This ecosystem mapping now requires updating with 
an approach that can be easily implemented for long-term 
monitoring. Among all studies monitoring Z. noltei beds in 
Morocco using remote sensing, Benmokhtar et al. (2021) 
was the first attempt of its kind to map these beds and esti-
mate their biomass in Merja Zerga lagoon using a random 
forest algorithm on a SPOT 7 satellite image. For this study, 
an expansion of Benmokhtar et al. (2021) study, the aim 
was first to assess the consistency of Sentinel-2 images and 
random forest classification in mapping Z. noltei beds in 
Merja Zerga lagoon, and thus estimating its aboveground 
biomass (referred to simply as ‘biomass’ in the rest of the 
article). Its second objective was to detect annual changes 
in the extent of the Z. noltei in Merja Zerga lagoon using 
another approach - an object-based classification method 
(OBIA) - applied to two orthophoto mosaics.

Study Site and Methods

Merja Zerga Lagoon

The Merja Zerga lagoon is an elliptical-shaped coastal 
lagoon between 0 and 2 m deep (average depth 50 cm) 
(Kraiem et al. 2001; Labbardi et al. 2005). It occupies an 
area of about 30 km². The water temperature ranges between 

27° and 28 °C in summer, and 13° and 15 °C in winter 
(Bazaïri et al. 2003). Merja Zerga lagoon is a Ramsar wet-
land, the most northerly wetland on the Atlantic coast of 
Morocco, located 120 km north of Rabat, between 34°47′ 
and 34°53′ north and 6°13′ and 6°19′ west (Fig. 1). It is 
influenced by Atlantic tidal rhythms with a range of around 
1.4 m, increasing to 3.6 m during the spring tide and drop-
ping to 0.80 m during the neap tide (Alaoui et al. 2010). 
Atlantic tidal water is the main source of the volume of water 
in the lagoon (Roelfsema et al. 2009), but it also receives 
fresh water from the artificial Canal de Nador located at its 
southern end, incorporating drainage water, and the Drader 
River at its northern end.

The local communities use the Merja Zerga lagoon 
resources for many activities, such as tourism, cattle raising 
and fisheries (Alaoui et al. 2010). Anthropogenic pressures 
of this type have increased over the last 25 years with a 150% 
rise in population around the lagoon (Maanan et al. 2013).

The Merja Zerga lagoon is also an important ecological 
resource and has been part of the CASSARINA and MEL-
MARINAprojects in the last 20 years (Flower and Thomp-
son 2008). These two projects integrated many studies based 
on observation and fieldwork that were carried out in the 
Merja Zerga lagoon, mainly in terms of hydrological charac-
teristics, environmental changes, and contaminants in sedi-
ment, plankton and fish fauna (Kraiem et al. 2001; Appleby 
et al. 2001; Thompson et al. 2009).

Satellite Images and Orthophotos

Studies of the interannual dynamics of seagrass must take 
into consideration seasonal variability, hence only images 
taken in the same season can be consistently analyzed with-
out unintentionally producing temporal bias (Roelfsema 
et al. 2013). The Sentinel-2 images that were analyzed for 
this study (Table 1) were thus obtained during the summer 
(August - September), i.e. the period of maximum growth 
for Z. noltei and also the period when the spatial variability 
of the Normalized Vegetation Index (NDVI) is at its lowest 
(Zoffoli et al. 2020).

All images were acquired at low tide during a high coef-
ficient tide, to include a large proportion of the intertidal 
seagrass meadows. The three Sentinel-2 images were down-
loaded from the US Geological Survey Earth Explorer data 
portal (https:// earth explo rer. usgs. gov/) (Table 1), already 
pre-processed at level 1 C (with pixels at the top of atmos-
phere reflectance values) and geocoded to World Geodetic 
System 1984 datum EPSG CODE 4326. An atmospheric 
correction to surface reflectance values was required before 
analysis.

