Electronic Supplementary Information

2	Sucrose phosphorylase from Alteromonas mediterranea: structural
3	insight into the regioselective α -glucosylation of (+)-catechin
4	Marine Goux ^a , Marie Demonceaux ^a , Johann Hendrickx ^a , Claude Solleux ^a , Emilie Lormeau ^a , Folmer
5	Fredslund ^b , David Tezé ^b , Bernard Offmann ^{a,c} and Corinne André-Miral ^{a,c}
6	
7	^a Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France
8	^b DTU Biosustain, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
9	^c Corresponding authors: Corinne André-Miral and Bernard Offmann

11 Table of Contents

12	Molecular modelling of variants of AmSP-WT3
13	Characteristics of AmSP and its variants4
14	Sequence of AmSP-WT including His-tag on C-term4
15	Structural homology between BaSP and AmSP5
16	Determination of the apparent kinetic parameters9
17	(+)-catechin transglycosylation studies13
18	Synthesis yields for AmSP-Q353F and AmSP-P140D13
19	¹ H and ¹³ C NMR Spectral Data of CAT-4' in DMSO15

21 Molecular modelling of variants of AmSP-WT

Glucosyl-enzyme intermediate 3D-models were built for AmSP-Q353F and AmSP-P140D using the 22 23 following procedure and the Rosetta software [22]. Glucosylated-aspartyl 192 residue from chain A of crystal structure of BaSP-WT (PDB: 2GDV-A) was inserted into the crystal structure AmSP-WT 24 (PDB: 7ZNP) that served as initial template for both variants. As this glucosylated aspartyl is a non-25 standard residue, it was absent from the database of the Rosetta software. Using Pymol3, the 26 initial coordinates of this modified residue were retrieved. While this residue (D192) and the 27 28 glucose moiety (BGC) are covalently linked in the crystal structure, the Pymol software considered them as two distinct residues. Thus, they were merged them into a single non-standard residue, 29 which was called with a new ID, DGC. Associated charges and rotamers were calculated for this 30 new residue using the Rosetta software. All those data were merged a single file and were added 31 into the Rosetta database (Section 2.7). 32

With the DGC residue ready to be used, glucosyl-intermediates were built for the two variants of AmSP-WT. From the crystal structure (PDB: 7ZNP), using Rosetta, the native aspartyl residue in position 203 was mutated by the glucosylated-aspartyl DGC residue together with either the P140D or Q353F mutation. For each variant (AmSP-Q353F or AmSP-P140D), a sample of 50 conformers was generated thanks to the program Backrub from Rosetta suite, with 10 000 tries. In parallel, 12 conformers of (+)-catechin were also generated using the Mercury software (CCDC) [23] from the crystal structure OZIDOR of (+)-catechin.

41 Characteristics of AmSP and its variants

42 Sequence of AmSP-WT including His-tag on C-term

43	1	MGSIRNGVQL	ITYADRLGDG	NIESLTNLLD	GPLKGLFKGV	HILPFYYPYD	GEDAGFDPID
44	61	HTTVDERLGD	WNNIKKLGES	VDIMADLIVN	HMSGQSEAFT	DVLKKGRESE	YWPLFLTKED
45	121	VFSGNDQAEI	DEQIAKVFRP	RPTPFFSDYE	VGIETDSTET	VPFWTTFTSN	QIDIDVESEL
46	181	GKEYLSSILQ	SFTESNVDLI	RLDAAGYAIK	RAGSNCFMLE	ETFEFIEALS	KRARTMGMQC
47	241	LVEIHSHYQT	QIDIAARCDS	VYDFALPPLV	LHTLFTKDAS	ALAHWLSISP	RNCFTVLDTH
48	301	DGIGIVDVGA	SGDKPGLISA	DAINALVEQI	HVNSNGESKK	ATGAAANNVD	LYQVNCTYYD
49	361	ALGKDDFAYL	VARAIQFFSP	GIPQVYYGGL	LAAHNDMELL	ANTNVGRDIN	RPYLTTAMVE
50	421	DAIQKPVVKG	LMQLITLRNE	NKAFGGAFDV	TYTDNTLVLS	WSNDGDAASL	TVDFAAMDAT
51	481	INTVSNGEES	TLSIGALLAH	ННННН			

52

53 Table S1: List of primers used for quickchange mutagenesis

Primer 1	CAAATTGCGAAAGTTTTTCGTGATCGTCCGACCCCGTTCTTTAGC
Primer 2	GCTAAAGAACGGGGTCGGACGATCACGAAAAACTTTCGCAATTTG
Primer 3	CGAACAACGTGGACCTGTACTTTGTTAACTGCACCTACTATGATG
Primer 4	CATCATAGTAGGTGCAGTTAACAAAGTACAGGTCCACGTTGTTCG

