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A B S T R A C T   

Background: Using a machine learning algorithm, individuals can be accurately identified from their muscle 
activation patterns during gait, leading to the concept of individual muscle activation signatures. 
Research question: Are muscle activation signatures robust across different walking speeds? 
Methods: We used an open dataset containing electromyographic (EMG) signals from 8 lower limb muscles in 50 
asymptomatic adults walking at 5 speeds (extremely slow, very slow, slow, spontaneous, and fast). A machine 
learning approach classified the EMG profiles based on similar (intra-speed classification) or different (inter- 
speed classification) walking speeds as training and testing conditions. 
Results: Intra-speed median classification rates of muscle activation profiles increased with walking speed, from 
92 % for extremely slow, to 100 % for self-selected fast walking conditions. Inter-speed median classification 
rates increased when the speed of the training condition was closer to that of the testing condition. Higher 
median classification rates were found across slow, spontaneous, and fast walking speed conditions, from 56 % to 
96 %, compared with classification rates involving extremely and very slow walking speed conditions, from 6 % 
to 62 %. 
Significance: Our findings reveal that i) muscle activation signatures are detectable for a large range of walking 
speeds, even those involving different gait strategies (intra-speed median classification rates from 92 % to 100 
%), and ii) muscle activation signatures observed during very low walking speeds are not consistent with those 
observed at higher speeds, suggesting a difference in motor control strategy. Caution should therefore be 
exercised when assessing gait deviations of a slow walking patient against a normative database obtained at 
higher speed. Identifying the robustness of individual muscle activation signatures across different movements 
could help in detecting changes in motor control, otherwise difficult to detect on classical time-varying EMG 
patterns.   

1. Introduction 

Signatures are distinctive patterns by which an individual can be 
identified. During walking at self-selected speed, individuals were suc
cessfully identified by a machine learning algorithm using their kine
matics and kinetics patterns [1,2], supporting the existence of individual 
movement signatures. Furthermore, individuals were identified using 
their muscle activation patterns during walking at a fixed speed [3], 
supporting the existence of unique muscle activation strategies, and thus 
muscle activation signatures. These movement and muscle activation 
signatures have been shown to persist over time [2,3]. 

This suggests that the control of locomotion is unique to an indi
vidual. However, it is still unclear whether individuals’ muscle activa
tion signatures differ across tasks with different mechanical constraints 
such as walking at different speeds. Addressing this question will help to: 
i) understand motor control strategies during gait, in both healthy and 
pathological populations; ii) interpret the changes in individuals’ sig
natures over time or following an intervention. 

Specifically, muscle activation signatures have been identified dur
ing walking at a single speed, whereas activities of daily living require a 
wide range of walking speeds. Individuals use different walking speeds 
during daily activities to adapt their pace to the context; an increase in 
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walking speed can be required at pedestrian crossings [4]. It is 
well-documented that walking speed variations are associated with 
changes in lower limb kinematics and muscle activations [5–8]. These 
changes are predictable for some range of walking speeds [9–11]. 
However, transitions in gait strategies have been found for very low and 
very high walking speeds. While the last one represents the walk-run 
transition speed [9,12–14], walking at very low speed is thought as a 
transition between the locomotion task and a more postural control task 
[10,11]. 

It is unknown whether the muscle activation signatures during gait 
are robust across walking speeds. The two sub-objectives of this study 
were: a) to evaluate the detectability of muscle activation signatures for 
different walking speeds; and b) to evaluate the consistency of muscle 
activation signatures across different walking speed conditions. 

By using a dataset of adults walking from very low to high speeds 
[15], this study examined primarily the robustness of individual muscle 
activation signatures across different walking speeds. A machine 
learning approach was used to classify participants based on their 
muscle activation patterns [3], using similar (intra-speed classification) 
or different (inter-speed classification) walking speeds as training and 
testing conditions. High classification rates of the algorithm would 
indicate a successful classification, and therefore the presence of indi
vidual muscle activation signatures [3]. 