The two satellites, Sentinel-2 A and Sentinel-2B, pro-
duce images at a high spatial resolution spanning between 
10 and 60 m every five days. Each satellite carries a single 

https://earthexplorer.usgs.gov/
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multispectral instrument with 13 spectral bands within vis-
ible, Near-Infrared, and shortwave infrared spectra, some 
of which are specially adapted to detect vegetation. In this 
study we used the three bands in the visible range (Band 
2, Band 3, Band 4) and the Near-Infrared band (Band 8) 
(Table 2).

In addition, to detect the interannual variability of 
Z. noltei bed distribution in the Merja Zerga lagoon, 
three mosaics of orthophotographs dated 2010, 2016 
and 2018 (Fig. 2) with a respective spatial resolution 
of 1.5 m and 1.3 m were obtained from the National 
Agency for Land Conservation, Cadaster and Cartog-
raphy (ANCFCC), the mosaics comprising 4 orthopho-
tographs for 2010, 16 orthophotographs for 2016 and 
2 orthophotographs for 2018. Based on these mosaics, 

a detailed habitat map of the Merja Zerga lagoon was 
produced for each year.

The three Sentinel-2 images and three mosaics were clas-
sified to produce maps of eight habitat types in this lagoon. 
The classification process applied to the Sentinel-2 imagery 
for mapping the Merja Zerga lagoon ecosystems is presented 
in Fig. 2. The pre-processing and processing steps for the 
Sentinel-2 imagery used in this study were carried out using 
the following software packages: R (R Core Team 2019), 
Orfeo Toolbox in QGIS, ArcGIS, eCognition.

Image Processing

Two classification methods were used to map the Z. noltei 
beds in the Merja Zerga lagoon: a supervised classification 

Fig. 1  Geographic location of the Merja Zerga lagoon with field views of sparse (a) and (b) dense beds of Z. noltei. (Source satellite image: Sen-
tinel-2 satellite image 09.28.2020)

Table 1  Characteristics of the three Sentinel-2 images analyzed in this study

Acquisition 
date

Level Spatial resolu-
tion (m)

Time of acquisition (U.T) Low tide level 
(m)

Time of Low 
tide (U.T + 1)

Tidal coefficient Cloud %

09.29.2018 L1C 10 11 :10 0.7 12 :04 74 0.7
08.20.2019 L1C 10 11 :13 0.8 12 :20 66 0.01
09.28.2020 L1C 10 11 :09 1.1 07 :39 70 0.0
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approach was used with the Sentinel-2 images, with a ran-
dom forest (RF) algorithm (this approach was inspired 
from Benmokhtar et al. 2021 study) and an object-based 
classification (OBIA) carried out on the mosaics (Fig. 3).
The Sentinel-2 images used were first atmospherically cor-
rected using the Dark Object Subtraction 1 (DOS1) avail-
able in the Semi-Automatic Classification Plugin version 

7.9.10 Matera in QGIS software v. 3.16.4. The DOS1 turns 
satellite images from top-of-atmosphere (TOA) reflectance 
into surface reflectance (Prieto-Amparan et al. 2018). The 
method is fully automatic and requires only the properties 
of the image with no additional input settings. The visible 
and Near-Infrared bands of the Sentinel-2 images were used, 
and seventeen indices were calculated (Table 3). To improve 
classification accuracy, the resulting layers for each Senti-
nel-2 image were then stacked on a 21-band image (the four 
Sentinel-2 raw bands and seventeen calculated indices) and 
used later in the RF model using the R software.

