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Abstract
The advent of autonomous vehicles has brought about significant advancements in
transportation technology, promising safer and more efficient means of travel. How-
ever, their full integration into society depends on the accuracy of path-tracking
realized by a lateral controller. Lateral control is achieved by regulating the steer-
ing angle to minimize the lateral error between the vehicle and a target point at a
look-ahead distance on the reference path. This paper investigates the look-ahead
distance as it is considered a key parameter that impacts vehicle performance, sta-
bility, and energy consumption. A qualitative analysis is performed to deduct a set
of rules to adapt the look-ahead distance to three parameters: vehicle velocity, road
curvature, and road adherence. Then, an original explicit mathematical formulation
is developed for the look-ahead distance as a function of the considered parameters.
A fuzzy logic decision for the look-ahead distance is further established and com-
pared with the formulated one. Both approaches are implemented on a look-ahead
distance-based lateral controller based on the super-twisting sliding mode control.
Simulation results carried out in a joint simulation between Simulink/MatLab and
SCANeRTM Studio vehicle dynamics simulator demonstrate the effectiveness of the
developed model on vehicle performance, stability, computational efficiency, and
energy consumption.

KEYWORDS
Autonomous vehicle, look-ahead distance, fuzzy logic, super-twisting sliding mode
control

Nomenclature

β Vehicle side-slip angle [rad]
χi Intensity of the slope of the transients-state centroid of ki (i = 1, 2)
δc Vehicle controlled steering angle [rad]
ηj Efficiency of the motor j
γi Intensity of the slope of the transients-state centroid of fi (i = 1, 2)
λadapt Adapting gain parameter for f3
µ Road adherence
ωj Rotational velocity of the motor j [rad/s]
ψ Vehicle yaw angle [rad]
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ρ Road curvature [m−1]
µ, µ Extremities of the transient state of f3 and k1
ρ, ρ Extremities of the transient state of f2 and k2
V , V Extremities of the transient state of f1
ξi Shaping parameters for f1 (i = 1, 2)
ζi Shaping parameters for f2 (i = 1, 2)
ay Vehicle lateral acceleration [m/s2]
c, σ Mean and standard deviation of the Gaussian functions
E Accumulated energy consumption [J ]
ey Lateral error at the vehicle’s center of gravity [m]
ey,Ls Lateral error at the look-ahead distance Ls [m]
f1 Look-ahead distance function of the velocity [m]
f2 Look-ahead distance function of road curvature [m]
f3 Look-ahead distance function of road adherence and curvature [m]
g Gravitational acceleration [m/s2]
j Index for the four in-wheel motors j = 1, 2, 3, 4
k1, k2 Component functions of f3
Ls Look-ahead distance [m]
Lsadd Additional look-ahead distance in the fuzzy scheme [m]
Lsmaxµ

Upper limit for look-ahead distance adapted to adherence [m]
Lsmaxρ

Upper limit for look-ahead distance adapted to curvature [m]
LsmaxV

Upper limit for look-ahead distance adapted to velocity [m]
Lsminµ

Lower limit for look-ahead distance adapted to adherence [m]
Tj Torque of the motor j [N.m]
Tm Total torque generated for longitudinal velocity control [N.m]
Vx Vehicle longitudinal velocity [km/h]
Vx,des Desired reference profile for longitudinal velocity [km/h]

1. Introduction

Safety, accessibility, and efficiency, the leading advantages that are quintessential to
revolutionizing transportation, are directly conferred by Autonomous Vehicles (AVs).
Using advanced sensors and developed algorithms, AVs can rapidly detect and react
to their surroundings, significantly reducing the number of accidents caused by driver
errors. AVs can communicate among themselves and with traffic management systems
to avoid collisions and minimize delays, which reduces traffic congestion and optimizes
routes.

The control of an AV is the last step of a chain of tasks including perception, lo-
calization, decision-making, and route planning [1]. Several control objectives can be
achieved through actuators’ coordination, for instance, Advanced Driver Assistance
Systems (ADAS). These objectives can solicit the overall motion of the vehicle as in
path-tracking [2], or be confined to the chassis dynamics such as enhancing lateral
stability [3], or a combination of both [4]. A multi-layer coordinated yaw stability con-
trol method based on robust sliding Model Predictive Control (MPC) is implemented
in [5] for in-wheel vehicles to improve maneuverability and lateral stability. [6] pre-
sented a hierarchical integrated adaptive control strategy for lateral dynamics control
via coordination of Active Front Steering (AFS) and Direct Yaw Control (DYC). [7]
presented a non-linear integrated control strategy based on an MPC that primarily
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focuses on maintaining vehicle lateral stability using AFS and differential braking.
The objectives associated with vehicle chassis control, such as stability and maneu-

verability enhancement, are instantaneous and relatively straightforward. In contrast
to lateral control, which necessitates protracted control over a time horizon, which
renders the accomplishment of precise path-tracking sophisticated yet indispensable
undertaking pursued by AVs. Trajectory following is achieved by regulating the steer-
ing angle to track a reference path based on a lateral controller. [8] presented a safety
and comfort-guaranteed automatic following of an AV under several road geometry
constraints. A robust adaptive inverse controller is employed in [9] to offset the dy-
namics of the steering system’s backlash for the purpose of path-tracking. [10] de-
veloped an efficient MPC for lateral control considering path preview to improve the
robustness and computational efficiency in high-speed lateral motion control. A force-
driven switched MPC path tracking control strategy is proposed in [11] to improve
path tracking accuracy and ensure vehicle stability under handling limit conditions.