We hypothesize that muscle activation signatures are consistent 
across different walking speeds, meaning that individuals walking at a 
certain speed could be identified using their muscle activation patterns 
measured during walking at a different speed. 

2. Methods 

2.1. Dataset 

This study used a publicly available dataset recorded in accordance 
with the Declaration of Helsinki and its later amendments [15]. 

This dataset includes records from 50 asymptomatic adults (24 
women and 26 men; mean age 37 ± 13.6 years; Table 1) walking 
overground at five different walking speeds: between 0 and 0.4 m/s 
(condition C1) – extremely slow speed; between 0.4 and 0.8 m/s (C2) – 
very slow speed; between 0.8 and 1.2 m/s (C3) – slow speed; self- 
selected spontaneous walking speed (C4); and self-selected fast 
walking speed (C5). 

Gait data included 3D trajectories of 52 reflective markers from a 
full-body marker set, 3D ground reaction forces and moments, gait 
events (i.e., timings of foot strikes and foot offs), and surface EMG sig
nals for the following eight right lower limb muscles: gluteus maximus; 
gluteus medius; rectus femoris; vastus medialis; semitendinosus; 
gastrocnemius medialis; soleus; tibialis anterior. EMG signals were 
sampled at 1500 Hz (Desktop DTS, Noraxon, USA), and band-pass 
filtered between 30 and 300 Hz (4th order Butterworth filter). The 
experimental protocol is fully detailed in [15]. 

Between three and five gait trials were collected for each walking 
speed and each participant. For each trial, one gait cycle was extracted 
between two consecutive right foot strikes to match with the side of the 
collected EMG. 

2.2. Data processing 

Electromyography signals were processed using MATLAB (R2018b, 
The Mathworks, USA). To obtain EMG envelopes, EMG signals were 
rectified and low-pass filtered using a 2nd order Butterworth filter, with 
a variable cut-off frequency. Filtering parameters have been shown to 
greatly influence EMG patterns [16,17]. Furthermore, cut-off frequency 
of EMG low-pass filtering should be adapted when different movement 
velocities are compared [18], to maintain a similar level of smoothing. 
We investigated the best cut-off frequency for EMG comparisons at 
different walking speeds. 

Eight cut-off frequencies were tested: fixed cut-off frequencies of 3 
Hz, 6 Hz, 9 Hz, 12 Hz, 15 Hz, 18 Hz, and 21 Hz (reflecting the low-pass 
filters commonly used in gait; [19]), and a walking speed-customized 
cut-off frequency. Specifically, the actual walking speed for each gait 
cycle of each participant was calculated using the difference in hori
zontal position of the posterior iliac spine marker between two 
consecutive foot strikes and the associated time. Additionally, the 
Froude number [20], representative of the dimensionless walking speed, 
was calculated by dividing walking speed by the square root of the 
product of the leg length and the gravitational constant. Then, the 
customized cut-off frequency was calculated using a linear relation be
tween the cut-off frequency and the walking speed, using the reference 
of 9 Hz for 1.1 m/s [3]. These two processes (fixed and customized 
cut-off frequencies) led to eight different datasets. 

Finally, each EMG envelope of each gait cycle was interpolated to 
200 time points and amplitude-normalized to its maximal value. Each 
gait cycle was normalized to its maximal value to ensure that data from 
all muscles and all gait cycles had an equivalent weight in the classifi
cation [3]. 

2.3. Intra-speed classification 

All support vector machines analyses were realized using MATLAB 
(R2018b, The Mathworks, USA). 

An intra-speed classification was performed for each of the five 
walking speed conditions, and for each of the eight cut-off frequency 
datasets. Each dataset was composed of five c × m matrices [c = 50 
participants x number of gait cycles (between 3 and 5); m = 200 time 
points × 8 muscles]. As in [3], a leave-one-out cross-validation approach 
was used, i.e., for each walking speed condition, the corresponding c ×
m matrix was separated into a training set, including all-except-one 
randomly chosen gait cycles for all participants, and a testing set 
including the remaining gait cycle. After being trained with the training 
set, the classifier was applied to the testing set. 