The classifications were carried out by manual digitiza-
tion using ArcGIS 10.40. software, with training polygons 
consisting of eight land cover classes. Each land cover was 
based on personal field knowledge: shallow water, sand, 
mud, terrestrial plants, algae, mixed algae and dwarf eel-
grass, submerged dwarf eelgrass, emergent dwarf eel-
grass. The total number of polygons used to classify each 
image was 100 for 09.29.2018 Sentinel-2 satellite images, 

Table 2  Spectral and spatial characteristics of Sentinel-2 bands in the 
visible range (Band 2, Band 3, Band 4) and the Near-Infrared band 
(Band 8)

Spectral band Center wave-
length (nm)

Band width 
(nm)

Spatial 
resolution 
(m)

Band 2 490 65 10
Band 3 560 35 10
Band 4 665 30 10
Band 8 842 115 10

Fig. 2  Mosaics of orthophotographs of the Merja Zerga lagoon: 2010, 2016 and 2018; the Sentinel-2 image from left to right: 09.29.2018, 
08.20.2019, 09.28.2020 (image contrast and brightness adjusted)



Wetlands (2023) 43:43 

1 3

Page 5 of 16 43

118 for 08.20.2019 Sentinel-2 satellite images and 107 for 
09.28.2020 Sentinel-2 satellite images (details in Table 4).

Random Forest Classification

Introduced by Breiman in 2001, random forest (RF) was 
proven to be more efficient than simpler classification algo-
rithms and has generated results which are at least similar 

to those of other machine learning classifiers, such as Sup-
port Vector Machine and k-nearest neighbors, when applied 
to seagrass, coral reefs and coastal meadows Zhang 2015; 
Traganos and Reinartz 2018a, b; Villoslada et al. 2020).

To verify the variable importance of the random forest 
model, we used the Mean Decrease Gini index (MDG) to 
measure the impurity at each tree node split of a predictor 
feature, normalized by the number of trees, the highest MDG 

Fig. 3  Flowchart of data processing to map Z. noltei and algae in the Merja Zerga lagoon

Table 3  Sentinel-2 satellite 
image bands and the seventeen 
indices used for random forest 
classification

Bands and indices Band name and full form of indices

b1 Reflectance in Blue (Band 2 of Sentinel-2 satellite)
b2 Reflectance in Green (Band 3 of Sentinel-2 satellite)
b3 Reflectance in Red (Band 4 of Sentinel-2 satellite)
b4 Reflectance in Near-Infrared (NIR) (Band 8 of Sentinel-2 satellite)
GNDVI Green Normalized Vegetation Index (Gitelson and Merzlyak 1998)
NDVI Normalized Vegetation Index (Rouse et al. 1974)
GVI Green Vegetation Index (Kauth and Thomas 1976)
EVI Enhanced Vegetation Index (Huete et al. 1994)
SAVI Soil-Adjusted Vegetation Index (Huete and Johnson 1988)
MSAVI Modified Soil-Adjusted Vegetation Index (Qi et al. 1994)
MSAVI2 Modified Soil-Adjusted Vegetation Index 2 (Qi et al. 1994)
NDWI Normalized Water Index (McFeeters 1996)
RVI Ratio Vegetation Index
NRVI Normalized Ratio Vegetation Index (Baret and Guyot 1991)
TVI Transformed Vegetation Index (Deering et al. 1975)
TTVI Thiam’s Transformed Vegetation Index (Thiam 1997)
SR Simple Ratio Vegetation Index (Birth and McVey 1968)
CTVI Corrected Transformed Vegetation Index (Perry and Lautenschlager 1984)
GEMI Global Environmental Monitoring Index (Pinty and Verstraeta 1992)
DVI Difference Vegetation Index (Richardson and Wiegand 1977)
EVI2 Two-band Enhanced Vegetation Index (Jiang et al. 2008)
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value, and the purity of the variable. The higher the value of 
mean decrease Gini score, the higher the importance of the 
variable in the model (the variable here corresponds to the 
four raw Sentinel-2 bands and the seventeen indices). It is 
normal that the scale of the MDG value vary between each 
Sentinel-2 image.

The mtry number (number of predictors selected for split-
ting at each node) and ntree (number of trees) are the two 
essential parameters that need to be tested before tuning the 
random forest model (Scornet 2017). Using the best mtry 
number, we computed the random forest algorithm with var-
ious ntree values and recorded the out-of-bag (OOB) error 
rate to determine the number of trees at which the OOB 
error rate stabilized and reached the minimum. This allowed 
us to determine the ideal number of trees corresponding to 
a stable classifier without requiring too much computation 
time (in this case, different mtry and ntree best values were 
found for each Sentinel-2 image).