Lateral control either based on a geometric or non-geometric model-based approach
is achieved by minimizing the lateral displacement error between the vehicle and the
reference road, at a look-ahead distance in front of the vehicle. Look-ahead distance-
based lateral controllers have been heavily researched since the 90s. [12] proposed a
method that generates the vehicle steering angle command by combining fuzzy logic
with the geometric pure-pursuit (PP) technique, considering four parameters for the
look-ahead distance. Using clothoidal constraints, [13] designed an output measure-
ment matrix to consider look-ahead distance in the kinematic vehicle lateral motion
model. Based on the PP geometric method, [14] proposed an adaptive Brownian mo-
tion salp swarm algorithm to optimize the look-ahead distance. [15] designed a con-
troller that minimizes the steering angle rate by determining a proper look-ahead
distance by solving an optimization control problem. Other recent studies depended
on the look-ahead distance for particular varieties of lateral controllers. [16] proposed
a look-ahead traffic information-based real-time MPC scheme, while [17] presented
an MPC-based path-following controller with steering angle envelopes based on the
look-ahead distance varying with the velocity.

Researchers have agreed that the look-ahead distance must be adaptable consequent
to the variation of vehicle dynamics and environmental situations, however, opinions
emerged on the adapting method and the considered factors. [18] presented a fuzzy
approach as a method to determine the look-ahead distance based on the vehicle
mass and the varied velocity. Whilst other methods employed learning techniques, as
in [19] using deep learning and [20] by means of reinforcement learning. In general,
the most researched factors affecting the look-ahead distance are vehicle velocity and
road curvature. Considering the inverse relationship between the mentioned factors,
studies have decided to assess only one of them. [21] proposed a tuning strategy that
adapts the look-ahead distance according to the velocity variation. [22] estimated the
distance manually by analyzing the closed-loop poles at different target points, while
[23] proposed a velocity-based look-ahead distance taking the system reaction time into
consideration. Other studies considered tuning the look-ahead distance as a function
of the curvature. Based on the Dubins path algorithm, [24] improved the PP method,
by heuristically selecting a look-ahead point considering the relationship between the
vehicle and the path. An extension of the PP method is proposed by [25] by replacing
the employed circle with a clothoid to reduce fitting errors. [26] presented a simple
feedback controller that uses vehicle lateral deviations at three look-ahead points and
finally chooses one. [27] tuned the look-ahead distance by applying fuzzy logic that
takes the lateral error and its changing rate as inputs.
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Adapting the look-ahead distance solely based on the velocity or road curvature is
not sufficient. There is a set of complex scenarios that the on-road AV can’t handle.
While the studies presented in the literature offer valuable insights, an additional more
in-depth analysis of the effect of the look-ahead distance could potentially deepen our
understanding of the subject. Moreover, it will be demonstrated that road adherence is
a critical factor that should be considered in tuning the look-ahead distance. Road ad-
herence is heavily researched due to its direct impact on stability. The reader can refer
to [28,29] for adherence estimation. In this study, we considered that road adherence
is accessible.

By far and to the knowledge of the authors, there is no mathematical model to
define the relationship between the look-ahead distance with the velocity and the
curvature, not to mention road adherence. In this paper, a study is conducted on
the effect of variation in vehicle velocity, road curvature, and original examination
of road adherence on the look-ahead distance. A set of rules are deducted based
on qualitative analysis and demonstrated by conducting several scenarios. Based on
the deducted rules, and for the first time, a mathematical explicit formulation is
developed for the look-ahead distance. The qualitative explanations accompanying the
rules assist to bridge the gap between abstract mathematical concepts and real-world
phenomena. The deductive nature of the rules helps to ensure logical consistency, and
an empirical validation is performed on the model to verify its accuracy and reliability.

The paper contributions are stated as:

• Deducting set of rules for adapting the look-ahead distance as a variation of velocity,
curvature, and new consideration of road adherence.

• Establishment of an explicit mathematical formula for the look-ahead distance as a
function of the considered factors.

• Development of a novel fuzzy logic approach with complex membership functions
and several assigned rules to determine the look-ahead distance.

• Demonstrating the capability of reducing vehicle energy consumption and enhancing
stability by properly adapting the look-ahead distance.

The rest of the paper is structured as follows: Section 2 introduces the lateral control
based on the look-ahead distance and deducts a set of rules based on qualitative
analysis. Section 3 develops the mathematical formula for the look-ahead distance as
a function of the considered factors. Section 4 presents the fuzzy logic approach for
adapting the look-ahead distance. The simulation results are conducted in Section 5,
followed by a conclusion in Section 6.

2. Look-ahead distance-based lateral control

Autonomous vehicles driven based on look-ahead systems have been the subject of
research over the past three decades. Such systems operate by attempting to control the
future state of the vehicle. The reason behind the inability to control the actual state is
the real-time execution of the control process. Due to: 1) the non-holonomic constraint
of the on-road vehicle, 2) the limitations on the maximum admissible steering angle,
and 3) the tire-road dynamic model, the instantaneous minimization of the center of
gravity lateral offset from the reference road is beyond the reach to attain. Therefore,
lateral control is executed at a look-ahead distance Ls in front of the autonomous
vehicle as shown in Figure 1.
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Figure 1.: Look-ahead distance illustration
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2.1. Lateral control

Following the perception of the environment, the autonomous vehicle predicts the
upcoming motion of the detected obstacles, selects a path, and refines it to account
for the changes in the environment. The stated steps fall within the field of trajectory
planning of the autonomous vehicle. Considering a pre-planned trajectory, the aim
of achieving automated driving lies in controlling the lateral dynamics that ensure
a trajectory following. Lateral control is realized by controlling the steering angle δc
using the Active Front Steering (AFS) mechanism. δc is controlled in such a manner
to minimize the lateral displacement error computed at a target point at a look-ahead
distance from the vehicle (ey,Ls), (see Figure 1).
Lateral control is associated with longitudinal control to provide comfortable driving
and respects the road rules. Hence, the longitudinal velocity is controlled to track a
generated reference velocity profile Vx,des given by (1) and illustrated in Figure 2. Note

that the stability region is determined based on the side-slip angle β and its rate β̇.