The number of total possibilities for establishing the training and 
testing sets was the number of cycles to the power of the number of 
participants (i.e., between 350 and 550 according to the number of cy
cles). However, all possibilities could not be tested since the calculation 
time would have been too high. A compromise needed to be made be
tween an acceptable calculation time, requiring a low number of itera
tions, and stable classification results, requiring a sufficiently high 
number of iterations. The value of 200 iterations was determined given 
the most stable classification results (Supplementary material 1). 
Therefore, for each condition, we performed 200 testing iterations, with 
200 random testing sets trained with their corresponding training set. 

2.4. Inter-speed classification 

Based on the results for the intra-speed classification (reported below 
in the Results section), the inter-speed classification was only performed 
for the customized cut-off frequency dataset. Each walking speed con
dition was tested against each of the four remaining walking speed 
conditions, resulting in 20 inter-speed combinations (called "pairs"). For 
each pair, the training dataset was a c × m matrix (where c = 50 par
ticipants × 3–5 gait cycles from the training walking speed condition; m 

Table 1 
Participants’ characteristics (n = 50).   

Mean (SD) Range 

Age (year) 37.0 (13.6) 19–67 
Height (m) 1.74 (0.09) 1.55–1.92 
Body mass (kg) 71.2 (12.3) 50–98 
BMI (kg m-2) 23.5 (2.8) 17.2–29.6  
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= 200 time points × 8 muscles). The testing dataset was a c × m matrix 
(where c = 50 participants × 1 randomly selected gait cycle from the 
testing walking speed condition; m = 200 time points × 8 muscles). 
Likewise, 200 iterations of the testing were performed using 200 random 
testing sets. 

2.5. Machine learning 

Similarly to Aeles et al. [21] and Hug et al. [3], the classification of 
time-varying EMG profiles was performed using support vector ma
chines, consisting in a supervised machine learning algorithm for 
pattern recognition. The Liblinear Toolbox 2.11 [22] was used with the 
solver L2-regularized L2-loss support vector classification (primal) and a 
linear kernel function. The option "find C" was selected such that the 
model ran a cross-validation to find the best cost C value, with the 
highest cross validation accuracy. The cost C value rules the trade-off 
between regularization and correct classification. 

2.6. Classification performance 

The classification performance was reported by its sensitivity, 
providing the percentage of correctly classified cycles (called "classifi
cation rate" hereafter). A median intra-speed classification rate was re
ported for each walking speed condition. A median inter-speed 
classification rate was reported for each pair of walking speeds. The 
classification was interpreted as invalid if the rate was < 50 %, poor 
between 50 % and 70 %, acceptable between 70 % and 80 %, excellent 
between 80 % and 90 %, and outstanding when > 90 % [23]. 

2.7. Statistics 

The studied data were the 200 classification rates, for each walking 
speed condition and each cut-off frequency. For each analysis, the dis
tribution normality was examined through histograms. Due to the 100 % 
upper limit of the classification rate data, the data distributions were 
either skewed or half-normal. Nevertheless, ANOVAs were still per
formed, due to the robustness for these types of data distributions with 
equal and high group sample sizes [24]. 

To determine the best low-pass filtering parameter, the effect of the 
cut-off frequency was analyzed on the intra-speed classification rates 
using a one-way ANOVA (factor: cut-off frequency), for each walking 
speed condition. 

Then the analyses were performed according to two secondary ob
jectives: a) The effect of the walking speed condition on the intra-speed 
classification rates for the best cut-off frequency dataset was analyzed 
using a one-way ANOVA (factor: walking speed condition); b) The effect 
of the pair of walking speed conditions on the inter-speed classification 
rates of EMG profiles was analyzed using a one-way ANOVA (factor: pair 
of conditions, e.g., C1–C2). Tukey post-hoc tests were used when 
appropriate. For all analyses, the significance threshold was set at 0.05. 
All statistical analysis were realized using MATLAB (R2018b, The 
Mathworks, USA). 