Note that when training the model, the RF classifier con-
structs a bootstrap sample from 2 to 3 samples of the train-
ing dataset, whereas the remaining samples, which are not 
included in the training subset, are used for internal error 
estimation known as out-of-bag (OOB) error. This and the 
confusion matrix (i.e. percentage of false and classified 
training pixels) are used to validate the random forest algo-
rithm. Later, using the clusterR interface (in the ‘raster’ R 
package) to speed up the calculation, we used the ‘predict’ 
function to compute the RF classification prediction.

Object‑Based Image Analysis

The results of an object-based image analysis (OBIA) gave 
us an idea of the evolution of Z. noltei meadow coverage 
in the Merja Zerga lagoon. This was investigated using the 
mosaics of orthophotographs registered in 2010, 2016 and 
2018.

The OBIA method is carried out in two steps: image seg-
mentation and classification, for each segment. The first step 
clusters pixels into image-objects by maximizing the het-
erogeneity between them and the homogeneity within them 

(Blaschke 2010). Note that the value of each segmentation 
parameter used is a result of test and error since there is no 
absolute rule to set the thresholds, so we proceeded by suc-
cessive tests until we obtained a correct result in relation to 
the knowledge of the field (Trimble 2014). For this, we used 
the common image segmentation method ‘multiresolution 
segmentation’ (MRS), a non-supervised region-growing seg-
mentation algorithm that provides useful bases for supervised 
classification, in particular extracting textural, spatial and 
spectral features (Flanders et al. 2003; Su et al. 2008). In this 
study, after experimenting with some object scale values, we 
finally used level 100 (shape 0.1, compactness 0.5) for the 
2016 mosaic and level 10 (shape 0.1, compactness 0.5) for 
the 2018 mosaic. In terms of the 2010 mosaic, the submerged 
areas of Z. noltei were delimited by using the level 50 and 
the emergent ones by using level 500. For the second step in 
the OBIA analysis, the image-objects generated were overlaid 
with in-situ data so that selected objects were used to extract 
the features for classifying them, thus generating a habitat map 
(Fig. 4). The mean layer value of each of the three mosaic 
layers (in object features) was used as a variable to apply the 
OBIA classification.

The final important step before validating the classifications 
of Sentinel-2 image and orthophoto mosaics was to assess its 
accuracy using a confusion matrix (Congalton 1991; Congal-
ton and Green 2008). This process computes an error matrix, 
providing information on the overall classification accuracy, 
the overall kappa statistics and the conditional kappa for each 
class (Cohen 1960; Landis and Koch 1977). A final evalua-
tion of the quality of the ‘accuracy’ classification error was 
carried out for each image and orthophoto mosaic using Erdas 
software, by creating 160 equalized random points spread over 
the eight classes.

Seagrass Biomass Estimation Using Sentinel‑2 
Satellite Images

Many different vegetation indices (Vis) have previously been 
applied to multispectral remote sensing images to map inter-
tidal seagrass beds (Bargain et al. 2012). NDVI seems to 

Table 4  Total number of 
polygons (NP) for each land 
cover class and their respective 
average surface in  m2 (ASP) 
for the three Sentinel-2 satellite 
images 09.29.2018; 08.20.2019; 
09.28.2020

09.29.2018 08.20.2019 09.28.2020

Land cover classes NP ASP NP ASP NP ASP

Algae 17 332 14 328 21 536
Shallow water 14 1326 15 3204 14 1326
Mixed algae and dwarf eelgrass 16 1143 13 730 12 697
Sand 11 528 14 2447 14 435
Mud 8 1611 13 1624 6 2540
Terrestrial plants 14 1143 21 1127 14 1143
Emergent dwarf eelgrass 12 1087 17 386 18 2296
Submerged dwarf eelgrass 8 123 11 132 8 262
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be the most appropriate vegetation index for estimating the 
biomass of seagrass beds, especially when using Sentinel-2 
satellite images. This index enables consistent long-term 
studies that have been widely used and could be applied to 
most satellite sensors, both historical and current (Zoffoli 
et al. 2020).