Vx,des = min
(√ay,max

ρ
, Vx,lim

)
(1)

where Vx,lim is the limitation according to road code, ρ is the road curvature, and
ay,max is the maximum allowable lateral acceleration to maintain comfort as defined
in [30]. Therefore, lateral and longitudinal dynamics are controlled using the super-
twisting sliding mode control.

2.1.1. Super-Twisting Sliding Mode (STSM) control

The Super-Twisting algorithm is a second-order sliding mode control. In spite of
perturbations, it generates the continuous control function that drives the sliding vari-
able and its derivative to reach a sliding surface during a finite time.
Consider the second-order system:

ẍ = f(X, t) + g(X, t)u(t) (2)
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where X = [x, ẋ]T ∈ R2 is the state vector, u is the control input, and f, g are
continuous functions. Xdes is the desired state of X, with Xdes = [xdes, ẋdes]

T ∈ R2.
The error vector E is given by E = X −Xdes = [e, ė]T ∈ R2 where e = x − xdes and
ė = ẋ− ẋdes. Hence, a sliding variable with a relative degree equal to one with respect
to the control input is defined :

s = ė+ ke (3)

The second-order derivative is given by:

s̈(s, t) = Φ(s, t) + ξ(s, t)u̇(t), (4)

where Φ(s, t) and ξ(s, t) are bounded functions. The goal of the Super-Twisting algo-
rithm is to enforce the sliding variable s to converge to zero in finite time. Assume that
there exist S0, bmin, bmax, C0, Umax verifying that for all x ∈ Rn and |s(x, t)| < S0:

|u(t)| ≤ Umax

|Φ(s, t)| < C0

0 < bmin ≤ |ξ(s, t)| ≤ bmax

(5)

The control input based on the Super-Twisting Sliding Mode algorithm is given as:

u(t) = u1 + u2

{
u1 = −α1|s|τsign(s), τ =]0, 0.5]

u̇2 = −α2sign(s)
(6)

where α1 and α2 are positive gains. The following conditions guarantee the finite time
convergence: α1 ≥

√
4C0(bmaxα2+C0)
b2min(bminα2−C0)

α2 >
C0

bmin

(7)

Refer to [31] for the convergence analysis. An approximation function s
|s|+ϵ is used to

smooth the sign(s) function, where ϵ > 0.

2.1.2. Control problem formulation

Two decentralized controllers are developed based on the STSM control for lateral
and longitudinal control. Define the following sliding variables as

sy = ėy,Ls + kyey,Ls; with ky > 0 (8a)

sx = (Vx − Vxdes
) + kx

∫
(Vx − Vxdes

) dt; with kx > 0 (8b)
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where sy and sx have a relative degree equal to 1 w.r.t their corresponding control
inputs δc (steering angle) and Tm (total traction torque) respectively. Hence,

s̈y(sy, t) = Φy(sy, t) + ξy(sy, t)δ̇c(t) (9a)

s̈x(sx, t) = Φx(sx, t) + ξx(sx, t)Ṫm(t) (9b)

where Φi(si, t) and ξi(si, t) with i = {y, x} are bounded functions satisfying condi-
tions of (5). Therefore, the control inputs corresponding respectively to lateral and
longitudinal control are given by

δc = −αδc,1|sy|τδcsign(sy)− αδc,2

∫ t

0
sign(sy) dτ, (10a)

Tm = −αTm,1|sx|τTmsign(sx)− αTm,2

∫ t

0
sign(sx) dτ (10b)

where αδc,i, αTm,i with i = [1,2] are positive constants satisfying conditions (7) and
τδc , τTm

are constants in the interval ]0,0.5]. The STSM control inputs δc (10a), Tm
(10b) respectively guarantee the convergence of sy, sx to zero in a finite time

(
ėy,Ls +

kyey,Ls → 0, Vx − Vxdes
+ kx

∫
(Vx − Vxdes

) → 0
)
. Once reaching the sliding surface,

ey,Ls converges exponentially to zero with a rate ky > 0.

2.2. Adaptation rules

The necessity for lateral control to be executed at a look-ahead distance instead of
the vehicle’s center of gravity has been illustrated. However, although several works
proposed a constant look-ahead distance path-tracking as in [32] and [33], the constant
tuning won’t cover except a small part of the situations encountered by the on-road
vehicle. Distinct studies presented in the literature have proposed to tune Ls as a
variation of velocity or curvature. The presented works lack generalities and are insuf-
ficient to cover on-road situations. Hence, in this section, we will deduct a qualitative
analysis to establish a set of rules for adapting Ls as a combined variation of velocity
and curvature, and demonstrate the exigency of contemplating road adherence as a
decisive factor to adapt Ls.

2.2.1. Longitudinal velocity Vx

Look-ahead systems compute the lateral displacement error in front of the vehi-
cle using perceptual data derived from vision-based sensors such as cameras and Li-
DARs. The existing time delays in sensor measurements, controller computations,
and actuator realization restrain the look-ahead distance from maintaining a velocity-
independent value. The actuator may be unable to minimize the lateral error as the
velocity increases if Ls is unregulated. Ls will be adapted to Vx according to a com-
promise between vehicle energy consumption and the lateral error. Figure 3-(a) shows
that incrementing Ls results in a shorter traveled distance compared to small Ls for
the same target point. A shorter distance to be traveled consequently implies lower
energy consumption. However, Ls must not be excessively increased in order to stay
in the zone of low lateral error and to allow a reasonable time for obstacle detection.
Therefore as the velocity increases, Ls should be increased accordingly and limited by
an upper bound LsmaxV

depending on the velocity.
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Figure 3.: Effect of Ls variation
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Figure 4.: Effect of adherence on Ls

2.2.2. Road curvature ρ

The road is represented by a sequence of waypoints and modeled by a parametric
curve. The curvature at each point on the candidate path is calculated based on the
waypoints and the curvature profile with respect to a local curvilinear coordinate sys-
tem. Road curvature highly influences the strategy for regulating Ls. In the case of
an improper adaptation, lateral control deteriorates when setting target points too far
from the reference road. The vehicle is forced to track the path more precisely when
Ls is small however it initiates oscillations yielding to instability (Figure 3-(b)). Con-
versely, large Ls reduces overshoot and averts the oscillations (Figure 3-(c)), though
if it exceeds a certain limit, it results in a high lateral error and certain phenomena
such as the cutting-corner (Figure 3-(d)). Therefore, as road curvature increases, Ls is
decreased accordingly to enhance lateral control and avoid the cutting corner problem.
Contrariwise, as ρ decreases, Ls is increased correspondingly to obviate the oscillations
and achieve energy economy, yet adheres to a maximum threshold Lsmaxρ

.

