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Abstract In this paper, a high-resolution time-frequency (TF) analysis method,

called time-extracting wavelet transform (TEWT) is introduced to analyze impulsive-

like signals whose TF ridge curves are nearly perpendicular to the time axis. For

impulsive-like signals, the instantaneous frequency with almost infinite rate of change

is difficult to estimate, but the group delay (GD) with nearly zero rate of change

is easier to estimate. Since the GD is the key feature of frequency-domain signals, it

indicates that one can try to understand impulsive-like signals from the perspective of

frequency-domain signals. In this regard, for an impulsive signal and its Fourier trans-

form (i.e. the frequency-domain harmonic signal), we propose the TEWT that achieves

highly-concentrated TF representations while allowing signal reconstruction, only by

retaining the TF energy closely related to TF features of signals, while removing
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weakly-related TF information. The two contributions of this paper are the proposal

of TEWT and the theoretical analysis of TEWT for frequency-domain signals. On the

other hand, we provide a rigorous theoretical analysis of TEWT under a mathemati-

cal framework for frequency-domain signals. Specifically, we define a function class as

a set of all superposition of well-separated frequency-domain harmonic-like functions,

where each function can be locally regarded as a sum of a finite number of harmonic

signals in the frequency domain, and establish error bounds for WT approximate ex-

pression, GD estimation and component recovery. Finally, we verify the effectiveness

of TEWT in terms of the energy concentration, robustness, and invertibility through

numerical experiments with synthetic and real signals.

Keywords Time-frequency analysis · Synchrosqueezing · Time-extracting wavelet

transform · Group delay · Signal reconstruction

1 Introduction

Multi-component non-stationary signals are ubiquitous in the physical world, wide-

ly appearing in mechanical engineering [28, 30], animal sounds [27], seismic signals

[25], etc. Time-frequency (TF) analysis (TFA) methods provide a powerful tool for

characterizing multi-component non-stationary signals. Traditional TFA methods can

be roughly divided into linear TFAs [26] and quadratic TFAs [7], but they are lim-

ited by their inherent properties. Linear TFAs, such as short-time Fourier transform

(STFT) and wavelet transform (WT), localize the TF feature by calculating the inner

product between the signal and the basis function, but TF concentration is subject

to Heisenberg uncertainty principle; quadratic TFAs, such as the Wigner-Ville dis-

tribution and its variants, achieve perfect TF resolution by calculating the Fourier

transform (FT) of the local signal correlation, but introduce unexpected cross-terms

for multi-component signals. In order to overcome these shortcomings, some effective

TF post-processing techniques such as reassignment methods (RM) [1, 18, 19], syn-

chrosqueezing methods [8, 9] and synchroextracting methods [39] have been proposed

in recent years.
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The RM was first introduced by Kodera et al. to the spectrogram [18, 19], and

generalized by Auger and Flandrin to any bilinear TF or time-scale distribution [1].

The RM method reassigns the TF coefficients from the original position to the centroid

of energy distribution of the signal, both along the time axis and the frequency axis,

so as to obtain a more concentrated TFR in the TF plane [6, 10], but it cannot

reconstruct the signal. As a special case of RM [2], Daubechies and Maes proposed

synchrosqueezing wavelet transform (SWT) that squeezes the WT coefficients along

the frequency direction with the capability of sharpening and reversible TFRs [8], as

an empirical mode decomposition (EMD) tool [16]. Subsequently, SWT was extended

to other TF transforms, such as STFT [32] and S-transform [17].

Generally speaking, a multi-component non-stationary signal is modeled as:

𝑥(𝑡) =

𝐾∑︁
𝑘=1

𝑥𝑘(𝑡) =

𝐾∑︁
𝑘=1

𝑎𝑘(𝑡)𝑒𝑖𝜙𝑘(𝑡), (1)

where 𝑎𝑘(𝑡) and 𝜙𝑘(𝑡) are respectively the instantaneous amplitude and instantaneous

phase of the 𝑘th component 𝑥𝑘(𝑡) of 𝑥(𝑡), the derivative of 𝜙𝑘(𝑡) is the instantaneous

frequency (IF) 𝜙′
𝑘(𝑡) and its second-order derivative is the chirp rate 𝜙′′

𝑘(𝑡). When

the component 𝑥𝑘(𝑡) satisfies |𝑎′𝑘(𝑡)|, |𝜙′′
𝑘(𝑡)| ≤ 𝜖|𝜙′

𝑘(𝑡)| (𝜖 > 0 is sufficiently small),

which can be locally regarded as a harmonic signal showing horizontal lines in the

TFR [8], SWT can reach highly concentrated TFRs and exact invertible properties.

Also suitable for describing slowly varying signals is the recently proposed SET that

achieves a high-resolution TFR [39], only by retaining the closely-related TF coeffi-

cients while discarding weakly-related TF coefficients. However, SWT and SET suffer

from blurred TFRs for signals with fast varying IF. Thus some extensions of SWT

have been developed, such as the second-order cases [5, 35], high-order cases [15,

29], demodulation cases [20, 31, 33, 34], and multiple squeezes transform [37, 38, 42].

Besides, there are also some extensions about SET [13, 21, 23, 40, 41].

Among these extensions, Wang et al. proposed a matching synchrosqueezing wavelet

transform (MSWT) designed for fast varying signals satisfying |𝜙′′
𝑘(𝑡)| < ∞ [35]. It

can be found that SWT, SET and their improved methods are mostly suitable for

characterizing slowly varying signals ( such as |𝜙′′
𝑘(𝑡)| → 0 in SWT) and strongly

varying signals ( such as |𝜙′′
𝑘(𝑡)| < ∞ in MSWT), but not suitable for character-
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izing impulsive-like signals whose TF ridge curves are nearly parallel with frequen-

cy axis, where ridge curves are the curves at the TF plane along which the signal

energy is locally maximum [24]. In order to overcome the limitation, some recently

proposed TFA techniques, called time-reassigned synchrosqueezing transform (TSST)

[14], time-reassigned synchrosqueezing wavelet transform (TSWT) [22], and transient-

extracting transform [36] can effectively characterize impulsive-like signals satisfying

|𝜙′′
𝑘(𝑡)| → ∞. TSST is the time squeezing method under the STFT framework, we

generalize TSST to the WT framework, propose TSWT and provide a theoretical

analysis of TSWT [14]. In this paper, we further extend TET to the WT framework

to introduce a new post-processing TFA method.

The two contributions of this paper are the proposal of time-extracting wavelet

transform (TEWT) and the theoretical analysis of TEWT for frequency domain sig-

nals. In this paper, for impulsive signals and its frequency-domain harmonic signals,

we introduce the TEWT, only by retaining the TF energy closely related to the TF

features of the signal while removing weakly-related TF information, which not only

achieves highly concentrated TFRs, but also considers signal reconstruction. Most

importantly, we provide the theoretical analysis of TEWT under a strict mathemat-

ical framework for the frequency-domain signal model. The remainder of this paper

is organized as follows. In Section 2, WT, SWT and TSST are reviewed. In Section

3, we introduce a TEWT designed for impulsive signals and its frequency-domain

harmonic signals. Section 4 is devoted to study the theoretical analysis of the TEWT,

we define a function class as a set of all superposition of well-separated frequency-

domain harmonic-like functions, where each function can be locally regarded as a sum

of a finite number of harmonic signals in the frequency domain, and establish error

bounds for WT approximate expression, GD estimation and component recovery for

this class. Section 5 verifies the TF concentration, robustness, and invertibility of the

TEWT by using numerical experiments of frequency-domain signals, time-domain sig-

nals and real signals with two quantitative indicators. Finally, conclusions are drawn

in Section 6.
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2 Synchrosqueezing wavelet transform and Time-reassigned

synchrosqueezing transform

2.1 Synchrosqueezing wavelet transform (SWT)

The Fourier transform (FT) of a signal 𝑥(𝑡) is defined by [26]:

𝑋(𝜔) =

∫︁
𝑅

𝑥(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡, (2)

and its inverse FT is defined by [26]:

𝑥(𝑡) =
1

2𝜋

∫︁
𝑅

𝑋(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔. (3)

The WT of a signal 𝑥(𝑡) with an admissible wavelet 𝜓(𝑡) is defined by [26]

𝑊𝜓
𝑥 (𝑏, 𝑎) =

1

𝑎

∫︁
𝑅

𝑥(𝑡)𝜓*(
𝑡− 𝑏

𝑎
)𝑑𝑡. (4)

where 𝜓* is the complex conjugate of 𝜓. By Plancherel’s theorem, the WT 𝑊𝜓
𝑥 (𝑏, 𝑎)

can be rewritten as [26]

𝑊𝜓
𝑋(𝑏, 𝑎) =

1

2𝜋

∫︁
𝑅

𝑋(𝜔)𝜓*(𝑎𝜔)𝑒𝑖𝜔𝑏𝑑𝜔. (5)

where the 𝜓 is the FT of 𝜓. It has been proven that in [8] ,∫︁
𝑅+

𝑊𝜓
𝑥 (𝑏, 𝑎)