To estimate the aboveground Z. noltei biomass in the 
Merja Zerga using remote sensing, we used the quantita-
tive experimental NDVI – Z. noltei biomass relationship, 
whereby biomass = 610.61 (NDVI)^1.88 (n = 31, r2 = 0.97), 
as created by Barillé et al. (2010). The Sentinel-2 image 
classification results were used to select Z. noltei areas from 
NDVI images, which were then used to estimate the seagrass 
biomass. Note that the biomass estimated from pixels where 
Z. noltei beds were submerged were not considered because 
their NDVI results were negative and the empirical relation-
ship was not applicable for these pixels.

Results

Random Forest Classification Results

According to the OOB values, the RF model used was 
robust. The index values for each Sentinel-2 image result 
were 2.64% for 2018, 6.72% for 2019 and 13.06% for 2020. 
The results for each Sentinel-2 image also showed that, of 
the seventeen vegetation indices used as input into the RF 
classification, the GNDVI and NDWI gave the highest Mean 
Decrease Gini score (except for the Sentinel-2 2020 image, 
for which EVI gave the highest MDG value) and were there-
fore the most important indices for discriminating between 
the eight classes (Fig. 5).

As a first step in this study, we estimated the coverage 
areas of Z. noltei beds based on the classification results 
(Fig. 4). After setting the random forest model parameters 
for each image, the results showed that the best parameter 

values were different for each image (Table 5), but all pre-
sented a good overall (OA) assessment value.

For each classified image, therefore, the total coverage 
area of Z. noltei and the specific total area for each class of 
Z. noltei beds in Merja Zerga lagoon are given (Table 6). 
The results show a significant progressive increase of total 
Z. noltei distribution area from 99.38 ha in 2016 to 374 ha 
in 2020. The classification results (Fig. 6) were then used to 
estimate the aboveground biomass of Z. noltei.

Classification Validation

To validate the RF classification results, the OOB and con-
fusion matrix (i.e. percentage of false and classified training 
pixels) were estimated, based on a bootstrap sample from 
2 to 3 samples of the training dataset and the remaining 
samples not included in the training subset. In addition to 
this, a second check on the classification quality was car-
ried out as a subsequent, objective procedure to evaluate 
the spatialization of the classification (the extrapolation 
part), and not just the properties of the model. For all the 
data except the 2010 mosaic, we used 160 validation points 
distributed evenly across the eight classes to compute the 
confusion matrix, using ERDAS IMAGINE software. With 
the classification of the orthophoto 2010 mosaic, mixed 
beds and algae were not discernible and the downstream 
part of the lagoon had a higher tidal level than both the 
2016 and 2018 orthophoto mosaics. As a result, and based 
on the segmentation results, only the objects containing Z. 
noltei were masked and then organized into three classes: 
submerged dwarf eelgrass, emergent dwarf eelgrass and 
substrate (Fig. 7). The accuracy assessment results of both 
types of data were therefore satisfactory; 82.50% with a 
minimum kappa index of 0.80 were found for the Sentinel-2 
images, while an overall minimum accuracy of 78.33% with 
a minimum kappa index of 0.74 were found for the ortho-
photography mosaics (Table 7).

Fig. 4  OBIA classification steps 
applied to the 2018 orthophoto 
mosaic (a MSR segmentation 
using level 10; b samples of 
classes assigned to objects used 
for classification; c habitat map 
resulting from the classification)
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Seagrass Biomass Estimation from Sentinel‑2 
Imagery

The Z. noltei biomass estimated using the three Sentinel-2 
satellite images showed a maximum level in the eastern part 
of the Merja Zerga lagoon and it has reached a maximum 
of 231 g DW/m2 in 2020 (Fig. 8). The mean biomass of Z. 
noltei beds produced in each year was 78.49 g DW/m² for 
2018, 92.59 g DW/m² for 2019 and 115.21 g DW/m² for 
2020. Because the dwarf eelgrass beds coverage increased 
between 2018 and 2020, the estimated total biomass in 2018 
would be lower, and the results indicate that the latter is 
only half of that estimated in 2020. However, due to the 
negative NDVI values for some submerged beds it was not 
possible to estimate their biomass, so the results are slightly 
underestimated.