3. Results 

3.1. Walking speeds and cut-off frequencies 

Table 2 shows the means and standard deviations of walking speeds, 
the associated Froude number, and their associated customized cut-off 
frequencies for the five conditions. 

Fig. 1 illustrates the inter-individual variability of EMG patterns of 
the eight muscles during three selected walking conditions. 

Fig. 2 shows the intra-speed classification rates for each walking 
speed condition for each of the eight datasets. The classification rates 
correspond to the percentage of cycles allocated to the correct partici
pant based on their muscle activation profiles. 

The cut-off frequency had a significant effect on the intra-speed 
classification rate for all walking speed conditions: C1: F(6,1393) =
12.67, P < 0.001; C2: F(6,1393) = 10.24, P < 0.001; C3: F(6,1393) =
15.64, P < 0.001; C4: F(6,1393) = 10.71, P < 0.001; C5: F(6,1393) =
134.13, P < 0.001. For all walking speeds combined, the SVM analysis 
accurately identified individuals based on their activation profiles with 
the following median (interquartile range) classification rates: 100 
(4) % for the customized frequency, 98 (6) % for a cut-off frequency at 
3 Hz, 98 (4) % at 6 Hz, 98 (4) % at 9 Hz, 98 (4) % at 12 Hz, 98 (4) % at 
15 Hz, 98 (4) % at 18 Hz, 98 (6) % at 21 Hz. Considering these results, 
only the customized frequency dataset was used in the following 
analyses. 

3.2. Intra-speed classification rates 

Fig. 3 shows the intra-speed classification rates when considering 
only the customized cut-off frequency dataset. The classification 
revealed outstanding performances for all walking speeds. The higher 
the walking speed, the higher the classification rate (main effect of 
walking speed: F(4,995) = 511.08; P < 0.001): 92 (4) % for C1, 96 
(4) % for C2, 100 (2) % for C3, 100 (0) % for C4, and 100 (0) % for C5. 
Significant differences were found between all the conditions, except 
between C4 (self-selected spontaneous speed) and C5 (self-selected fast 
speed). 

3.3. Inter-speed classification rates 

Inter-speed classification rate results are summarized in Table 3. The 
classification model was trained with a specific walking speed condition 
and tested on another walking speed condition. The median rate ranged 
from 6 % to 96 %, depending on the pair. Overall, the higher the dif
ference in walking speed between the training and testing conditions, 
the lower the classification rate. 

Interestingly, for comparable differences of walking speed (e.g., 
ΔSpeed_C1-C2 = 0.33 vs. ΔSpeed_C2-C3 = 0.39 m/s) different classifica
tion performances were found. Higher classification rates were found 
across the C3–C5 conditions, compared with those found when using C1 
or C2 walking speeds as the training or testing condition. 

4. Discussion 

This study examined the robustness of muscle activation signatures 
across five different speeds (extremely slow, very slow, slow, sponta
neous, and fast) in adults during overground walking, by using a ma
chine learning algorithm to classify EMG profiles in eight lower limb 
muscles. The main results were that a/ muscle activation signatures 
were detectable for a large range of walking speeds (intra-speed classi
fication rates from 92 % to 100 %), and b/ muscle activation signatures 
at very low speeds are not consistent with those at higher speeds, con
firming changes in motor control strategy. 

Methodologically, using the same cut-off frequency of the low-pass 
filter across walking speeds induced a different smoothing level on the 
time-varying EMG profiles. The use of a custom cut-off frequency 
adapted to the walking speed maximized successfully the classification 
rate for each walking speed condition. 

Table 2 
Walking speeds and related customized cut-off frequencies for the five walking 
speed conditions, given as means with standard deviations (SD).  