2.2.3. Road adherence µ

Road adherence refers to the ability of vehicle tires to maintain proper contact and
traction with the surface of the road, i.e. tire-road friction. The relation between the
lateral acceleration ay with the yaw rate ψ̇ and the side-slip angle rate β̇ is given in
(11), where ay is maintained below a threshold depending on µ as it directly affects
lateral stability [30]. Hence, in order to preserve stability, the maximal allowable lateral
acceleration decreases as road slippery increases (µ decreases).

ay = Vx(ψ̇ + β̇) ≤ µg (11)

The oscillations resulting from small Ls are amplified on low-adherence roads as a
result of low tire-road friction, subsequently leading to a higher side-slip angle and
automatically higher lateral acceleration. Hence, to maintain stability, Ls should be
adapted to have higher values in the case of low-adherence roads. Define two val-
ues Lsminµ

, Lsmaxµ
representing the minimum and maximum limits of Ls on low-

adherence roads respectively. Ls is adapted to µ as a variation of ρ.
As µ decreases on low-curvature roads, it is preferable to reduce the look-ahead dis-
tance in order to minimize utmost the lateral error to avoid unnecessary road di-
vergence. Though, Ls should be maintained above a lower boundary that takes the
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Table 1.: Look-ahead distance adaptation to V , ρ, µ

Parameter Variation Look-ahead distance Ls

V ↗ Ls ↗ until LsmaxV
– for dry roads –

ρ ↘ Ls ↗ until Lsmaxρ
– for dry roads –

µ ↘ to ≤ µ Ls ↗ to the range [Lsminµ
, Lsmaxµ

] and depending on ρ

µ ↘ and ρ ↘ Ls ↘ until Lsminµ
and Lsminµ

↗ as µ ↘
µ ↘ and ρ ↗ Ls ↗ until Lsmaxµ

and Lsmaxµ
↗ as µ ↘

tracking oscillations into consideration. Hence, on low-adherence roads, as ρ decreases
to the minimum, Ls is assigned as Lsminµ

, where Lsminµ
increases as µ decreases.

Conversely, for high-curvature roads, the vehicle is subjected to steering angle δ to
track the desired path. Thus, an additional fluctuating steering reflected by the track-
ing oscillations to δ results in a large lateral error and imposes a high lateral acceler-
ation, leading to vehicle instability (see Figure 4). Hence, Ls should be increased in
this case. Therefore, on low-adherence roads, as ρ increases to the maximum, Ls is
assigned as Lsmaxµ

, where Lsmaxµ
increases as µ decreases.

Table 1 summarizes the rules for adapting Ls to V, ρ and µ depending on ρ, where
LsmaxV

, Lsmaxρ
present a compromise between energy consumption and path-tracking

accuracy and respect the road rules, Lsminµ
> max{Lsmaxρ

, LsmaxV
}, and {Lsminµ

,
Lsmaxµ

} increase as µ decreases. Note that the low and high thresholds for the pa-
rameters are defined in the next section.

3. Explicit function formulation

In this section, a mathematical formulation is established for the look-ahead distance
as a function of the velocity V , curvature ρ, and adherence µ. The parameters of the
developed function abide by the rules deducted in the previous section. The formula of
the function is derived by drawing inspiration from the following principles: 1) nonlin-
ear relationship to capture intricate dependencies, 2) continuity and differentiability,
3) boundedness and saturation to confine the output within specific limits, and 4)
incorporation of a modifiable smooth transition state to allow flexibility in adjusting
its behavior.

3.1. Function of velocity and curvature

Let f1 be a function of the longitudinal velocity V such that

f1(V ) = ξ1
1

1 + e
− 2γ1

V −V
(V−V +V

2
)
+ ξ2, (12)

where ξ1, ξ2 are shaping parameters for f1, V and V are the extremities of the transient
state of f1, and γ1 represents the intensity of the slope of the transients-state centroid
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of f1. Similarly, let’s define f2 to be a function of the road curvature ρ,

f2(ρ) = ζ1
1

1 + e
− 2γ2

ρ−ρ
(ρ− ρ+ρ

2
)
+ ζ2, (13)

where ζ1, ζ2 are shaping parameters for f2, ρ and ρ are the extremities of the transient
state of f2, and γ2 represents the intensity of the slope of the transients-state centroid
of f2. Following the deducted rules for the look-ahead distance, Ls must increase with
velocity increasing, and conversely increase with the decrease of curvature, both under
a limited threshold. Hence, we can formulate Ls as a function of velocity and curvature
as follows:

Ls(V, ρ) = f1(V )− f2(ρ) (14)

In order to reshape the proposed function, one has to determine the 10 unknown
parameters: ξi, ζi, γi and ρ, ρ, V , V where i = [1, 2]. ξi and ζi comprise the location
of the four extremities of the function while the remnant parameters constitute the
characteristics of the sigmoid functions. To this end, let A(Vmax, 0), B(0,0), C(0,ρmax),
and D(Vmax,ρmax) denote the function extremities (Figure 5), and let ξ3 = ξ2 − ζ2.
Then, the look-ahead distance at these points can be formulated as