𝑑𝑎

𝑎
=

1

2𝜋

∫︁
𝑅+

(

∫︁
𝑅

𝜓*(𝑎𝜔)
𝑑𝑎

𝑎
)𝑋(𝜔)𝑒𝑖𝜔𝑏𝑑𝜔

= (

∫︁
𝑅+

𝜓*(𝜂)
𝑑𝜂

𝜂
)(

1

2𝜋

∫︁
𝑅

𝑋(𝜔)𝑒𝑖𝜔𝑏𝑑𝜔)

= 𝑥(𝑏)𝐶𝜓,

(6)

setting 𝐶𝜓 =
∫︀
𝑅+ 𝜓

*(𝜂)𝑑𝜂𝜂 , then the signal can be reconstructed by WT,

𝑥(𝑏) =
1

𝐶𝜓

∫︁
𝑅+

𝑊𝜓
𝑥 (𝑏, 𝑎)

𝑑𝑎

𝑎
. (7)

The complex reassignment operators 𝑡𝑥(𝑏, 𝑎) and �̃�𝑥(𝑏, 𝑎) can be defined wherever

𝑊𝜓
𝑥 (𝑏, 𝑎) ̸= 0 by [10] ⎧⎪⎨⎪⎩

𝑡𝑥(𝑏, 𝑎) = 𝑏+ 𝑎
𝑊 𝑡𝜓
𝑥 (𝑏,𝑎)

𝑊𝜓
𝑥 (𝑏,𝑎)

�̃�𝑥(𝑏, 𝑎) = −𝑖𝜕𝑏𝑊
𝜓
𝑥 (𝑏,𝑎)

𝑊𝜓
𝑥 (𝑏,𝑎)

(8)

where 𝜕𝑏 is the partial derivative with respect to 𝑏, and 𝑡𝑥(𝑏, 𝑎) = ℜ{𝑡𝑥(𝑏, 𝑎)} is the

real part of complex time reassignment operator.
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The SWT proposed by Daubechies et al. [8] provides an alternative theoretical

way to understand the principle of EMD [16], which is performed via three successive

steps. The first step is to calculate the WT expression 𝑊𝜓
𝑥 (𝑏, 𝑎) of the analyzed signal

𝑥(𝑡) (1) by (4). The second step is to calculate a candidate IF �̃�𝑥(𝑏, 𝑎) for 𝑥(𝑡) by (8).

The final step is to reallocate the TF energy from the (𝑏, 𝑎) plane to the (𝑏, �̃�𝑥(𝑏, 𝑎))

plane in the frequency direction:

𝑇𝑥(𝑏, 𝜔) =

∫︁
𝐴𝑥,𝜖(𝑏)

𝑊𝜓
𝑥 (𝑏, 𝑎)𝑎−

3
2 𝛿(𝜔 − �̃�𝑥(𝑏, 𝑎))𝑑𝑎. (9)

where 𝐴𝑥,𝜖(𝑏) := {𝑎 ∈ 𝑅+; |𝑊𝜓
𝑥 (𝑏, 𝑎)| > 𝜖}. Studies show that the SWT 𝑇𝑥(𝑏, 𝜔)

can obtain reasonable accuracy while dealing with harmonic-like signals (i.e. |𝑎′𝑘(𝑡)|, |𝜙′′
𝑘(𝑡)|

≤ 𝜖|𝜙′
𝑘(𝑡)|) [2, 8] in the time domain, whose TF ridge curves are almost parallel to

the time axis.

2.2 Time-reassigned synchrosqueezing transform (TSST)

Under the WT framework, SWT uses the IF estimator to reassign the TF energy

in the frequency direction, while the TSST under the STFT framework uses the

GD estimator to reassign the TF energy in the time direction [14]. The TSST is

also performed via three successive steps. The first step is to calculate the STFT

representation 𝑆ℎ𝑥 (𝑏, 𝜔) of 𝑥(𝑡) with a window function ℎ(𝑡),

𝑆ℎ𝑥 (𝑏, 𝜔) =

∫︁
𝑅

𝑥(𝑡)ℎ(𝑡− 𝑏)𝑒−𝑖𝜔𝑡𝑑𝑡. (10)

The second step is to calculate a candidate GD for 𝑥(𝑡) (𝑆ℎ𝑥 (𝑏, 𝜔) ̸= 0):

𝑡𝑥(𝑏, 𝜔) = −ℑ{𝜕𝜔𝑆
ℎ
𝑥 (𝑏, 𝜔)

𝑆ℎ𝑥 (𝑏, 𝜔)
}. (11)

where ℑ{𝑧} is the imaginary part of 𝑧. The final step is energy reallocation,

𝑉𝑥(𝑡, 𝜔) =

∫︁
𝐵𝑥,𝜖(𝑏)

𝑆ℎ𝑥 (𝑏, 𝜔)𝛿(𝑡− 𝑡𝑥(𝑏, 𝜔))𝑑𝑏. (12)

where 𝐵𝑥,𝜖(𝑏) := {𝜔 ∈ 𝑅; |𝑆ℎ𝑥 (𝑏, 𝜔)| > 𝜖}. As a post-processing method of STFT,

TSST reassigns the TF information from each point (𝑏, 𝜔) to (𝑡𝑥(𝑏, 𝜔), 𝜔) along the

time direction. By calculating an exact GD estimator 𝑡𝑥(𝑏, 𝜔) of impulsive signal,

TSST can squeezes diffused STFT coefficients near (𝑡𝑥(𝑏, 𝜔), 𝜔) to obtain a concen-

trated TFR. Study shows that the TSST improves the energy concentration of the
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TFR for impulsive-like signals ( i.e. |𝜙′′
𝑘(𝑡)| → ∞) [14], whose TF ridge curves are

almost perpendicular to the time axis. However, TSST is designed for time-domain

impulsive-like signals, and does not consider frequency-domain signal models. For fur-

ther theoretical analysis, we propose a new TFA to analyze impulsive-like signals or

even frequency-domain signals in the next section.

3 Time-extracting wavelet transform (TEWT)

In this section, we propose a new post-processing tool of WT, named time-extracting

wavelet transform (TEWT), to improve the energy concentration of the TFRs for

impulsive signals or frequency-domain harmonic signals, whose TF ridge curves are

almost perpendicular to the time axis.

3.1 TEWT designed for impulsive signal

To motivate the idea, an impulsive signal 𝑥(𝑡) that has the perfect time location

property is considered [14],

𝑥(𝑡) = 𝐴𝛿(𝑡− 𝑡0), (13)

where the Dirac function 𝛿(𝑡) is the ideal model for describing the impulsive signal

𝑥(𝑡) only appearing at one time instant 𝑡0. Substituting Eq. (13) into Eq. (4) leads to

WT of 𝑥(𝑡),

𝑊𝜓
𝑥 (𝑏, 𝑎) =

1

𝑎

∫︁
𝑅

𝐴𝛿(𝑡− 𝑡0)𝜓*(
𝑡− 𝑏

𝑎
)𝑑𝑡

=
1

𝑎
𝐴𝜓*(

𝑡0 − 𝑏

𝑎
).

(14)

According to (14), if 𝜓(𝑡) is concentrated around 𝑡 = 0, then 𝑊𝜓
𝑥 (𝑏, 𝑎) will be spread

around the line 𝑏 = 𝑡0 and suffer from a blurred TFR. Meanwhile, the local maximum

point of the WT modulus |𝑊𝜓
𝑥 (𝑏, 𝑎)|, that is, the ridge point [24], is exactly on the GD

curve 𝑏 = 𝑡0 of the signal, where the GD may be estimated by a GD candidate 𝑡𝑥(𝑏, 𝑎)

[10]. Then by (8), the WT 𝑊 𝑡𝜓
𝑥 (𝑏, 𝑎) of 𝑥(𝑡) with respect to 𝑡𝜓(𝑡) can be expressed as

𝑊 𝑡𝜓
𝑥 (𝑏, 𝑎) =

1

𝑎

∫︁
𝑅

𝐴𝛿(𝑡− 𝑡0)(
𝑡− 𝑏

𝑎
)𝜓*(

𝑡− 𝑏

𝑎
)𝑑𝑡

=
1

𝑎
𝐴(
𝑡0 − 𝑏

𝑎
)𝜓*(

𝑡0 − 𝑏

𝑎
),

(15)



8 Wenting Li1 et al.

According to Eqs. (8), (14) and (15), 𝑡𝑥(𝑏, 𝑎) can be calculated as

𝑡𝑥(𝑏, 𝑎) = 𝑡0. (16)

It is clear that the time reassignment operator 𝑡𝑥(𝑏, 𝑎) can be an exact GD estimator

of the impulsive signal 𝑥(𝑡), and the WT modulus also reaches its maximum value at

𝑏 = 𝑡𝑥(𝑏, 𝑎).