Discussion

The results reveal that both classifications used in this 
study, the RF classification applied to the Sentinel-2 sat-
ellite images and the OBIA classification applied to the 
orthophotographs, showed good classification accuracy for 

mapping seagrass beds. The first approach achieved an aver-
age 80% overall accuracy and a kappa index higher than 0.80 
while the second approach achieved 89.23% overall accuracy 
with a kappa index of 0.80 for 2010 mosaic, 81.25% overall 
accuracy with a kappa index of 0.78 for 2016 mosaic and 
78.33% with a kappa index of 0.74 for 2018 mosaic. When 
masking Z. noltei beds from the other lagoon habitats for 
inclusion in the classification, the results were more accu-
rate and confusion between classes very low for the 2010 
mosaic. The Sentinel-2 estimate for the area occupied by Z. 
noltei beds in 2018 was less than the orthophoto estimate, 
the former image having been captured in September and 
the latter in July, demonstrating the importance of taking 
seasonal changes into account for this species.

Ibara et al. (2015) used the DBSCAN (Density-Based 
Spatial Clustering of Applications with Noise) algorithm 
with an IKONOS image acquired in September 2010 to iden-
tify all the wetland habitats of the Merja Zerga. They com-
bined a supervised classification (per pixel) and an object-
oriented classification (unsupervised) and estimated the area 
of the aquatic beds to be 256.20 ha. In contrast to our find-
ings, this previous work took into account the substrate and 
algae – other components of the aquatic beds along with Z. 
noltei – rather than defining the precise boundaries of the 
dwarf eelgrass. In our study, the results of the 2010 ortho-
photo mosaic showed the extent of these beds as 143.08 ha, 
which constitutes the majority of the area suggested by Ibara 
et al. (2015).

Our results showed a slight increase in the extent of the 
species between 2010 and 2020, especially in the center 
and upstream parts of the Merja Zerga lagoon. It is also 
important to mention that the dwarf eelgrass beds in the 
eastern part of the lagoon are not completely homogeneous 

Fig. 5  Mean Decrease Gini for each Sentinel-2 image, left to right: 09.29.2018, 08.20.2019, 09.28.2020

Table 5  Random forest parameters for each Sentinel-2 image

RF parameter value 09.29.2018 08.20.2019 09.28.2020

Best ntree 250 400 800
Best mtry 6 3 18
Best maxnodes 27 -- 30
OA assessment % 2.64 6.72 13.06
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due to the spread of opportunistic seaweed species that also 
occupy this habitat (Fig. 9). This is due to pressures gener-
ated by the people who live in the vicinity of the Merja 
Zerga lagoon, in particular the intensification of agriculture 
since the 1970s, with irrigation and the use of fertilizers and 
chemicals, especially pesticides, which despite the signifi-
cant contribution they have made to increasing agricultural 
production are partly responsible for the diffuse pollution 
and deterioration of water quality for the lagoon ecosystem. 
Several studies have shown the presence of high levels of 
pesticides and sediments in the water (Mehdaoui et al. 2001; 
Ayadi et al. 2013; Maanan et al. 2013). The discharge of 
various pollutant substances of terrestrial origin (detergents, 

pesticides, hydrocarbons, etc.) into continental waters lowers 
the vitality of individual species and can induce the propaga-
tion of green algae, which is responsible for total suffocation 
of the meadows due to the abundance of nutrients (Pergent-
Martini 2000; Burkholder et al. 2007).