LsA =
[ 1

1 + e
− 2γ1

V −V
(Vmax−V +V

2
)

]
ξ1 −

[ 1

1 + e
γ2

ρ+ρ

ρ−ρ

]
ζ1 + ξ3 (15a)

LsB =
[ 1

1 + e
γ1

V +V

V −V

]
ξ1 −

[ 1

1 + e
γ2

ρ+ρ

ρ−ρ

]
ζ1 + ξ3 (15b)

LsC =
[ 1

1 + e
γ1

V +V

V −V

]
ξ1 −

[ 1

1 + e
− 2γ2

ρ−ρ
(ρmax−

ρ+ρ

2
)

]
ζ1 + ξ3 (15c)

LsD =
[ 1

1 + e
− 2γ1

V −V
(Vmax−V +V

2
)

]
ξ1 −

[ 1

1 + e
− 2γ2

ρ−ρ
(ρmax−

ρ+ρ

2
)

]
ζ1 + ξ3 (15d)

To provide an exact set of values for the function extremities, the reshaping should
be performed at points A, B, C, and D. However, this configuration following (15)
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depends on the transient-state extremities ρ, ρ, V , V with exact providing of the
boundaries for Ls (Vmax, ρmax). To avoid this, the reshaping will be performed at
the extremities of the transient state of the sigmoid functions. Hence, the look-ahead
distance at A’(V , ρ), B’(V , ρ), C’(V ,ρ), and D’(V ,ρ) can be given by:

LsA′ =
[ 1

1 + e−γ1

]
ξ1 −

[ 1

1 + eγ2

]
ζ1 + ξ3 (16a)

LsB′ =
[ 1

1 + eγ1

]
ξ1 −

[ 1

1 + eγ2

]
ζ1 + ξ3 (16b)

LsC′ =
[ 1

1 + eγ1

]
ξ1 −

[ 1

1 + e−γ2

]
ζ1 + ξ3 (16c)

LsD′ =
[ 1

1 + e−γ1

]
ξ1 −

[ 1

1 + e−γ2

]
ζ1 + ξ3 (16d)

Beyond A’, B’, C’, and D’, the function saturates and the correspondent values for
Ls are close to that at A, B, C, and D. Let f1 and f2 have the same value of slope
intensity of the centroid (γ1 = γ2 = γ) and denote B the desired values for reshaping
A’, B’, and C’. The aim is to find ξ1, ξ3(= ξ2 − ζ2) and ζ1 as a function of γ. Thus,

A =

 1
1+e−γ 1 − 1

1+eγ
1

1+eγ 1 − 1
1+eγ

1
1+eγ 1 − 1

1+e−γ

 ; B =

LsA′

LsB′

LsC′

 =

b1b2
b3

 ; X =

ξ1ξ3
ζ1

 (17)

The formulated problem AX = B is solved using the Gaussian elimination method.
X∗ = [ξ∗1 ξ

∗
3 ζ

∗
1 ]

T can be determined by an iterative solution as follows:

ζ∗1 = (b3 − b2)
(1 + e−γ)(1 + eγ)

e−γ − eγ
(18a)

ξ∗3 =
1

eγ − e−γ

[
− (1 + e−γ)b1 + (1 + eγ)b2 −

e−γ − eγ

1 + eγ
ζ∗1

]
(18b)

ξ∗1 = (1 + e−γ)(b1 +
1

1 + eγ
ζ∗1 − ξ∗3) (18c)

The derivative of f1(V ) at the centroid is given by

f ′1(V +V

2
)
=
df1
dV

|V +V

2

=
ξ1γ

2(V − V )
(19)

Figure 6 shows the variation of transient-state intensity as a variation of γ. As γ tends
to ∞, the tangent line at the centroid becomes vertical. As the intensity of the slope
depends also on V and V , the angle of the slope with the V-axis could be obtained
using (19) by proper choice for V − V ; similarly, for f2 and ρ− ρ.
From Figure 6, choose γ = 4 for f1 and f2. Then the shaping parameters can be solved

using (18) and given by X =
[
5.1866 5.9907 4.6679

]T
. Finally, after assigning the

parameters V = 80 km/h, V = 30 km/h, ρ = 0.02 m−1 and ρ = 0.002 m−1, the
look-ahead distance function of velocity and curvature f1(V ) − f2(ρ) can be seen in
Figure 7.
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3.2. Function of adherence and curvature

Look-ahead distance must be adapted with road adherence depending on curvature
variation as stated in the adaptation rules. However, this relationship is more complex
than a combined sum of two functions of a single variable.
Therefore, let’s define a new function f3 representing the correlation of the look-ahead
distance with road curvature and adherence as

f3(µ, ρ) = k1(µ)k2(ρ)× λadapt, (20)

where,

k1(µ) = 1− 1

1 + e
− χ1

(µ−µ)/2
(µ−µ+µ

2
)

(21a)

k2(ρ) =
1

1 + e
− χ2

(ρ−ρ)/2
(ρ− ρ+ρ

2
)

(21b)

where χ1, µ, µ and χ2, ρ, ρ represent the intensity of the slope of the transients-state
centroid and the extremities of the transient-state for the functions k1(µ) and k2(ρ)
respectively. λadapt is an adaptation gain to provide an upper bound for f3.
let M be a point of coordinates (µ, ρ) and c the desired value for Ls at M. Hence f3|M
is given by

f3|M = f3(µ, ρ) =
[
1− 1

1 + eχ1

][ 1

1 + e−χ2

]
λadapt = ι (22)

Let k1(µ) and k2(ρ) have the same intensity of slope, meaning χ1 = χ2 = χ. Hence,

λadapt = ι
(1 + eχ)(1 + e−χ)

eχ
(23)

12



0 0.2 0.4 0.6 0.8 1

Figure 8.: f3(µ) as χ varies

0
0

5

0.025

10

f 3
(

,
) 

(m
)

0.2

15

0.02

20

0.4 0.015

Adherence Curvature (1/m)

0.6 0.01
0.8 0.005

1 0

Figure 9.: Ls Function f3(ρ, µ)

Figure 8 shows the variation of the behavior of f3(µ), for a fixed ρ, as χ increases.
Hence, by choosing χ = 4, assigning the desired value ι = 20 at M(µ, ρ), and defining
µ = 0.4 and µ = 0.7, the look-ahead distance function of adherence and curvature
f3 is given in Figure 9. Note that f3 assists Ls by additional gain only when the
adherence is low, i.e. if µ = 1, f3 will be zero independent of the value of ρ.