Therefore, in order to achieve a more concentrated TFR, we introduce the TEWT

only by retaining the WT coefficients on the ridge point 𝑏 = 𝑡𝑥(𝑏, 𝑎),

𝑇𝑒(𝑏, 𝑎) = 𝑊𝜓
𝑥 (𝑏, 𝑎) · 𝛿(𝑏− 𝑡𝑥(𝑏, 𝑎)). (17)

Combing Eqs. (14), (16) and (17), we can further derive the TEWT result of

impulsive signal,

𝑇𝑒(𝑏, 𝑎) =
1

𝑎
𝜓*(0) ·𝐴𝛿(𝑏− 𝑡0). (18)

In order to compare the energy concentration of the WT and the TEWT more

intuitively, we employ a discrete impulsive signal, being sampled at 256 Hz and 𝐴 = 1,

𝑡0 = 0.5, where its waveform and frequency spectrum are shown in Fig. 1 (a), (b). It

shows that the impulsive signal has the best time location and the worst frequency

location. Fig. 1 (c) and (d) show the WT result and its slice at 𝜔0 = 64 Hz, it can be

observed that WT obtains a blurred TFR and its energy distribution spreads around

the time 𝑏 = 𝑡0. Furthermore, Fig. 1 (e) and (f) show the TEWT result and its slice

at 𝜔0 = 64 Hz, it can be seen that the energy distribution of the TEWT is highly

concentrated and only appears at time 𝑏 = 𝑡0, which demonstrates that TEWT can

improve energy concentration of blurred WT result for the impulsive signal.

Furthermore, we employ the Rényi entropy [3, 4] to evaluate the energy concen-

tration of the TEWT quantitatively, which is defined as

𝑅𝛼 =
1

1 − 𝛼
log2

∫︁ ∫︁
(

𝑇𝐹𝑅(𝑡, 𝜔)∫︀ ∫︀
𝑇𝐹𝑅(𝑡, 𝜔)𝑑𝑡𝑑𝜔

)𝛼𝑑𝑡𝑑𝜔. (19)

Generally, a lower Rényi entropy value indicates a more energy-concentrated TFR.

The following table 1 lists third-order Rényi entropies of WT and TEWT under four

signal-to-noise ratios (SNRs), where impulsive signal is added with Gaussian white

noises. It shows that, the TEWT obtains the lower Rényi entropies than WT under
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Fig. 1: (a) Time-domain impulsive signal with 𝑡0 = 0.5 s. (b) Frequency-domain harmonic signal.

(c) WT result. (d) Slice of the WT modulus at 𝜔0 = 64 Hz, i.e., |𝑊𝜓
𝑥 (𝑏, 𝜔0)|. (e) TEWT result. (f)

Slice of the TEWT modulus at 𝜔0 = 64 Hz, i.e., |𝑇𝑒(𝑏, 𝜔0)|.

Table 1: Rényi entropies obtained by WT and TEWT under different SNRs.

SNR=-5dB SNR=0dB SNR=5dB SNR=10dB

WT 6.3265 5.9838 5.5351 5.1177

TEWT 2.6757 2.1394 1.3191 0.5303

four noise levels , which means that TEWT can generate a more energy-concentrated

TFR than WT.

Finally, TEWT maintains the reconstructed property of WT by (7),

𝑥(𝑏) =
1

𝐶𝜓

∫︁
𝑅+

𝑇𝑒(𝑏, 𝑎)
𝑑𝑎

𝑎
. (20)

Compared with TSST, which is also designed for impulsive signals, TEWT extracts

the WT coefficients at the 𝑏 = 𝑡𝑥(𝑏, 𝑎) instead of reassigning the STFT coefficients in

TSST. In other words, TSST reassigns the STFT coefficients from the (𝑏, 𝜔) plane to
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the (𝑡𝑥(𝑏, 𝜔), 𝜔) plane along the time direction, while TEWT retains the WT coeffi-

cients on the 𝑏 = 𝑡𝑥(𝑏, 𝑎) that is closely related to the TF features of the signal, so

as to achieve a high-resolution TFR. It can be concluded that TEWT provides a new

tool for characterizing and recovering impulsive signals.

3.2 TEWT designed for frequency-domain harmonic signal

The key step of the TEWT is the GD estimation, and the GD is the crucial feature

of a frequency-domain signal, it follows that one can try to understand impulsive

signals from the perspective of frequency-domain signal, and frequency-domain signal

can be defined by

𝑋(𝜔) = 𝐴(𝜔)𝑒−𝑖𝜑(𝜔). (21)

where 𝐴(𝜔) is the signal amplitude, 𝜑(𝜔) and its derivative 𝜑′(𝜔) are the phase and

the GD of the frequency-domain signal 𝑋(𝜔), respectively.

Back to the time-domain impulsive signal 𝑥(𝑡) = 𝐴𝛿(𝑡 − 𝑡0) (13) in the previous

subsection, the change-rate of IF is nearly infinite, which means that its IF is difficult

to be approximated. Through FT (2), its frequency domain form can be written as

𝑋(𝜔) =

∫︁
𝑅

𝐴𝛿(𝑡− 𝑡0)𝑒−𝑖𝜔𝑡𝑑𝑡

= 𝐴𝑒−𝑖𝜔𝑡0 .

(22)

Contrast with (21), we have 𝐴(𝜔) = 𝐴, 𝜑(𝜔) = 𝜔𝑡0, the GD 𝜑′(𝜔) = 𝑡0 and its change-

rate 𝜑′′(𝜔) = 0, which indicates the GD is easier to be estimated than the IF. It follows

that an impulsive signal 𝑥(𝑡) with strongly-varying IF in the time domain becomes

a harmonic signal 𝑋(𝜔) with slowly-varying GD in the frequency domain. In other

words, for impulsive-like signals, time-domain signals with high-order IF approxima-

tion can be replaced by frequency-domain signals with low-order GD approximation.

Therefore, it is necessary to perform TEWT analysis on frequency domain signals.

Similar to impulsive signals in the time domain, TEWT based on frequency-

domain harmonic signals is also performed via three successive steps, starting with

calculating WT. And the WTs of 𝑋(𝜔) with respect to 𝜓(𝜔) and 𝜓′(𝜔) are respec-
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tively

𝑊𝜓
𝑋(𝑏, 𝑎) =

1

2𝜋

∫︁
𝑅

𝐴𝑒−𝑖𝜔(𝑏−𝑡0)𝜓*(𝑎𝜔)𝑑𝜔

=
1

𝑎
𝐴𝜓*(

𝑡0 − 𝑏

𝑎
),

(23)

𝑊𝜓′

𝑋 (𝑏, 𝑎) =
1

2𝜋

∫︁
𝑅

𝐴𝑒−𝑖𝜔(𝑏−𝑡0)𝜓′*(𝑎𝜔)𝑑𝜔

=
𝑖

𝑎
𝐴(
𝑡0 − 𝑏

𝑎
)𝜓*(

𝑡0 − 𝑏

𝑎
).

(24)

It can be seen that the WT result given by Eq. (23) is consistent with Eq. (14). The

second step is to calculate a candidate GD 𝑡𝑋(𝑏, 𝑎). Substituting Eqs. (23), (24) into

Eq. (8) leads to the same expression as Eq. (16),

𝑡𝑋(𝑏, 𝑎) = 𝑏+ 𝑎ℑ{
𝑊𝜓′

𝑋 (𝑏, 𝑎)

𝑊𝜓
𝑋(𝑏, 𝑎)

} = 𝑡0. (25)

where (−𝑖𝑡)𝜓(𝑡)
𝐹−→ 𝜓′(𝜔). It also demonstrates that 𝑡𝑋(𝑏, 𝑎) provides an exact GD

estimation for frequency-domain harmonic signal, then 𝑡𝑋(𝑏, 𝑎) is called a first-order

GD estimator. The final step is to obtain the same TEWT result as (18) by retaining

the TF information at 𝑏 = 𝑡𝑋(𝑏, 𝑎),

𝑇𝑒(𝑏, 𝑎) = 𝑊𝜓
𝑋(𝑏, 𝑎) · 𝛿(𝑏− 𝑡𝑋(𝑏, 𝑎))

=
1

𝑎
𝜓*(0) ·𝐴𝛿(𝑏− 𝑡0).

(26)

In a discrete situation, we consider the TEWT 𝑇𝑒(𝑏, 𝑎) in the TF plane instead of

the time-scale plane, which is implemented by the following expression

𝑇𝑒(𝑛,𝑚) =

⎧⎪⎨⎪⎩
𝑊𝜓
𝑥 (𝑛,𝑚), 𝑖𝑓 |𝑛− 𝜑′(𝑚)| < 𝛥𝑛

2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(27)

where 𝑛, 𝑚 and 𝛥𝑛 denote the discrete time variable, frequency variable and the

sampling time interval respectively. By Eq. (27), it shows that TEWT retains the

TF energy of the WT result in the TF region 𝑛 ∈ (𝜑′(𝑚) − 𝛥𝑛
2 , 𝜑

′(𝑚) + 𝛥𝑛
2 ), while

TEWT removes the TF energy in the TF region 𝑛 /∈ (𝜑′(𝑚) − 𝛥𝑛
2 , 𝜑

′(𝑚) + 𝛥𝑛
2 ). It

follows that the TEWT only retains the closely-related TF energy while discarding

weakly-related TF coefficients. Therefore, TEWT can achieve a highly resolution TFR

for frequency-domain harmonic signals.