55 Structural homology between BaSP and AmSP

Figure S1: Structural homology between *BaSP-WT* and *AmSP-WT*. (A) Comparison of closed (purple, PDB: 2GDV.A) and opened (cyan, PDB: 2GDV.B) conformations of *BaSP-WT* and structure of *AmSP-WT* (green, PDB: 7ZNP). The functional loops are featured in magenta for loop A (involved in sucrose binding) and in orange for loop B (involved with polyphenol binding). (B) Sequence comparison for loop A between *BaSP-WT* and *AmSP-WT*. (C) Sequence comparison for loop B between *BaSP-WT* and *AmSP-WT*. *: these residues are involved in the binding of phosphate.

Table S2: Conserved residues and potential substrate interaction of AmSP. Potential substrate interaction and function of conserved residues were determined using structural homology between crystal structures of apoenzyme AmSP-WT (PDB: 7ZNP), apoenzyme BaSP-WT (1R7A) and open conformation BaSP-WT (2GDV.B). Residue numbering of AmSP derived from crystal structure 7ZNP. Residue numbering of BaSP came from crystal structures 1R7A and 2GDV.B. Numbered OHgroups and C-atoms address to sucrose (apostrophe for fructosyl moiety), unless stated otherwise. *: residues from the -1 subsite, *: residues from the Loop A/+1 subsite, <: residues from the Loop

70 B/+1 subsite. Approx.: Approximately the same position.

AmSP	BaSP	Conserved Conformation 1R7A/2GDV.B	Potential substrate interaction/remarks	Potential function
Asp203 ^a	Asp192	Yes	Hydrogen bond with OH6	catalytic nucleophile
Glu243 ª	Glu232	Yes	Hydrogen bond with OH1 and OH1'	general acid/base catalyst
Asp301 ^a	Asp290	Yes	Hydrogen bond with OH2	transition state stabiliser
Phe56 ª	Phe53	Yes	hydrophobic/ π interaction with C3-C4-C5; Cation- π interaction with oxocarbenium ion-like transition state	hydrophobic platform
Phe167 ^a	Phe156	Yes	hydrophobic/ π interaction with C6 and C1'	hydrophobic platform
His91ª	His88	Approx.	Hydrogen bond with OH6	binding of glycosyl moiety
Arg201 ^a	Arg190	Yes	Hydrogen bond with OH2	binding of glycosyl moiety
His300 ª	His289	Yes	Hydrogen bond with OH2 and OH3	binding of glycosyl moiety
Asp53 ^a	Asp50	Yes	Hydrogen bond with OH4	binding of glycosyl moiety
Arg407 ª	Arg399	Yes	Hydrogen bond with OH3 and OH4	binding of glycosyl moiety
Gln171	Gln160	Approx.	Hydrogen bond with OH6	binding of glycosyl moiety
Ala204	Ala193	Yes	hydrophobic interaction with C6 and C1'	binding of glycosyl/fructosyl moiety
Leu351 ^b	Leu341	No	hydrophobic interaction with C6 and C6'	binding of glycosyl/fructosyl moiety
Tyr207	Tyr196	Approx.	hydrophobic/ π interaction with C1'	involved in fructose binding
Asp350 [♭]	Asp342	No/Approx.	Hydrogen bond with OH4'	involved in fructose binding
Gln353 ^b	Gln345	Yes	Hydrogen bond with O3' and O6'	involved in fructose binding
Phe138 °	Tyr132	Approx.	at the entrance of active site; hydrophobic surroundings	Specificity for fructose
Pro140°	Pro134	Approx.	in vicinity of C4-OH of fructose	involved in the binding of the fructose- bound phosphate group
Tyr207	Tyr196	Approx.	CE2-atom close to C1 of fructose	Specificity for fructose/phosphate
His245	His234	Yes	in vicinity of C3 and C3-OH of fructose	Specificity for fructose/phosphate
Arg141 °	Arg135	No/Approx.	Hydrogen bond with phosphate O; Specificity for fructose/phosphate	involved in phosphate binding
Leu351 ^b	Leu343	No/Yes	in between important residues Asp342 and Tyr344	Specificity for phosphate
Tyr352 [♭]	Tyr344	No/Yes	Hydrogen bond with phosphate O	involved in phosphate binding
lle244	Val233	Yes	next to the acid/base catalyst; side chain turned away from active site	unknown

Figure S2: Effect of DMSO on thermal stability of AmSP and its variants: (A) AmSP-WT, (B) AmSP-P140D, (C) AmSP-Q353F, (D) AmSP-P140D/Q353F. Representative melting curve from 0% to 40% of DMSO (v/v) were obtained in a final volume of 25 μ L in MOPS-NaOH 50 mM pH 8.0 with 3 μ M of enzyme and Sypro orange 5x (n=3). The multiphase curve in presence of DMSO suggests the presence of a multi-domain protein or protein aggregation. Compared to the single curve obtained without DMSO, increasing DMSO concentration is shown to increase the destabilization of the enzymes.