Therefore, the look-ahead distance final formulation can be represented by

Ls(V, ρ, µ) = f1(V )− f2(ρ) + f3(µ, ρ) (24)

Note that the calculated parameters are completely tunable. The objective was to
develop a generalized formulation for real-time continuous implementation of the
look-ahead distance in dependence on several computable parameters. The shaping
parameters ξi, ζi, γi, χi and λadapt with i = [1, 2] are highly dependent on the desired
objectives and the developed controller. The variation of the response time and
feedback gain in the controller type may require variation in the look-ahead distance
range, the rate of variation of the transient state, or limitation of the bounds. Further,
the range of variation of Ls depends on the desired objectives. A low range bestows
better path-tracking at the cost of energy consumption, and vice versa.
Therefore, the developed formula is designed in a generalized manner, and it is inde-
pendent of the vehicle parameters. Its tuning relies on the controller’s characteristics
such as gain and response time, as well as the specific objectives to be achieved. This
attribute showcases a prominent edge, where the foremost advantage of this formula
lies in its inherent reproducibility, allowing it to be easily replicated and applied.

Based on the defined adaptation rules, another strategy is developed based on a
fuzzy logic approach to be contrasted with the developed continuous function.

4. Fuzzy logic decision approach

Fuzzy logic employs a set of rules based on expert knowledge to reach the fuzzy de-
cision conveyed by linguistic values. The fuzzy logic system consists of three stages:
Fuzzification, Inference Engine, and Defuzzification [34]. Based on the shape of the
membership functions, linguistic inputs are generated from crisp ones by computing
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Figure 10.: Fuzzy Logic Inputs: V , µ, and ρ

2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

D
e

g
re

e
 o

f 
m

e
m

b
e

rs
h

ip

SM MMSLSS LSMLMS LM LL HLHS HM

Figure 11.: Fuzzy Logic Output: Ls

the relative degree of truth during the Fuzzification process. The membership func-
tions for the velocity V , curvature ρ, and adherence µ are shown in Fig. 10. These
functions are defined as a combination of Gaussian functions to provide a smooth
variation, where each Gaussian function is represented by (25).

f = e(−
(x−c)2

2σ2 ), (25)

where c is the mean and σ represents the standard deviation. Five fuzzy sets are
defined for the velocity V: {Small (S), Medium-Small (MS), Medium-Large (ML),
Large-Small (LS), Large-Large (LL)}. Three fuzzy sets for the adherence µ: {Small
(S), Medium (M), Large (L)}, and five sets for the curvature ρ: {Small (S), Medium-
Small (MS), Medium-Medium (MM), Medium-Large (ML), Large (L)}. The Rule Base
in the Inference Engine is established based on the driver’s experience and multiple
conducted simulations and abides by the deducted adaptation rules. Rules are defined
in terms of two parameters (V , ρ) for each set of µ, and divided into 3 tables shown
in Tables 2, 3, 4. Hence, for each set of values for the inputs (V , ρ, µ), there exists
one value for the output Ls. The fuzzy implication is solved using the [35] inference
method (min-min-max). The membership functions of the output fuzzy variable Ls
are given in Fig. 11, in the form of Gaussian functions (25). Twelve sets are defined for
the look-ahead distance Ls: {ij} where i: {Small (S), Medium (M), Large (L), Huge
(H)} and j: {Small (S), Medium (M), Large (L)}, and the centroid method is used for
the Defuzzification process.
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Figure 12.: Fuzzy control scheme

V

ρ

Ls S MS ML LS LL
S ML LS LM LL HS
MS MM ML LS LM LL
MM MS MM ML LS LM
ML SL MS MM ML LS
L SM SL MS MM ML

Table 2.: Rules for µ = L

V

ρ

Ls S MS ML LS LL
S SL MS MM ML LS
MS MS MM ML LS LM
MM MM ML LS LM LL
ML ML LS LM LL HS
L LS LM LL HS HM

Table 3.: Rules for µ = M

As shown in Figure 11, Ls ranges from SS ≈ 1.5 to HL ≈ 13. However, as it will
be shown later, the required look-ahead distance on extremely low-adherence high-
curvature roads exceeds 20m. More membership functions will render the system more
complex and impose more rules. Expanding the membership functions, alternatively,
will result in a greater discontinuity in Ls and reflect an instability to the vehicle. In
light of this, an adherence supervisory block is inserted into the system. This block
generates an additional look-ahead distance Lsadd to be combined with Ls based on
analyzing road adherence. Lsadd can take several values and increases as µ decreases.
Further, if µ decreases below a minimum threshold µmin reflecting an extreme road
condition, then the effect of varying Ls dwindles. In this case, the supervisory block
assigns 0 to Lsadd and requests an emergency braking. The complete control scheme
is shown in Fig. 12.