12 Wenting Li1 et al.

Finally, the TEWT reconstruction formula we designed for frequency domain har-

monic signals is different from (20), but it still needs to start from WT reconstruction,

which requires evaluating the WT in (23) along the ridge line 𝑏 = 𝑡0 leads to

𝑊𝜓
𝑋(𝑡0, 𝑎) =

1

𝑎
𝐴𝜓*(0). (28)

Then, the frequency-domain harmonic signal can be obtained by

𝑋(
𝜔𝜓
𝑎

) =
𝑎𝑊𝜓

𝑋(𝑡0, 𝑎)𝑒−𝑖
𝜔𝜓
𝑎 𝑡0

𝜓*(0)
, (29)

where 𝜔𝜓 is the center frequency of 𝜓(𝜔). It motivates us to recover the signal from

the TEWT result with a similar reconstruction expression as follows:

𝑋(
𝜔𝜓
𝑎

) =
𝑎𝑇𝑒(𝑡0, 𝑎)𝑒−𝑖

𝜔𝜓
𝑎 𝑡0

𝜓*(0)
, (30)

which means that TEWT also maintains the invertible property for frequency-domain

harmonic signals.

Compared with SWT and TSST, the frequency-domain harmonic signal in the

TEWT replaces the time-domain harmonic signal in the SWT, the GD estimator

of TEWT replaces the IF estimator of SWT, the extracting manner of TEWT re-

places the synchrosqueezing way of SWT and TSST, thus TEWT is a different post-

processing method from SWT and TSST. It can also be concluded that TEWT pro-

vides a powerful tool for the analysis and reconstruction of time-domain impulsive

signals or frequency-domain harmonic signals.

4 Theoretical analysis of TEWT

In this section, we provide a mathematically rigorous theorem of TEWT that can

identify and characterize a class of functions ℋ𝜖,𝑑 in the frequency domain, containing

harmonic-like functions that are well separated, which is different from the class 𝒜𝜖,𝑑

of SWT [8]. We start with the following definition.

Definition 1 The class ℋ𝜖,𝑑 is said to be a set of all superposition of well-separated

frequency-domain harmonic-like functions (FHF) up to accuracy 𝜖 > 0 and with

separation 𝑑 > 0, if each element 𝑋(𝜔) =
𝐾∑︀
𝑘=1

𝑋𝑘(𝜔) =
𝐾∑︀
𝑘=1

𝐴𝑘(𝜔)𝑒−𝑖𝜑𝑘(𝜔) ∈ ℋ𝜖,𝑑

satisfies the following two properties:
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(1) For 𝑘 ∈ {1, 2, ...,𝐾}, functions 𝑋𝑘(𝜔) with 𝐴𝑘(𝜔) and 𝜑𝑘(𝜔) satisfy:

𝐴𝑘(𝜔) ∈ 𝐶1(𝑅) ∩ 𝐿∞(𝑅), 𝜑𝑘(𝜔) ∈ 𝐶2(𝑅),

0 < 𝑚𝑘 = inf
𝜔∈𝑅+

𝐴𝑘(𝜔) ≤ sup
𝜔∈𝑅+

𝐴𝑘(𝜔) = 𝑀𝑘 <∞,

0 < inf
𝜔∈𝑅+

𝜑′𝑘(𝜔) ≤ sup
𝜔∈𝑅+

𝜑′𝑘(𝜔) = 𝑀 ′
𝑘 <∞,

|𝐴′
𝑘(𝜔)|, |𝜑′′𝑘(𝜔)| ≤ 𝜖|𝜑′𝑘(𝜔)|, ∀𝜔 ∈ 𝑅+.

(31)

(2) For 𝑘 ∈ {1, 2, ...,𝐾 − 1}, functions 𝑋𝑘(𝜔) are well separated with 𝑑, i.e.

𝜑′𝑘+1(𝜔) − 𝜑′𝑘(𝜔) ≥ 𝑑

𝜔
, ∀𝜔 ∈ 𝑅+. (32)

Remark. Compared with the class 𝒜𝜖,𝑑 of SWT [8], each function 𝑋(𝜔) ∈ ℋ𝜖,𝑑

is composed of several frequency-domain components 𝑋𝑘(𝜔) with slowly frequency-

varying amplitude 𝐴𝑘(𝜔) and GD 𝜑′𝑘(𝜔), thus the component 𝑋𝑘(𝜔) can be locally re-

garded as a harmonic signal with small change-rate of amplitude 𝐴𝑘(𝜔) and GD 𝜑′𝑘(𝜔)

in the frequency domain. While each function 𝑥(𝑡) =
𝐾∑︀
𝑘=1

𝑥𝑘(𝑡) ∈ 𝒜𝜖,𝑑 is composed of

several time-domain components 𝑥𝑘(𝑡) = 𝑎𝑘(𝑡)𝑒𝑖𝜙𝑘(𝑡) with slowly time-varying 𝑎𝑘(𝑡)

and IF 𝜙′
𝑘(𝑡), where locally the component 𝑥𝑘(𝑡) can be regarded as a harmonic signal

with amplitude 𝑎𝑘(𝑡) and IF 𝜙′
𝑘(𝑡) in the time domain. Both modeling harmonic-like

signals, 𝒜𝜖,𝑑 is defined in the time domain but ℋ𝜖,𝑑 is defined in the frequency domain.

Theorem 1 is the main result of the TEWT, which performs a theoretical analysis

of TEWT for frequency-domain signals in the mathematical framework. Moreover,

Theorem 1 uses an analytic wavelet 𝜓(𝑡), which can be constructed with a frequency

modulation of a real and symmetric window 𝑔(𝑡) and is defined as [26]

𝜓(𝑡) = 𝑔(𝑡)𝑒𝑖𝜔𝜓𝑡 (33)

where 𝜔𝜓 is the center frequency of 𝜓(𝜔), and it can be expressed as

𝜓(𝜔) =

∫︁
𝑅

𝜓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 =

∫︁
𝑅

𝑔(𝑡)𝑒−𝑖(𝜔−𝜔𝜓)𝑡𝑑𝑡 = 𝑔(𝜔 − 𝜔𝜓). (34)

If 𝑔(𝑡) is supported in [−𝛥,𝛥], it means that 𝑔(𝑡) = 0 for |𝑡| ≥ 𝛥.

Theorem 1 Let 𝑋(𝜔) =
𝐾∑︀
𝑘=1

𝑋𝑘(𝜔) ∈ ℋ𝜖,𝑑, and set 𝜖 := 𝜖1/3. Pick a wavelet 𝜓(𝑡) in

Schwartz class such that 𝑔(𝑡) = 𝜓(𝑡)𝑒−𝑖𝜔𝜓𝑡 is supported in [−𝛥,𝛥], with 𝛥 < 𝑑
2𝜔𝜓

.
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Consider the WT 𝑊𝜓
𝑋(𝑏, 𝑎) of 𝑋(𝜔) with respect to 𝜓(𝜔), and the TEWT 𝑇𝑒(𝑏, 𝑎).

Then, provided 𝜖 is sufficiently small, the following hold:

(a) |𝑊𝜓
𝑋(𝑏, 𝑎)| > 𝜖 only when, for some 𝑘 ∈ {1, 2, ...,𝐾}, (𝑏, 𝑎) ∈ 𝑇𝑘 :=

{(𝑏, 𝑎); |𝜑
′
𝑘(
𝜔𝜓
𝑎 )−𝑏
𝑎 | < 𝛥}.

(b) For each 𝑘 ∈ {1, . . . ,𝐾}, and (𝑏, 𝑎) ∈ 𝑇𝑘 such that |𝑊𝜓
𝑋(𝑏, 𝑎)| > 𝜖, we have

|𝑡𝑋(𝑏, 𝑎) − 𝜑′𝑘(
𝜔𝜓
𝑎

)| ≤ 𝜖. (35)

(c) Moreover, for each 𝑘 ∈ {1, . . . ,𝐾} such that,

|
𝑎𝑇𝑒(𝜑′𝑘(

𝜔𝜓
𝑎 ), 𝑎)𝑒−𝑖

𝜔𝜓
𝑎 𝜑′

𝑘(
𝜔𝜓
𝑎 )

𝜓*(0)
−𝑋𝑘(

𝜔𝜓
𝑎

)| ≤ 𝑎𝜖

|𝜓(0)|
. (36)

The proof of Theorem 1 is divided into several simple estimates and lemma.