79 Table S3: Melting temperature of AmSP and its variants. Values, given in °C, were obtained by

	WT	P140D	Q353F	P140D/Q353F
H₂O	42.0 ± 0.0	42.8 ± 0.3	42.0 ± 0.9	42.2 ± 0.3
NPI-5	42.7 ± 0.3	42.5 ± 0.0	42.2 ± 0.3	41.5 ± 0.0
NPI-250	38.7 ± 0.3	38.2 ± 0.3	38.3 ± 0.3	37.3 ± 0.3
MOPS pH 7.0	44.8 ± 0.6	45.2 ± 0.3	44.0 ± 0.0	43.7 ± 0.3
pH 7.0 10%D	42.5 ± 0.0	42.2 ± 0.3	41.8 ± 0.3	42.3 ± 0.3
pH 7.0 20%D	39.5 ± 0.0	39.0 ± 0.0	39.2 ± 0.3	39.5 ± 0.0
pH 7.0 30%D	36.3 ± 1.0	36.3 ± 0.3	36.5 ± 0.5	36.7 ± 0.3
pH 7.0 40%D	31.3 ± 0.3	32.5 ± 0.0	32.7 ± 0.3	33.2 ± 0.3
MOPS pH 8.0	42.0 ± 0.0	43.0 ± 0.0	41.5 ± 0.0	41.2 ± 0.3
pH 8.0 10%D	41.3 ± 0.3	41.3 ± 0.4	41.5 ± 0.5	40.8 ± 1.0
pH 8.0 20%D	40.5 ± 0.0	39.3 ± 0.6	39.8 ± 0.3	39.5 ± 0.5
pH 8.0 30%D	37.5 ± 0.5	39.0 ± 0.7	37.0 ± 0.0	38.0 ± 0.5
pH 8.0 40%D	32.7 ± 0.3	39.5 ± 1.4	33.7 ± 0.3	33.7 ± 0.3
Citrate	45.5 ± 0.0	43.8 ± 0.4	43.5 ± 0.0	43.3 ± 0.3
HEPES	43.5 ± 0.3	44.0 ± 0.0	42.2 ± 0.6	42.2 ± 0.6
HEPES NaCI DTT	44.8 ± 0.6	45.0 ± 0.0	43.7 ± 0.8	44.3 ± 0.3

80 calculating the first derivative -(dRFU)/dT of the melting curves.

Figure S3: Michaelis-Menten and Hanes-Woolf plots of sucrose hydrolysis in absence of DMSO obtained with AmSP-WT and its variants (P140D, Q353F and P140D/Q353F). Data were obtained by glucose titration using GOD/POD method of the reaction medium that reacted for 3h at 25°C and that contained the SP enzyme (10 μ M for variants and 3 μ M for WT) and 1mM to 50 mM of sucrose, in MOPS-NaOH 50 mM pH 8.0 (n=3). Kinetic data were fitted to Michaelis-Menten nonlinear model and Hanes-Woolf linear model using respectively *nlm* and *lm* functions implemented in R to estimate the kinetic parameters.

92 Figure S4: Michaelis-Menten and Hanes-Woolf plots of sucrose hydrolysis obtained with AmSP-

93 WT and its variants (P140D, Q353F and P140D/Q353F) in presence of 20% DMSO (v/v). Data

were obtained by glucose titration using GOD/POD method of the reaction medium that reacted for 3h at 25°C and that contained the SP enzyme (10 μ M for variants and 3 μ M for WT), 1mM to 50 mM of sucrose and DMSO 20% (v/v), in MOPS-NaOH 50 mM pH 8.0 (n=3). Kinetic data were fitted to Michaelis-Menten non-linear model and Hanes-Woolf linear model using respectively *nlm* and *lm* functions implemented in R to estimate the kinetic parameters

99 (+)-catechin transglycosylation studies

100 Synthesis yields for AmSP-Q353F and AmSP-P140D

101 Table S4: Compounds concentration obtained during (+)-catechin glucosylation by AmSP-Q353F 102 and AmSP-P140D. Compound concentrations were calculated from the area under the curves 103 obtained by analytical HPLC on a C-18 column for 7 h and at 24 h of incubation at 25°C of the 104 reaction mixture in a final volume of 1 mL in MOPS-NaOH 50 mM pH 8.0 with 10 μ M of enzyme,

105 80 mM sucrose and 20% DMSO (v/v) (n=3).