Condition Mean walking 
speed (SD) (m/s) 

Mean Froude 
number (SD) 

Mean custom cut-off 
frequency (SD) (Hz) 

C1 0.29 (0.05) 0.10 (0.02) 2.3 (0.4) 
C2 0.61 (0.08) 0.21 (0.03) 5.0 (0.7) 
C3 0.98 (0.10) 0.35 (0.04) 8.0 (0.9) 
C4 1.15 (0.16) 0.41 (0.06) 9.4 (1.3) 
C5 1.61 (0.23) 0.57 (0.09) 13.1 (1.9)  
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The walking speeds varied from 0.29 to 1.61 m/s, representing a 
Froude number from 0.1 to 0.6. The C4 – spontaneous and C5 – fast 
conditions, with mean walking speeds of 1.15 m/s and 1.61 m/s, can be 

interpreted respectively as a stroll walking speed and a brisk walking 
speed of a healthy adult. The C3 – slow condition, with a mean walking 
speed of 0.98 m/s, can be interpreted as the walking speed of a healthy 
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older adult without walking aid. The C2 – very slow condition, with a 
mean walking speed of 0.61 m/s, can be interpreted as the walking 
speed of an older adult with strong risk factors for poor health outcomes. 
Finally, the C1 – extremely slow condition, with a mean walking speed 
of 0.29 m/s, can be interpreted as the walking speed of a dependent 
older adult in hospital or geriatric rehabilitation settings [25]. 

Muscle activation signatures were well defined for all walking 
speeds, with outstanding intra-speed classification rates (92–100 %). 
Such high rates were rather unexpected since the SVM model was 

trained with only 2–4 gait cycles for each condition. Our results were in 
total accordance with those of Hug et al. [3]: mean classification rate of 
98.86 % vs. 99.04 % in the current C4 – spontaneous condition, closest 
to their imposed walking speed of 1.11 m/s, showing that muscle acti
vation signatures can be observed during both treadmill and overground 
walking. 

A transition in gait strategy has been found for very low walking 
speeds, around a Froude number of 0.2 (C2 – very slow condition), a 
likely transition between locomotion and a more postural task [10,11]. 
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Fig. 3. Intra-speed classification rate - using the custom cut-off frequency - median and interquartile range (%) as a function of the mean and standard deviation of 
walking speed (m/s), for the five conditions (C1 – extremely slow: between 0 and 0.4 m/s; C2 – very slow: between 0.4 and 0.8 m/s; C3 – slow: between 0.8 and 
1.2 m/s; C4 – spontaneous: self-selected spontaneous walking speed; C5 – fast: self-selected fast walking speed). The Tukey post-hoc test results are indicated by 
letters: walking speed conditions that do not share a letter are significantly different (P < 0.05). 

Table 3 
Inter-speed classification rates. For all walking speed conditions, the definition of the condition (in italics), and the mean and standard deviation of the condition 
walking speed (m/s) (in bold) are indicated. Median (interquartile range) inter-speed classification rate (%) is indicated for all pairs of walking speed conditions: the 
model was trained with the training condition, and tested with one randomly selected cycle of the testing condition. The mean difference in speed (m/s) between the 
two conditions (ΔSpeed) is indicated below the classification rate. Cells colored in red, orange and green indicate invalid (< 50 %), poor (50–70 %), and excellent to 
outstanding (> 80 %) classification performances, respectively.  
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For the first time, individual movement signatures were shown below 
the Froude number 0.2. Surprisingly, they were highly detectable with 
outstanding classification rates, even if lower than for higher speeds. 
Slightly lower classification rates could be explained by a higher 
intra-individual variability and lower inter-individual variability, 
related to the increase of the postural-demanding task and specific stride 
length/economy relationship [10,26], which might result in adaptation 
of muscle activation patterns. The second walk-run transition takes 
place around a Froude number 0.7, so higher than the walking speeds 
currently tested. 