Estimate 1 For each 𝑘 ∈ {1, . . . ,𝐾}, we have the following:

|𝐴𝑘(𝜔) −𝐴𝑘(
𝜔𝜓
𝑎

)| ≤ 𝜖𝑀 ′
𝑘|𝜔 − 𝜔𝜓

𝑎
|,

|𝜑𝑘(𝜔) − 𝜑𝑘(
𝜔𝜓
𝑎

) − 𝜑′𝑘(
𝜔𝜓
𝑎

)(𝜔 − 𝜔𝜓
𝑎

)| ≤ 1

2
𝜖𝑀 ′

𝑘|𝜔 − 𝜔𝜓
𝑎
|2.

(37)

Proof When 𝜔 ≥ 𝜔𝜓
𝑎 , we have (the case 𝜔 <

𝜔𝜓
𝑎 can be done in an analogue way):

|𝐴𝑘(𝜔)−𝐴𝑘(
𝜔𝜓
𝑎

)| = |
∫︁ 𝜔

𝜔𝜓
𝑎

𝐴′
𝑘(𝑥)𝑑𝑥| ≤

∫︁ 𝜔

𝜔𝜓
𝑎

|𝐴′
𝑘(𝑥)|𝑑𝑥 ≤ 𝜖

∫︁ 𝜔

𝜔𝜓
𝑎

|𝜑′𝑘(𝑥)|𝑑𝑥 ≤ 𝜖𝑀 ′
𝑘|𝜔−

𝜔𝜓
𝑎
|,

(38)

On the other hand, it is easy to show that

|𝜑𝑘(𝜔) − 𝜑𝑘(
𝜔𝜓
𝑎

) − 𝜑′𝑘(
𝜔𝜓
𝑎

)(𝜔 − 𝜔𝜓
𝑎

)|

= |
∫︁ 𝜔

𝜔𝜓
𝑎

(𝜑′𝑘(𝑥) − 𝜑′𝑘(
𝜔𝜓
𝑎

))𝑑𝑥| = |
∫︁ 𝜔

𝜔𝜓
𝑎

∫︁ 𝑥

𝜔𝜓
𝑎

𝜑′′𝑘(𝑦)𝑑𝑦𝑑𝑥|

≤
∫︁ 𝜔

𝜔𝜓
𝑎

∫︁ 𝑥

𝜔𝜓
𝑎

|𝜑′′𝑘(𝑦)|𝑑𝑦𝑑𝑥 ≤ 𝜖𝑀 ′
𝑘

∫︁ 𝜔

𝜔𝜓
𝑎

|𝑥− 𝜔𝜓
𝑎
|𝑑𝑥

=
1

2
𝜖𝑀 ′

𝑘|𝜔 − 𝜔𝜓
𝑎
|2.

(39)

To simplify the notation, in what follows, we set

�̃�𝑘(𝜔) = 𝐴𝑘(
𝜔𝜓
𝑎

)𝑒−𝑖(𝜑𝑘(
𝜔𝜓
𝑎 )+𝜑′

𝑘(
𝜔𝜓
𝑎 )(𝜔−

𝜔𝜓
𝑎 )). (40)

Estimate 2 For each 𝑘 ∈ {1, . . . ,𝐾}, and for (𝑏, 𝑎) ∈ 𝑅×𝑅+, we have:

𝑊𝜓

�̃�𝑘
(𝑏, 𝑎) =

1

𝑎
𝑋𝑘(

𝜔𝜓
𝑎

)𝑒𝑖
𝜔𝜓
𝑎 𝑏𝑔*(

𝜑′𝑘(
𝜔𝜓
𝑎 ) − 𝑏

𝑎
),

𝑊𝜓′

�̃�𝑘
(𝑏, 𝑎) = 𝑖(

𝜑′𝑘(
𝜔𝜓
𝑎 ) − 𝑏

𝑎
)𝑊𝜓

�̃�𝑘
(𝑏, 𝑎),

(41)
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Furthermore, we have:

|𝑊𝜓
𝑋(𝑏, 𝑎) −

𝐾∑︁
𝑘=1

𝑊𝜓

�̃�𝑘
(𝑏, 𝑎)| ≤ 𝜖𝛺1(𝑎),

|𝑊𝜓′

𝑋 (𝑏, 𝑎) −
𝐾∑︁
𝑘=1

𝑊𝜓′

�̃�𝑘
(𝑏, 𝑎)| ≤ 𝜖𝛺2(𝑎),

(42)

where

𝛺1(𝑎) =

𝐾∑︁
𝑘=1

(𝑀 ′
𝑘𝐼1(𝑎) +

1

2
𝑀𝑘𝑀

′
𝑘𝐼2(𝑎)),

𝛺2(𝑎) =

𝐾∑︁
𝑘=1

(𝑀 ′
𝑘𝐼

′
1(𝑎) +

1

2
𝑀𝑘𝑀

′
𝑘𝐼

′
2(𝑎)).

(43)

with

𝐼𝑝(𝑎) =
1

2𝜋

∫︁
𝑅

|𝜔 − 𝜔𝜓
𝑎
|𝑝|𝜓(𝑎𝜔)|𝑑𝜔,

𝐼 ′𝑝(𝑎) =
1

2𝜋

∫︁
𝑅

|𝜔 − 𝜔𝜓
𝑎
|𝑝|𝜓′(𝑎𝜔)|𝑑𝜔, 𝑝 = 1, 2.

(44)

Proof According to the WT definition (5), the WT 𝑊𝜓

�̃�𝑘
(𝑏, 𝑎) of �̃�𝑘(𝜔) with

respect to wavelet 𝜓(𝜔) can be calculated as

𝑊𝜓

�̃�𝑘
(𝑏, 𝑎) =

1

2𝜋

∫︁
𝑅

�̃�𝑘(𝜔)𝜓*(𝑎𝜔)𝑒𝑖𝜔𝑏𝑑𝜔

=
1

2𝜋
𝐴𝑘(

𝜔𝜓
𝑎

)𝑒−𝑖𝜑𝑘(
𝜔𝜓
𝑎 )

∫︁
𝑅

𝑒−𝑖𝜑
′
𝑘(
𝜔𝜓
𝑎 )(𝜔−

𝜔𝜓
𝑎 )𝑔*(𝑎𝜔 − 𝜔𝜓)𝑒𝑖𝜔𝑏𝑑𝜔

=
1

2𝜋𝑎
𝑋𝑘(

𝜔𝜓
𝑎

)𝑒𝑖
𝜔𝜓
𝑎 𝑏

∫︁
𝑅

𝑔*(𝜉)𝑒−𝑖(
𝜑′𝑘(

𝜔𝜓
𝑎

)−𝑏
𝑎 )𝜉𝑑𝜉

=
1

𝑎
𝑋𝑘(

𝜔𝜓
𝑎

)𝑒𝑖
𝜔𝜓
𝑎 𝑏𝑔*(

𝜑′𝑘(
𝜔𝜓
𝑎 ) − 𝑏

𝑎
).

(45)

where the third equality uses 𝜔 =
𝜔𝜓+𝜉
𝑎 . And 𝑊𝜓′

�̃�𝑘
(𝑏, 𝑎) of �̃�𝑘(𝜔) with respect to

𝜓′(𝜔) = 𝑔′(𝜔 − 𝜔𝜓) can be expressed as

𝑊𝜓′

�̃�𝑘
(𝑏, 𝑎) =

1

2𝜋

∫︁
𝑅

�̃�𝑘(𝜔)𝜓′*(𝑎𝜔)𝑒𝑖𝜔𝑏𝑑𝜔

=
1

2𝜋
𝐴𝑘(

𝜔𝜓
𝑎

)𝑒−𝑖𝜑𝑘(
𝜔𝜓
𝑎 )

∫︁
𝑅

𝑒−𝑖𝜑
′
𝑘(
𝜔𝜓
𝑎 )(𝜔−

𝜔𝜓
𝑎 )𝑔′*(𝑎𝜔 − 𝜔𝜓)𝑒𝑖𝜔𝑏𝑑𝜔

=
1

2𝜋𝑎
𝑋𝑘(

𝜔𝜓
𝑎

)𝑒𝑖
𝜔𝜓
𝑎 𝑏

∫︁
𝑅

𝑔′*(𝜉)𝑒−𝑖(
𝜑′𝑘(

𝜔𝜓
𝑎

)−𝑏
𝑎 )𝜉𝑑𝜉

=
𝑖

𝑎
𝑋𝑘(

𝜔𝜓
𝑎

)𝑒𝑖
𝜔𝜓
𝑎 𝑏(

𝜑′𝑘(
𝜔𝜓
𝑎 ) − 𝑏

𝑎
)𝑔*(

𝜑′𝑘(
𝜔𝜓
𝑎 ) − 𝑏

𝑎
)

= 𝑖(
𝜑′𝑘(

𝜔𝜓
𝑎 ) − 𝑏

𝑎
)𝑊𝜓

�̃�𝑘
(𝑏, 𝑎).