AmSP-Q353F

Time (h)	CAT-3' (mM)	CAT-4' (mM)	CAT-5 (mM)	CAT-3',5 (mM)	(+)-catechin (mM)
0	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	10.00 ± 0.00
1	1.12 ± 0.12	0.04 ± 0.00	0.04 ± 0.00	0.00 ± 0.00	8.80 ± 0.13
2	2.26 ± 0.22	0.08 ± 0.01	0.08 ± 0.01	0.00 ± 0.00	7.58 ± 0.23
3	3.23 ± 0.16	0.12 ± 0.01	0.11 ± 0.01	0.01 ± 0.00	6.53 ± 0.18
4	4.00 ± 0.14	0.15 ± 0.01	0.13 ± 0.01	0.01 ± 0.00	5.70 ± 0.16
5	4.74 ± 0.25	0.18 ± 0.02	0.16 ± 0.01	0.02 ± 0.00	4.90 ± 0.28
6	5.37 ± 0.21	0.20 ± 0.01	0.18 ± 0.01	0.03 ± 0.00	4.22 ± 0.23
24	8.36 ± 0.13	0.36 ± 0.01	0.21 ± 0.02	0.20 ± 0.02	0.88 ± 0.15

106

AmSP-P140D

Time (h)	CAT-3' (mM)	CAT-4' (mM)	(+)-catechin (mM)
0	0.00 ± 0.00	0.00 ± 0.00	10.00 ± 0.00
1	0.05 ± 0.00	0.40 ± 0.02	9.55 ± 0.02
2	0.10 ± 0.00	0.74 ± 0.02	9.17 ± 0.02
3	0.12 ± 0.00	0.99 ± 0.02	8.88 ± 0.02
4	0.15 ± 0.00	1.19 ± 0.03	8.65 ± 0.03
5	0.17 ± 0.00	1.36 ± 0.06	8.47 ± 0.06
6	0.19 ± 0.01	1.49 ± 0.07	8.29 ± 0.03
24	0.31 ± 0.02	2.50 ± 0.19	7.19 ± 0.21

107

Figure S5: HPLC chromatogram of a 24 h reaction medium of (+)-catechin glucosylation by AmSP-WT and its variants. Peak 1: CAT-5, peak 2: CAT-3',5, peak 3: CAT-4', peak 4: (+)-catechin, peak 5: CAT-3'. Unassigned peaks correspond to impurities and degradation of (+)-catechin. (10 μ M enzyme, 10 mM (+)-catechin, 80 mM sucrose, 20% DMSO (v/v) in MOPS 50 mM pH 8.0 at 25°C for 24 h). HPLC conditions: isocratic mode at 80% H₂O (v/v), 0.1% formic acid (v/v) and 20% MeOH (v/v), 0.1% formic acid (v/v).

120

- 121 MS (ESI positive):
- 122 Ion Formula: $C_{21}H_{23}O_{11}$
- 123 m/z calculated: 451.1239
- 124 m/z experimental: 451.1240
- 125 error [ppm]: -0.2
- 126

¹²⁷ ¹H NMR (DMSO-d₆, δ) : 7.14 (d, ³J₅₋₆ = 8.3 Hz, 1H, H₅), 6.80 (d, ³J₂₋₆ = 2.0 Hz, 1H, H₂), 6.72 (dd, ³J₆ ¹²⁸ ₋₂ = 2.0 Hz, ³J₆₋₅ = 8.3 Hz, 1H, H₆), 5.91 (d, ³J₆₋₈ = 2.2 Hz, 1H, H₆), 5.71 (d, ³J₈₋₆ = 2.2 Hz, 1H, H₈), ¹²⁹ 5.17 (d, ³J_{1*-2*} = 3.6 Hz, 1H, H_{1*}), 4.55 (d, ³J₂₋₃ = 7.4 Hz, 1H, H₂), 3.85 (td, ³J₃₋₂ = 7.4 Hz, ³J_{3-4a} = 5.3 ¹³⁰ Hz, ³J_{3-4b} = 8.4 Hz, 1H, H₃), 3.71-3.65 (m, ³J_{3*-2*} = 9.7 Hz, , 1H, H_{3*}), 3.65-3.62 (m, 1H, H_{6a*}), 3.55-¹³¹ 3.49 (m, 1H, H_{5*}), 3.55-3.49 (m, 1H, H_{6b*}), 3.33 (dd, ³J_{2*-1*} = 3.6 Hz, ³J_{2*-3*} = 9.7 Hz, 1H, H_{2*}), 3.21-¹³² 3.17 (m, 1H, H_{4*}), 2.65 (dd, ³J_{4a-3} = 5.3 Hz, ²J_{4a-4b} = 16.0 Hz, 1H, H_{4a}), 2.36 (dd, ³J_{4b-3} = 8.4 Hz, ²J ¹³³ _{4b-4a} = 16.3 Hz, 1H, H_{4b}).