Dehouck et al. (2012), experienced difficulty in differ-
entiating dwarf eelgrass from green algae in their inter-
pretation of multispectral optical images, and could only 
discriminate the algae by using fine spectral bands in a mul-
titemporal database. High-resolution sensors like SPOT-7 
(1.5 m pixels) and Pléiades 1 A and Pléiades 1B satellites, 
which deliver 0.5 m imagery products with a 20 km swath, 
or WorldView with almost 0.3–0.4 m pixels, can counteract 

Table 6  Estimated coverage areas for Z. noltei beds by year in the Merja Zerga lagoon, in ha (*not estimated)

Classes of Z. noltei beds Mosaic 2010 Mosaic 2016 Mosaic 2018 09.29.2018 08.20.2019 09.28.2020

submerged Z. noltei 0.93 25.97 17.05 35.17 101.29 15
emergent Z. noltei 142.15 43.17 289.79 37.55 115.10 289
mixed beds: Z. noltei/Algae * 30.25 103.94 125.56 104.37 70
Total area in Ha 143.084 99.38 317.74 198.28 320.75 374

Fig. 6  Distribution of the eight classes of habitat in the Merja Zerga lagoon based on results of random forest classification for the Sentinel-2 
images, left to right: 09.29.2018, 08.20.2019, 09.28.2020
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the limitations of Sentinel-2 (10 m pixels) for detecting 
smaller patches of seagrass and limiting the confusion of 
mixed pixels, but this requires funding.

Sentinel-2 data have been widely used to map different 
habitats and several studies have demonstrated their reliabil-
ity in mapping and monitoring changes in marine biocenoses 
such as coral (Hedley et al. 2012), mangrove (Pham et al. 
2019b, 2020) and seagrass beds Topouzelis et al. 2016; Tra-
ganos and Reinartz 2018b; Ha et al. 2020, 2021; Wicaksono 
et al. 2021; Nur et al. 2021; Ivajnšič et al. 2022; Hartoni 
et al. 2022). Many authors have used vegetation indices as 
the input for RF classification to map plant communities 
in terrestrial wetlands (Fletcher 2016) and coastal wet-
lands (Zoffoli et al. 2020; Martínez Prentice et al. 2021; 
Benmokhtar et al. 2021), and compared to many machine 
learning algorithms and support vector machine techniques, 

the RF algorithm has produced promising results in terms 
of classifying seagrass (Zhang et al. 2013; Traganos and 
Reinartz 2018b; Ha et al. 2020). For example, to monitor the 
dynamics of the Posidonia oceanica (L.) Delile meadows 
and Cymodocea nodosa (Ucria) Ascherson meadows in the 
Eastern Mediterranean, Traganos and Reinartz (2018a) used 
the random forest algorithm and support vector machines for 
the RapidEye time series, after adjusting the atmospheric 
and analytical water column. Object-based image analysis 
has also been also widely used for mapping marine hab-
itats such as corals (Roelfsema et al. 2013) and seagrass 
beds (Hobley et al. 2021). This process has the potential to 
improve classification performance (Poursanidis et al. 2018), 
as demonstrated with seagrass (Roelfsema et al. 2014; Duffy 
et al. 2018).

Fig. 7  Distribution of dwarf eelgrass Z. noltei beds in the Merja Zerga lagoon based on eCognition classification results from 2010, 2016 and 
2018 mosaics

Table 7  Evaluation of accuracy assessment of the 2010, 2016 and 2018 orthophotography mosaics and the 2018, 2019 and 2020 Sentinel-2 
images classified with RF algorithm

Image date 2010 2016 2018 09.29.2018 08.20.2019 09.28.2020

Overall accuracy 94.44% 81.25% 78.33% 88.13% 82.50% 88.75%
Kappa index 0.92 0.78 0.74 0.86 0.80 0.87
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Over the years, the availability of satellite imagery and 
aerial photos has often complemented traditional in-situ field 
surveys Traganos and Reinartz 2018a, b; Roelfsema et al. 
2014; Topouzelis et al. 2018). The first results of our work 
were typically maps of the presence or absence of seagrass 
and its spatial extent. Quantitative information on density 
and biomass cannot be achieved using the classification 

results alone (Price et al. 2022). The empirical relationship 
between field data and vegetation indices revealed by high 
hyperspectral or multispectral satellite imagery can provide 
biomass and density maps (Barillé et al. 2010; Bargain et al. 
2013; Roelfsema et al. 2014; Benmokhtar et al. 2021), and 
the biomass of the Z. noltei beds in Merja Zerga lagoon was 
estimated using the quantitative experimental NDVI – Z. 