(46)

where 𝑔′(𝜔) ↔ −𝑖𝑡𝑔(𝑡).
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On the other hand, for (𝑏, 𝑎) ∈ 𝑅×𝑅+, we have

|𝑊𝜓
𝑋(𝑏, 𝑎) −

𝐾∑︁
𝑘=1

𝑊𝜓

�̃�𝑘
(𝑏, 𝑎) ≤

𝐾∑︁
𝑘=1

|𝑊𝜓
𝑋𝑘

(𝑏, 𝑎) −𝑊𝜓

�̃�𝑘
(𝑏, 𝑎)|

≤ 1

2𝜋

𝐾∑︁
𝑘=1

|
∫︁
𝑅

(𝐴𝑘(𝜔) −𝐴𝑘(
𝜔𝜓
𝑎

))𝑒−𝑖𝜑𝑘(𝜔)𝜓*(𝑎𝜔)𝑒𝑖𝜔𝑏𝑑𝜔|

+
1

2𝜋

𝐾∑︁
𝑘=1

|
∫︁
𝑅

𝐴𝑘(
𝜔𝜓
𝑎

)(𝑒−𝑖𝜑𝑘(𝜔) − 𝑒−𝑖(𝜑𝑘(
𝜔𝜓
𝑎 )+𝜑′

𝑘(
𝜔𝜓
𝑎 )(𝜔−

𝜔𝜓
𝑎 )))𝜓*(𝑎𝜔)𝑒𝑖𝜔𝑏𝑑𝜔|

≤ 1

2𝜋

𝐾∑︁
𝑘=1

∫︁
𝑅

|𝐴𝑘(𝜔) −𝐴𝑘(
𝜔𝜓
𝑎

)||𝜓(𝑎𝜔)|𝑑𝜔

+
1

2𝜋

𝐾∑︁
𝑘=1

∫︁
𝑅

|𝐴𝑘(
𝜔𝜓
𝑎

)||𝜑𝑘(𝜔) − 𝜑𝑘(
𝜔𝜓
𝑎

) − 𝜑′𝑘(
𝜔𝜓
𝑎

)(𝜔 − 𝜔𝜓
𝑎

)||𝜓(𝑎𝜔)|𝑑𝜔,

(47)

where we use the differential mean value theorem 𝑒𝑖𝑥 − 𝑒𝑖0 = 𝑖𝑒𝑖𝜉𝑥, and according to

Estimate 1, we have

|𝑊𝜓
𝑋(𝑏, 𝑎) −

𝐾∑︁
𝑘=1

𝑊𝜓

�̃�𝑘
(𝑏, 𝑎)|

≤
𝐾∑︁
𝑘=1

𝜖𝑀 ′
𝑘

2𝜋
(

∫︁
𝑅

|𝜔 − 𝜔𝜓
𝑎
||𝜓(𝑎𝜔)|𝑑𝜔 +

1

2
𝑀𝑘

∫︁
𝑅

|𝜔 − 𝜔𝜓
𝑎
|2|𝜓(𝑎𝜔)|𝑑𝜔)

≤ 𝜖

𝐾∑︁
𝑘=1

(𝑀 ′
𝑘𝐼1(𝑎) +

1

2
𝑀𝑘𝑀

′
𝑘𝐼2(𝑎)) = 𝜖𝛺1(𝑎).

(48)

and similarly,

|𝑊𝜓′

𝑋 (𝑏, 𝑎) −
𝐾∑︁
𝑘=1

𝑊𝜓′

�̃�𝑘
(𝑏, 𝑎)| ≤

𝐾∑︁
𝑘=1

|𝑊𝜓′

𝑋𝑘
(𝑏, 𝑎) −𝑊𝜓′

�̃�𝑘
(𝑏, 𝑎)|

≤ 1

2𝜋

𝐾∑︁
𝑘=1

|
∫︁
𝑅

(𝐴𝑘(𝜔) −𝐴𝑘(
𝜔𝜓
𝑎

))𝑒−𝑖𝜑𝑘(𝜔)𝜓′*(𝑎𝜔)𝑒𝑖𝜔𝑏𝑑𝜔|

+
1

2𝜋

𝐾∑︁
𝑘=1

|
∫︁
𝑅

𝐴𝑘(
𝜔𝜓
𝑎

)(𝑒−𝑖𝜑𝑘(𝜔) − 𝑒−𝑖(𝜑𝑘(
𝜔𝜓
𝑎 )+𝜑′

𝑘(
𝜔𝜓
𝑎 )(𝜔−

𝜔𝜓
𝑎 )))𝜓′*(𝑎𝜔)𝑒𝑖𝜔𝑏𝑑𝜔|

≤ 1

2𝜋

𝐾∑︁
𝑘=1

∫︁
𝑅

|𝐴𝑘(𝜔) −𝐴𝑘(
𝜔𝜓
𝑎

)||𝜓′(𝑎𝜔)|𝑑𝜔

+
1

2𝜋

𝐾∑︁
𝑘=1

∫︁
𝑅

|𝐴𝑘(
𝜔𝜓
𝑎

)||𝜑𝑘(𝜔) − 𝜑𝑘(
𝜔𝜓
𝑎

) − 𝜑′𝑘(
𝜔𝜓
𝑎

)(𝜔 − 𝜔𝜓
𝑎

)||𝜓′(𝑎𝜔)|𝑑𝜔

≤
𝐾∑︁
𝑘=1

𝜖𝑀 ′
𝑘

2𝜋
(

∫︁
𝑅

|𝜔 − 𝜔𝜓
𝑎
||𝜓′(𝑎𝜔)|𝑑𝜔 +

1

2
𝑀𝑘

∫︁
𝑅

|𝜔 − 𝜔𝜓
𝑎
|2|𝜓′(𝑎𝜔)|𝑑𝜔)

≤ 𝜖

𝐾∑︁
𝑘=1

(𝑀 ′
𝑘𝐼

′
1(𝑎) +

1

2
𝑀𝑘𝑀

′
𝑘𝐼

′
2(𝑎)) = 𝜖𝛺2(𝑎).

(49)
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The following lemma indicates that each zone 𝑇𝑘 does not intersect with each

other:

Lemma 1 For 𝑘 ∈ {1, . . . ,𝐾 − 1}, 𝑇𝑘+1

⋂︀
𝑇𝑘 = ∅ when 𝑑 > 2𝜔𝜓𝛥.

Proof If (𝑏, 𝑎) ∈ 𝑇𝑘, then we have

𝜑′𝑘(
𝜔𝜓
𝑎

) − 𝑎𝛥 < 𝑏 < 𝜑′𝑘(
𝜔𝜓
𝑎

) + 𝑎𝛥. (50)

According to separation condition (32) and 𝑑 > 2𝜔𝜓𝛥, we have 𝜑′𝑘+1(
𝜔𝜓
𝑎 ) −

𝜑′𝑘(
𝜔𝜓
𝑎 ) ≥ 𝑎𝑑

𝜔𝜓
> 2𝑎𝛥, which is equivalent to 𝜑′𝑘+1(

𝜔𝜓
𝑎 ) − 𝑎𝛥 > 𝜑′𝑘(

𝜔𝜓
𝑎 ) + 𝑎𝛥. It

means that the lower boundary of the zones 𝑇𝑘+1 is above the upper boundary of the

zones 𝑇𝑘, i.e. 𝑇𝑘+1

⋂︀
𝑇𝑘 = ∅.

Proof of Theorem 1 (a) If (𝑏, 𝑎) /∈ 𝑇𝑘, i.e. |𝜑
′
𝑘(
𝜔𝜓
𝑎 )−𝑏
𝑎 | ≥ 𝛥, then 𝑔(

𝜑′
𝑘(
𝜔𝜓
𝑎 )−𝑏
𝑎 ) =

0. Thus, when (𝑏, 𝑎) /∈
⋃︀

1≤𝑘≤𝐾
𝑇𝑘, by (41), we have

𝐾∑︁
𝑘=1

𝑊𝜓

�̃�𝑘
(𝑏, 𝑎) =

1

𝑎

𝐾∑︁
𝑘=1

𝑋𝑘(
𝜔𝜓
𝑎

)𝑒𝑖
𝜔𝜓
𝑎 𝑏𝑔*(

𝜑′𝑘(
𝜔𝜓
𝑎 ) − 𝑏

𝑎
) = 0. (51)

By (42), it follows that |𝑊𝜓
𝑋(𝑏, 𝑎)| ≤ 𝜖𝛺1(𝑎). According to Lemma 1, assume 𝜖

satisfies

𝜖
2
3𝛺1(𝑎) ≤ 1, (52)

then |𝑊𝜓
𝑋(𝑏, 𝑎)| > 𝜖 only when, for some 𝑘 ∈ {1, 2, ...,𝐾}, (𝑏, 𝑎) ∈ 𝑇𝑘.

Estimate 3 For 𝑘 ∈ {1, . . . ,𝐾}, and (𝑏, 𝑎) ∈ 𝑇𝑘, we have:

|𝑊𝜓
𝑋(𝑏, 𝑎) −𝑊𝜓

�̃�𝑘
(𝑏, 𝑎)| ≤ 𝜖𝛺1(𝑎),

|𝑊𝜓′

𝑋 (𝑏, 𝑎) −𝑊𝜓′

�̃�𝑘
(𝑏, 𝑎)| ≤ 𝜖𝛺2(𝑎).