134

135 ¹³C NMR (DMSO-d₆, δ) : 156.5 (C₇), 156.2 (C₅), 155.2 (C₁₀), 147.1 (C₄), 144.7 (C₃), 134.7 (C₁), 118.2 136 (C₆), 117.3 (C₅), 114.8 (C₂), 100.4 (C_{1*}), 99.0 (C₉), 95.2 (C₆), 93.8 (C₈), 80.7 (C₂), 73.8 (C_{5*}), 73.1 137 (C_{3*}), 72.0 (C_{2*}), 70.0 (C_{4*}), 66.3 (C₃), 60.7 (C_{6*}), 27.8 (C₄).

138 Table S5: Comparison of ¹H and ¹³C NMR Spectrum data of CAT-4' and (+)-catechin in DMSO.

139 Multiplicity abbreviations for ¹H NMR: d = doublet, dd = doublet of doublets, td = pseudo triplet of

140 doublets, m = multiplet. For characterization of CAT-3', CAT-5 and CAT-3', 5 please see [10].

DOSITION	CATECHIN	CAT-4'	CAT-4'
POSITION	∂1H; J (HZ)	∂1H; J (HZ)	∂13C
1	X	Х	Х
2	4.48 (d 7.4)	4.55 (d 7.4)	80.67
3	3.82 (td 8.1, 7.4, 5.2)	3.85 (td 8.4, 7.4, 5.33)	66.26
4	2.67 (dd 16.1, 5.2)	2.65 (dd 16.0, 5.3)	27.84
	2.35 (dd 16.0, 8.1)	2.36 (dd 16.3, 8.4)	
5	Х	Х	156.21
6	5.89 (d 2.2)	5.91 (d 2.2)	95.22
7	X	Х	156.51
8	5.69 (d 2.2)	5.71 (d 2.2)	93.78
9	Х	Х	98.95
10	Х	Х	155.17
1'	Х	Х	134.68
2'	6.73 (d 1.9)	6.80 (d 2.0)	114.79
3'	Х	Х	144.71
4'	Х	Х	147.06
5'	6.69 (d 8.1)	7.14 (d 8.3)	117.26
6'	6.60 (dd 8.1, 1.9)	6.72 (dd 8.3, 2.0)	118.16
1*	X	5.17 (d 3.6)	100.40
2*	Х	3.33 (dd 9.7, 3.6)	72.02
3*	Х	3.71-3.65 (m)	73.06
4*	Х	3.21-3.17 (m)	69.96
5*	Х	3.59-3.55 (m)	73.75
6*	Х	3.65-3.62 (m)	60.73
		3.55-3.49 (m)	

143 Figure S6: NMR spectrum of (+)-catechin-4'-O-α-D-glucoside. (A) ¹H NMR and (B) ¹³C NMR in

144 DMSO-d6 (400 MHz).

Figure S7: Statistical analysis of the binding energies of productive poses for glucosylation of (+) catechin in OH-3', OH-4', OH-5 and OH-7 positions with Q353F and P140D. Molecular docking poses were filtered by considering those with an oxygen of (+)-catechin within 3 Å of the C1 atom of the glucosyl moiety as productive (see sections 2.4, 2.5 and 3.4 in main text for additional details).

Figure S8: Different views of the position of the best productive poses of (+)-catechin in the active site of AmSP-P140D and AmSP-Q353F. In magenta: Loop A with in sticks Y352/F350/Q(F)353 residues; orange: Loop B with in sticks R141/F138 and D140 for AmSP-P140D; blue: residues of the catalytic triad with in sticks DGC203/E243/D301; green: aromatic residues involved in steric clash with in sticks Y207 and F217; and pink: (+)-catechin.