Fig. 8  Aboveground biomass estimated from the NDVI-Sentinel-2 image: 09.29.2018, 08.20.2019, 09.28.2020

Fig. 9  Field photography of three densities of Z. noltei beds showing the presence of opportunistic green algae
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noltei biomass relationship created by Barillé et al. (2010), 
whereby biomass = 610.61 (NDVI)^1.88 (n = 31, r2 = 0.97). 
The NDVI–biomass quantitative model applied to satellite 
image data is useful as a non-destructive method for esti-
mating seagrass and microphytobenthos biomass (Zoffoli 
et al. 2020, 2021), and when we applied this method to the 
Sentinel-2 data, we found that Z. noltei biomass reached a 
maximum of 231 g DW/m² in 2020. However, this result 
may be slightly lower than the actual biomass; when Sen-
tinel-2 images were processed to NDVI, the submerged Z. 
noltei bed classification contained some negative NDVI val-
ues that could not be used for estimating the biomass, so the 
total figure for Z. noltei biomass did not include these pixels.

In this study, the highest level of dwarf eelgrass biomass 
was observed in 2020, and coincided with a suspension of 
shellfish harvesting and tourism due to the national lock-
down in response to the Covid-19 pandemic. However, the 
causality remains to be established. The identification of 
anthropogenic and environmental factors driving the tempo-
ral variability of Z. noltei in the Merja Zerga lagoon is not 
within the scope of the present study and will be investigated 
in future works.

The approach of our study is replicable, inexpensive, and 
easily transferable to biodiversity conservation interests for 
long-term use, as it employs the open-source Sentinel-2 
data processed with geoinformatics freeware. Marine spa-
tial managers and other stakeholders can therefore employ 
the maps to analyze links between seagrass coverage and the 
ecosystem services it provides, such as carbon sequestration 
and biodiversity.

Conclusion

Z. noltei beds can be mapped successfully using Sentinel-2 
imagery and orthophoto mosaics with high spatial resolu-
tion. By combining the 10 m spatial resolution of Senti-
nel-2 satellite images with field data, the extent of dwarf 
eelgrass beds can be monitored and their aboveground bio-
mass accurately assessed, and the random forest algorithm 
can be used to classify these types of data and differenti-
ate between dwarf eelgrass beds and other types of habi-
tats in the intertidal zone, in particular macroalgae. Unlike 
orthophoto mosaics, the Sentinel-2 satellite image data is an 
open-source resource available via the ESA sci-hub and EU 
Copernicus portals, and is therefore an excellent solution for 
mapping Z. noltei beds at no cost. The present study is the 
first to monitor interannual changes in Z. noltei beds in the 
Merja Zerga lagoon using different types of remote sensing 
data. In addition, potential terrestrial vegetation should be 
removed from the satellite image and orthophoto mosaics 
before running the classification algorithm which will mini-
mize confusion with these habitats. It is also important to 

consider acquiring data imagery with the lowest possible 
tide level and high spatial resolution, which some previous 
authors have overlooked when mapping seagrass beds in this 
wetland and have consequently obtained results that under-
estimate their extent. The technique used here to calculate 
biomass is a practical one that does not harm this specie’ 
beds. The same approach as the one used in this study can be 
used in future works that involve monitoring Z. noltei beds 
and estimating their biomass with similar results, and better 
results can be achieved with higher resolution imagery data 
which are not free of charge.
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