(53)

Proof For (𝑏, 𝑎) ∈ 𝑇𝑘(𝑘 ̸= ℓ), i.e. (𝑏, 𝑎) /∈ 𝑇ℓ, |
𝜑′
ℓ(
𝜔𝜓
𝑎 )−𝑏
𝑎 | ≥ 𝛥, then 𝑔(

𝜑′
ℓ(
𝜔𝜓
𝑎 )−𝑏
𝑎 ) =

0 and by (41), we have
𝐾∑︁

1≤ℓ̸=𝑘≤𝐾

𝑊𝜓

�̃�ℓ
(𝑏, 𝑎) = 0. (54)

Thus, we have

|𝑊𝜓
𝑋(𝑏, 𝑎) −𝑊𝜓

�̃�𝑘
(𝑏, 𝑎)| ≤ |𝑊𝜓

𝑋(𝑏, 𝑎) −
𝐾∑︁
𝑘=1

𝑊𝜓

�̃�𝑘
(𝑏, 𝑎)| + |

𝐾∑︁
1≤ℓ ̸=𝑘≤𝐾

𝑊𝜓

�̃�ℓ
(𝑏, 𝑎)|

≤ 𝜖𝛺1(𝑎).

(55)
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Moreover, for (𝑏, 𝑎) ∈ 𝑇𝑘(𝑘 ̸= ℓ), i.e. (𝑏, 𝑎) /∈ 𝑇ℓ, assume |𝜑
′
ℓ(
𝜔𝜓
𝑎 )−𝑏
𝑎 | < ∞, and by

(41), we have

𝐾∑︁
1≤ℓ̸=𝑘≤𝐾

𝑊𝜓′

�̃�ℓ
(𝑏, 𝑎) = 𝑖

𝐾∑︁
1≤ℓ ̸=𝑘≤𝐾

(
𝜑′ℓ(

𝜔𝜓
𝑎 ) − 𝑏

𝑎
)𝑊𝜓

�̃�ℓ
(𝑏, 𝑎) = 0. (56)

Thus, we have

|𝑊𝜓′

𝑋 (𝑏, 𝑎) −𝑊𝜓′

�̃�𝑘
(𝑏, 𝑎)| ≤ |𝑊𝜓′

𝑋 (𝑏, 𝑎) −
𝐾∑︁
𝑘=1

𝑊𝜓′

�̃�𝑘
(𝑏, 𝑎)| + |

𝐾∑︁
1≤ℓ ̸=𝑘≤𝐾

𝑊𝜓′

�̃�ℓ
(𝑏, 𝑎)|

≤ 𝜖𝛺2(𝑎).

(57)

Next, we will consider the error analysis of the GD estimator and the true GD.

Estimate 4 Suppose that (52) is satisfied. For 𝑘 ∈ {1, . . . ,𝐾}, and (𝑏, 𝑎) ∈ 𝑇𝑘

such that |𝑊𝜓
𝑋(𝑏, 𝑎)| > 𝜖, then we have

|𝑡𝑋(𝑏, 𝑎) − 𝜑′𝑘(
𝜔𝜓
𝑎

)| ≤ 𝜖
2
3𝛤 (𝑎), (58)

where 𝛤 (𝑎) = 𝑎(𝛺2(𝑎) +𝛺1(𝑎)𝛥).

Proof By definition, 𝑡𝑥(𝑏, 𝑎) is the complex reassignment operator of 𝑡𝑥(𝑏, 𝑎),

and expressed as

𝑡𝑋(𝑏, 𝑎) = 𝑏− 𝑖𝑎
𝑊𝜓′

𝑋 (𝑏, 𝑎)

𝑊𝜓
𝑋(𝑏, 𝑎)

(59)

we have then

|𝑡𝑋(𝑏, 𝑎) − 𝜑′𝑘(
𝜔𝜓
𝑎

)| = |𝑏− 𝑖𝑎
𝑊𝜓′

𝑋 (𝑏, 𝑎)

𝑊𝜓
𝑋(𝑏, 𝑎)

− 𝜑′𝑘(
𝜔𝜓
𝑎

)|

= |𝑎
𝑊𝜓′

𝑋 (𝑏, 𝑎)

𝑊𝜓
𝑋(𝑏, 𝑎)

+ 𝑖(𝑏− 𝜑′𝑘(
𝜔𝜓
𝑎

))|

= |𝑎
𝑊𝜓′

𝑋 (𝑏, 𝑎) − 𝑖
(𝜑′
𝑘(
𝜔𝜓
𝑎 )−𝑏)
𝑎 𝑊𝜓

𝑋(𝑏, 𝑎)

𝑊𝜓
𝑋(𝑏, 𝑎)

|

≤ |𝑎
𝑊𝜓′

𝑋 (𝑏, 𝑎) − 𝑖
(𝜑′
𝑘(
𝜔𝜓
𝑎 )−𝑏)
𝑎 𝑊𝜓

�̃�𝑘
(𝑏, 𝑎)

𝑊𝜓
𝑋(𝑏, 𝑎)

|

+ |𝑎
𝜑′
𝑘(
𝜔𝜓
𝑎 )−𝑏
𝑎 (𝑊𝜓

𝑋(𝑏, 𝑎) −𝑊𝜓

�̃�𝑘
(𝑏, 𝑎))

𝑊𝜓
𝑋(𝑏, 𝑎)

|,

(60)

According to Estimate 2, for (𝑏, 𝑎) ∈ 𝑇𝑘, i.e. |𝜑
′
𝑘(
𝜔𝜓
𝑎 )−𝑏
𝑎 | ≤ 𝛥, so that
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|𝑡𝑋(𝑏, 𝑎) − 𝜑′𝑘(
𝜔𝜓
𝑎

)| ≤ |𝑎
𝑊𝜓′

𝑋 (𝑏, 𝑎) −𝑊𝜓′

�̃�𝑘
(𝑏, 𝑎)

𝑊𝜓
𝑋(𝑏, 𝑎)

| + |𝑎
𝜑′
𝑘(
𝜔𝜓
𝑎 )−𝑏
𝑎 (𝑊𝜓

𝑋(𝑏, 𝑎) −𝑊𝜓

�̃�𝑘
(𝑏, 𝑎))

𝑊𝜓
𝑋(𝑏, 𝑎)

|

≤ 𝜖
2
3 𝑎(𝛺2(𝑎) +𝛺1(𝑎)𝛥) = 𝜖

2
3𝛤 (𝑎).

(61)

Proof of Theorem 1 (b) By (8), 𝑡𝑥(𝑏, 𝑎) = ℜ{𝑡𝑥(𝑏, 𝑎)}, then

|𝑡𝑋(𝑏, 𝑎) − 𝜑′𝑘(
𝜔𝜓
𝑎

)| = |ℜ{𝑡𝑋(𝑏, 𝑎)} − 𝜑′𝑘(
𝜔𝜓
𝑎

)|

≤ |𝑡𝑋(𝑏, 𝑎) − 𝜑′𝑘(
𝜔𝜓
𝑎

)| ≤ 𝜖
2
3𝛤 (𝑎),

(62)

If we impose an extra restriction on 𝜖 as follows

𝜖
1
3𝛤 (𝑎) < 1, (63)

the estimate can be simplified to

|𝑡𝑋(𝑏, 𝑎) − 𝜑′𝑘(
𝜔𝜓
𝑎

)| ≤ 𝜖. (64)

Finally, we will consider the error of component recovered by TEWT.

Proof of Theorem 1 (c) Since 𝜓*(𝑡) = 𝑔*(𝑡)𝑒−𝑖𝜔𝜓𝑡, 𝜓*(0) = 𝑔*(0), we evaluate

the WT in (41) along the ridge line 𝑏 = 𝜑′𝑘(
𝜔𝜓
𝑎 ) of 𝑋𝑘(𝜔) leading to

𝑊𝜓

�̃�𝑘
(𝜑′𝑘(

𝜔𝜓
𝑎

), 𝑎) =
1

𝑎
𝑋𝑘(

𝜔𝜓
𝑎

)𝑒𝑖
𝜔𝜓
𝑎 𝜑′

𝑘(
𝜔𝜓
𝑎 )𝑔*(0)

=
1

𝑎
𝑋𝑘(

𝜔𝜓
𝑎

)𝑒𝑖
𝜔𝜓
𝑎 𝜑′

𝑘(
𝜔𝜓
𝑎 )𝜓*(0),

(65)

thus,

𝑋𝑘(
𝜔𝜓
𝑎

) =
𝑎𝑊𝜓

�̃�𝑘
(𝜑′𝑘(

𝜔𝜓
𝑎 ), 𝑎)𝑒−𝑖

𝜔𝜓
𝑎 𝜑′

𝑘(
𝜔𝜓
𝑎 )

𝜓*(0)
. (66)