5. Simulation Results

The proposed approaches for the look-ahead distance are implemented on the lat-
eral controller and validated in a joint simulation between Simulink/MatLab and
SCANeRTM Studio vehicle dynamics simulator. The autonomous vehicle has been

V

ρ

Ls S MS ML LS LL
S MS MM ML LS LM
MS MM ML LS LM LL
MM ML LS LM LL HS
ML LS LM LL HS HM
L LM LL HS HM HL

Table 4.: Rules for µ = S
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Trajectory for scenario 2 Trajectory for scenario 3

Figure 13.: SCANeRTM Studio simulator environment

set under several tests covering extreme road conditions. A case study is performed
considering four scenarios, where each scenario presents a specific advantage of the
look-ahead distance approaches. The mathematically formulated Ls will be denoted
by “continuous” while the fuzzy logic approach will simply be indicated by “fuzzy”.
The behavior of the autonomous vehicle under the continuous and fuzzy look-ahead
distance will be contrasted with that using constant Ls. Further, it will be compared
with another method we proposed for adapting Ls as a sole function of velocity (26).

Ls = f(v) =


3 if V ≤ 10/3.6

0.42V + 1.83 if 10/3.6 ≤ V ≤ 70/3.6

10 if V ≥ 70/3.6

(26)

where V is inm/s and Ls inm. f(v) is proposed as a linear function inspired from (12),
reflecting a mimicked linear behavior of the proposed continuous function independent
of ρ and µ.

5.1. SCANeRTM Studio vehicle dynamics simulator

The proposed look-ahead distance-based lateral controller is implemented and vali-
dated in a co-simulation between Simulink/MatLab and the professional SCANeRTM

Studio vehicle dynamics simulator. The fully dynamic vehicle “Callas” is used for test-
ing. The Callas model consists of a full nonlinear vehicle model combining longitudinal
and lateral dynamics, suspension forces, wheel dynamics, and the tire-road dynamic
model. It is formed by a complex interconnection between the physical systems of the
vehicle including the engine, steering system, braking, transmission, and more. This
model enables the adjustment of specific vehicle properties for instance engine oil tem-
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Figure 14.: Scenario 1 results

perature. The controlled steering angle is fed via a steering system considering a linear
proportion between the steering wheel and the front wheels. The simulator offers the
implementation of realistic scenarios (see Figure 13) with real-world physics (crashing,
slipping, rollover, etc..).

5.2. Scenario 1 (sc1): Extreme adherence changing

The first scenario is executed on a high-curvature corner under abrupt adherence
variation. The varying velocity, curvature, and adherence are shown in Figure 14a.
The scenario can be seen as four adherence-distinct portions under varying curvature.
This extreme variation of road adherence can occur with a sudden appearance of an
oily road. The fuzzy and continuous look-ahead distances are given in Figure 14b.
It can be seen that Ls exceeds 20m on the high-curvature low-adherence portions.
The road divergence arises when the lateral error from the reference lane is large
and constantly diverging and the controller is not capable of further diminishing it.
Consequently, a complete loss of stability exists and the simulation is ceased. At the
first portion of the test, the required Ls by taking µ as an adapting factor exceeds
20m. Hence, the constant assigning of Ls for 2, 5, 10, 15m leads the AV to diverge
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from the trajectory (Figure 14c) after the lateral error exceeded 6m and persists
diverging (Figure 14d). Similarly, Ls as a function of velocity f(v) (26) ranged around
8m (Figure 14b) until it diverged. The constant appointing of Ls to 22m succeeded
to complete the first portion of the test as it is close to the approaches considering
the adherence factor. However, in the second portion, when the adherence increased
to 1, Ls = 22m revealed a cutting corner phenomenon (Figure 14c) as it should be
decreased to less than 10m. Finally, the abrupt decrease in adherence to 0.3, forces
the required Ls to increase above 23m leading to the divergence of the autonomous
vehicle. Therefore, road adherence is a decisive factor that should be considered in
adapting Ls, in terms of stability and path-tracking of the AV. It can be noticed that
only the continuous and the fuzzy Ls have permitted the vehicle to complete the test,
with better tracking in the continuous Ls case.

5.3. Scenario 2 (sc2): Hard road geometry

The second scenario is performed on the map shown in Figure 15a presenting a hard
challenging geometry for lateral control. The desired velocity and the velocity of the
vehicle, the road curvature, and adherence are given in Figure 15b. The adherence is
kept at 1 to reveal the advantages of using the proposed approaches when the constant
Ls and Ls = f(v) are effective. In order to have a better insight into the behavior of
each approach, the following cost variables are introduced:

• Root Mean Square of the lateral error:
√

1
τ

∫ τ
0 e

2
y dt

• Maximum lateral error: ey,max

• Accumulated energy consumption: E =
∫ ti
0

∑4
j=1

Tjωj

ηj

where Tj , ωj , ηj are respectively the torque, rotational velocity, and efficiency of the
motor j. Note that in this work, the vehicle is electric and equipped with four in-wheel
motors (

∑4
j=1 Tj = Tm). The strategy for torque allocation falls outside the specific

scope and focus of the paper. The continuous and fuzzy Ls as well as Ls = f(v)
are given in Figure 15c. Their corresponding lateral errors along with the constant
Ls = 2, 5, 10m are shown in Figure 15d. The constant Ls = 10m and Ls = f(v)
revealed an undesirable behavior. The cost variables are determined for each approach
and given in Figure 15e. Ls = 10m revealed the maximum RMS and ey,max, followed
by Ls = f(v), where both have a total energy consumption E approximately as the
fuzzy Ls. Ls = 2m has the second least RMS after the continuous Ls however with the
maximum battery energy consumption. The RMS of the fuzzy Ls comes between Ls =
2m and Ls = 5m, with an energy consumption less than Ls = 5m. As for ey,max,
the fuzzy Ls exhibited the minimum of all approaches, followed by Ls = 5m. The
continuous Ls and Ls = 2m revealed an ey,max greater than Ls = 5m. Therefore, the
continuous Ls exhibited the minimum RMS and energy consumption and is followed
by the fuzzy Ls, though ey,max is lower in the fuzzy Ls case.