Muscle activation signatures were found poor to outstanding across 
C3 – slow, C4 – spontaneous, and C5 – fast walking speeds, for Froude 
number > 0.35, with inter-speed classification rates superior to 56 % 
(for C5 – fast/C3 – slow) and up to 96 % (for C4 – spontaneous/C3 – 
slow). Muscle activation signatures involving slowest speeds (Froude 
number < 0.2) were less or not at all consistent (6–62 %). This confirms 
a change in motor control strategy at the Froude number 0.2, with an 
inconsistency of the muscle activation signatures across this threshold. 
This is coherent with the strong modifications of muscle activation 
amplitude and timing at very low speeds. Specifically, higher lower limb 
proximal muscles co-activation has been found for very slow walking 
speeds [27,28]. Additionally, muscle activation signatures between C1 – 
extremely slow and C2 – very slow were inconsistent, meaning that the 
motor control strategy for a Froude number < 0.2 is specific to the 
movement speed and cannot be easily identified across very low speeds. 

In clinical practice, a movement or gait disorder is usually assessed 
by quantifying the deviations of a patient’s data from normative data. 
Based on this study results, extreme caution must be exercised when 
assessing the gait of a patient with a slow walking speed, since norma
tive data are usually collected at self-selected walking speed [15]. De
viations observed could be linked to the gait transition highlighted in 
this study and not to the patient’s gait disorder, and clinical decisions 
could be directly impacted. The use of a normative database with an 
adjusted mean walking speed, such as the one presented in [15], is 
therefore highly recommended. 

For C3 – slow to C5 – fast, the higher the difference in walking speed 
within a pair, the lower the classification rate (e.g., 66 % for the C3 – 
slow/C5 – fast pair vs. 88 % for the C4 – spontaneous/C5 – fast pair). 
This is coherent with the predictability of the evolution of individual 
gait signatures with walking speed, as described for lower limb kine
matics by Moissenet et al. [10], and for muscle activation patterns by 
Den Otter et al. [28]: within a range of normal walking speeds 
(0.2 < Froude < 0.7), EMG patterns are described as the superposition 
of speed-dependent gain functions and a basis speed-independent 
pattern [28,29]. The larger the speed difference between the training 
and testing speeds, the larger the gain of speed-dependent functions, and 
therefore the larger classification difficulty for the machine learning 
algorithm. 

Current results provide solid evidence about individual muscle 
activation signatures across different walking speeds, especially for 
speeds of daily living movements involving automatic locomotion gov
erned by spinal central pattern generators [30,31]. Interestingly, across 
a wide range of walking speeds (C3 – slow to C5 – fast), specific motor 
signatures are highly consistent with each other. 

Some limitations must be acknowledged. First, the SVM algorithm 
was performed on the basis of eight muscles, whereas further muscles 
are involved in human gait. Also, due to the EMG normalization, inter- 
muscle amplitude comparisons were not considered by the SVM anal
ysis, which could have limited its performance [3]. Second, we could not 
exclude that the observed signatures were partly due to extrinsic vari
ability [32], i.e., variability in sensor placement or skin preparation. 
However, the same experienced operator managed all the measurements 
following identical guidelines between trials [15]. We used the same 
machine learning implementation as in [3] where between-session 
classifications were assessed with good results. We could, therefore, 
confidently present only these one-session results. 

5. Concluding remarks 

The use of a machine learning algorithm on muscle activation pat
terns revealed movement signatures, and automatically highlighted 
changes in gait strategy for very low speeds compared to low to high 
walking speeds. Similar methodology could be applied to different 
populations and movements, to detect changes in motor control, 
otherwise difficult to detect by manually observing EMG patterns. Note 
that for clinical applications, a higher number of gait cycles would be 
recommended to ensure representativeness of the muscle activation 
patterns. This could help adjusting rehabilitation, by making sure that 
the imposed exercises do invoke the targeted motor control strategy (e.g. 
treadmill training with an incline for cerebral palsy patients). 
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