5.4. Scenario 3 (sc3): Urban environment testing

The third scenario represents an urban map given in Figure 16a. The desired comfort-
based velocity profile is determined and reduplicated by a constant of 1.2 to alienate
the vehicle from its comfortable driving. In addition to the velocity, the curvature, and
adherence are shown in Figure 16b. In order to compare the behavior of the fuzzy and
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Figure 15.: Scenario 2 results

continuous approaches in a normal daily urban environment, the adherence is kept at
1. The continuous Ls, fuzzy Ls, and Ls = f(v) are determined and given in Figure
16c. The corresponding lateral errors are shown in Figure 16d along with that of the
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Figure 16.: Scenario 3 results

constants Ls = 2, 5, 10m. For the sake of comparison, the cost variables are computed
and given in Figure 16e. The maximum lateral error and the RMS of Ls = 10m
and Ls = f(v) are the largest of all approaches, although with the lowest consumed
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Figure 17.: Scenario 4 results

energy. Ls = 2m exhibited the largest energy consumption and the second least RMS
after Ls = 5m. The fuzzy Ls revealed an ey,max similar to Ls = 5m but higher
RMS. The fuzzy Ls resulted in a compromise in lateral error and energy consumption
between Ls = 10m and Ls = 5m. The continuous Ls revealed an energy consumption
lower than the fuzzy Ls, however with slightly greater ey,max and RMS. Therefore,
the continuous and fuzzy Ls exhibited an optimal trade-off between path-tracking and
energy consumption in daily urban environments.

5.5. Scenario 4 (sc4): Continuous adherence variation

The last scenario is executed on the same trajectory as scenario 3. The desired velocity
profile, road curvature, and road adherence are given in Figure 17a. The adherence
is varied continuously considering mid-adherence at the beginning, followed by low
adherence road portion, and finally, it increases to a high adherence portion. As the
constant approach for assigning Ls and the function of velocity exhibited an unac-
ceptable behavior reflecting road divergence, only the continuous and fuzzy Ls are
compared in this test. The look-ahead distances for the continuous and fuzzy ap-
proaches are given in Figure 17b. In contrast to the continuous Ls, the discontinuity
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Table 5.: Computational effort of calculating the look-ahead distance

Scenario cases
Execution time for look-ahead distance computation (s)

Simulation time (s)
Fuzzy Continuous

Scenario 1 24.64 0.23 30
Scenario 2 40.91 0.385 50
Scenario 3 111.262 1.004 135
Scenario 4 110.947 0.993 135

in the value transition can be noticed in the fuzzy Ls (referring to the abrupt change).
The presence of this disruption has an impact on the side-slip angle and, as a result,
influences the vehicle’s stability. Hence, a significant benefit of the continuous function
lies in its ability to provide a seamless transition, thereby enhancing vehicle stability
compared to the fuzzy approach. The lateral errors of the AV using the continuous and
fuzzy Ls are shown in Figure 17c. It is obvious that the lateral error of the continuous
Ls is almost always lower than that of the fuzzy Ls. The cost variables of the two
proposed approaches are given in Figure 17d. The total energy consumption of the
battery, the maximum lateral error, and the RMS of the lateral error are all lower in
the continuous Ls than the fuzzy one. Hence, employing the continuous function of
Ls yields a higher energy economy and superior path-tracking performance compared
to the utilization of the fuzzy logic approach.

5.6. Recap

The performed tests have revealed the major performance of the AV under the proper
adaptation of the look-ahead distance of the lateral controller. It has been demon-
strated that, under the same controller with the same tuning parameters, the variation
of the opted strategy to adapt Ls results in a diverse demeanor of the AV. Scenario 1
demonstrated the necessity of considering road adherence as a critical factor to adapt
Ls. While different strategies including constant assigning and adaptation as a function
of the velocity revealed an unacceptable behavior, the proposed fuzzy and continuous
Ls have manifested major robustness to sudden variation of road conditions. Scenario
2 elucidated the superior performance of the proposed approaches in path-tracking
and the capability of reducing energy consumption in critical road situations. Scenario
3 confirmed the compromise between energy consumption and path-tracking of the
fuzzy and continuous Ls during daily driving. Finally, Scenario 4 showed the leading
performance of the continuous Ls over the fuzzy Ls in terms of path-tracking, energy
consumption, and vehicle stability.

A further advantage of employing the continuous Ls over the fuzzy approach is its
remarkable computational efficiency. The execution time of the look-ahead distance
computation has been recorded in both the fuzzy and continuous approaches, where
the simulations are conducted under an Intel Core i9-12950HX CPU 2.3-GHz laptop.
Table 5 presents the recorded data in each scenario where the simulation time refers
to the total time of the test, and the execution time of each approach is averaged
by 10 runs. One can readily notice that the execution time to calculate the look-
ahead distance based on the continuous function in the four scenarios is roughly 100
times faster than that based on the fuzzy logic approach. Therefore, the continuous Ls
operates in real-time without the need for dedicated computational hardware, unlike
the fuzzy Ls, which relies on relatively high-performance computing hardware.
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Videos of the validation on the SCANeRTM Studio simulator are given
in a playlist at the following link “https://www.youtube.com/playlist?list=
PL6pn13pjrt-CCB0NPS0BtZazWWWyPXQl1”.

6. Conclusion

Although it is a virtual parameter of the lateral controller, the look-ahead distance
is a key parameter that significantly affects the performance of the autonomous vehi-
cle. Diving deep into the impact of this parameter, this paper inferred a set of rules
to adapt the look-ahead distance to three factors. Then, an explicit mathematical
model is developed for the look-ahead distance as a function of the considered fac-
tors. Further, another approach is proposed to adapt the look-ahead distance based
on fuzzy logic control. The two approaches are contrasted with other methods and
with each other to emphasize the leading merits of the proposed formula in terms
of path-tracking performance, vehicle stability, computational efficiency, and energy
consumption. As a future work, the authors will consider implementing the lateral con-
troller with the proposed look-ahead distance formula on a real experimental vehicle
in a testing platform.
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