According to Estimate 3, and when 𝜖 satisfies (52) and (63), we have

|
𝑎𝑇𝑒(𝜑′𝑘(

𝜔𝜓
𝑎 ), 𝑎)𝑒−𝑖

𝜔𝜓
𝑎 𝜑′

𝑘(
𝜔𝜓
𝑎 )

𝜓*(0)
−𝑋𝑘(

𝜔𝜓
𝑎

)|

≤ | 𝑎

𝜓*(0)
|𝑊𝜓

𝑋(𝜑′𝑘(
𝜔𝜓
𝑎

), 𝑎) −𝑊𝜓

�̃�𝑘
(𝜑′𝑘(

𝜔𝜓
𝑎

), 𝑎)||

+ |
𝑎𝑊𝜓

�̃�𝑘
(𝜑′𝑘(

𝜔𝜓
𝑎 ), 𝑎)𝑒−𝑖

𝜔𝜓
𝑎 𝜑′

𝑘(
𝜔𝜓
𝑎 )

𝜓*(0)
−𝑋𝑘(

𝜔𝜓
𝑎

)|

≤ 𝜖| 𝑎

𝜓(0)
|𝛺1(𝑎) ≤ 𝑎𝜖

|𝜓(0)|

(67)

The proof of Theorem 1 is finished.
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5 Numerical experiments

To explore the performance of the TEWT comprehensively, we employ the third-

order Rényi entropy [3, 4] and the reconstruction quality factor (RQF) [11, 12] to

quantify the analysis results. The RQF is defined as

𝑅𝑄𝐹 = 10 log10

‖𝑥(𝑡)‖2

‖𝑥(𝑡) − 𝑥𝑟(𝑡)‖2
. (68)

where 𝑥(𝑡) and 𝑥𝑟(𝑡) denote the noise-free signal and the reconstructed signal, re-

spectively. Generally, a higher RQF value means better reconstruction performance.

Besides, we compare TEWT and four TFA medthos, including WT, SWT, MSWT

and TSST. For the analysis function used in the numerical experiments, WT, SWT,

MSWT and TEWT use Morlet wavelet, TSST uses the Gaussian window function.

5.1 Frequency-domain signal

The test signal 𝑋(𝜔) contains two components (𝑋1(𝜔) and 𝑋2(𝜔)) and is defined

in the frequency domain:

𝑋(𝜔) = 𝑋1(𝜔) +𝑋2(𝜔) = 𝐴1(𝜔)𝑒−𝑖𝜑1(𝜔) +𝐴2(𝜔)𝑒−𝑖𝜑2(𝜔), (69)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐴1(𝜔) = 𝐴2(𝜔) = 𝑒0.001𝜔,

𝜑1(𝜔) = −0.001𝜔3 + 0.16𝜔2 + 1.2𝜔,

𝜑2(𝜔) = 0.03𝜔2 + 5.2𝜔 + 250 ln(0.05𝜔 + 0.6).

(70)

This signal is sampled at 512 points and its sampling frequency is 128 Hz.
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Fig. 2: Under different noise levels, Rényi entropy curves of TFRs generated by different TFA

methods.
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Fig. 3: The comparison study of the test signal with zero dB Gaussian white noise: (a) WT, (b)

zoom of the WT, (c) SWT, (d) zoom of the SWT.
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Fig. 4: The comparison study of the test signal with zero dB Gaussian white noise: (a) TSST, (b)

zoom of the TSST, (c) TEWT, (d) zoom of the TEWT.

Fig. 2 shows the third-order Rényi entropy curves of five TFA methods (WT,

SWT, MSWT, TSST and TEWT) for frequency-domain signal 𝑋(𝜔) with different

noise levels, where 𝑋(𝜔) is added with Gaussian white noises ranging from 0 to

30 dB of SNR, and the Rényi entropy will decrease with the improvement of the

energy concentration of TFR. It can be seen that under any noise level, WT has the
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Fig. 5: The comparison study of the test signal with SNR=0 dB impulsive noise: (a) WT, (b) zoom

of the WT, (c) SWT, (d) zoom of the SWT.
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Fig. 6: The comparison study of the test signal with SNR=0 dB impulsive noise: (a) TSST result,

(b) zoom of the TSST, (c) TEWT, (d) zoom of the TEWT.

largest Rényi entropy value, which means WT obtains the worst TF concentration

performance. As post-processing methods of WT, SWT, MSWT and TEWT all have

much smaller Rényi entropy values than WT, thus these post-processing methods

have greatly improved the TF concentration performance of the WT. Compared with

the other four TFA methods, TEWT has the smallest Rényi entropies at each noise



TEWT for characterizing impulsive-like signals and theoretical analysis 23

level, which indicates that the TEWT performs the best ability to improve the TF

energy concentration and achieves the best TFR result among all the methods. This

can be specifically illustrated by Figs. 3-6.

In Figs. 3-4, we added Gaussian white noise with SNR=0 dB to the signal to

verify the TF performance of TEWT in the noise situations, and we compare the TFR

results generated by WT, SWT, TSST, TEWT and their zoomed-versions, where the

third-order Rényi entropies are showed in each picture. It can be observed that WT,

SWT and TSST suffer diffuse TFRs and are very sensitive to noise. Compared to

these TFA methods, the proposed TEWT in Fig. 4 (c), (d) obtains the lowest Rényi

entropy value, reaches the best TFR result while improving the noise robustness.

Moreover, we added impulsive noise with SNR=0 dB to the signal in Figs. 5-6, which

further verify the superiority of TF performance of TEWT in the noise situations.

Thus, Figs. 2-6 clearly demonstrate that the TEWT is superior to other methods in

terms of TF energy concentration and noise robustness performance.
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Fig. 7: The comparisons of GD estimation: (a) SWT, (b) MSWT, (c) TSST, (d) TEWT.

Furthermore, we compare the GD estimation of four TFA methods for 𝑋(𝜔) under

noise-free situation in Fig. 7, red lines denotes true GD trajectories, blue lines denote

estimated GD trajectories. It can be found that SWT in Fig. 7 (a), designed for slowly

varying signals (satisfying |𝜙′′
𝑘(𝑡)| → 0), fails to estimate the GD of 𝑋(𝜔) whose TF
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Fig. 8: (a) The original signal and the reconstructed signal, (b) The reconstructed signal and the

reconstructed error.

ridge curves that changes rapidly or even perpendicular to the time axis. For the

MSWT that is suitable for fast-varying signals (satisfying |𝜙′′
𝑘(𝑡)| < ∞) in Fig. 7

(b), it greatly improves the GD estimation accuracy of SWT. However, TSST and

TEWT, designed for impulsive-like signal (satisfying |𝜙′′
𝑘(𝑡)| → ∞) whose TF ridge

curves nearly perpendicular to the time axis, provide more precise GD estimations.

By carefully comparing (c) and (d) in Fig. 7, TEWT provides a slightly better GD

estimation than TSST, thus TEWT provides a more accurate GD estimation for

frequency domain signals than other TFAs.

Finally, the second quantified indicator RQF is used to evaluate the reconstruction

performance of TEWT in Fig. 8, which is written in the picture. Fig. 8 (a) compares

the original signal (blue line) and the signal reconstructed (red line) by TEWT, and

Fig. 8 (b) compares the reconstructed signal (blue line) and reconstructed error (red

line) by TEWT. The reconstructed signal, reconstructed error and the RQF (17.5 dB)

in Fig. 8 all verify that TEWT can reconstruct the signal very accurately and has

good reconstruction performance. Therefore, for frequency domain signals, TEWT

performs well in terms of TF energy concentration, noise robustness, GD estimation

and reconstruction performance.

5.2 Time-domain numerical fault signal

A numerical fault signal with a rapidly changing status is modeled according to the

mechanical theory [36], the analysis results generated by the TEWT and classical TFA
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methods and their zoomed-versions are shown in Fig. 9 and Fig. 10. The sampling

frequency is 1024 Hz, and time duration is [0, 1].
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Fig. 9: (a) WT result, (b) zoom of the WT result, (c) SWT result, (d) zoom of the SWT result.
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Fig. 10: (a) TSST result, (b) zoom of the TSST result, (c) TEWT result, (d) zoom of the TEWT

result.
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Fig. 11: (a) The original signal and the reconstructed signal, (b) The reconstructed signal and the

reconstructed error.

It can be seen that in Fig. 9, restricted to the Heisenberg uncertainty principle,

WT in Fig. 9 (a) provide a blurry TF explanation for the time-domain fault signal.

Since SWT adopts the time-domain harmonic-like signal model and squeezes the WT

coefficients along the frequency direction, which makes SWT unable to provide an

energy-concentrated TFR for the fault signal in Fig. 9 (c). Compared with WT and

SWT in Fig. 9, it can be observed that TSST greatly improves the TF resolution

of fault signal in Fig. 10 (a), but TEWT provides a higher-resolution TFR in Fig.

10 (c) and obtains the most concentrated TFR among all the methods, thus TEWT

is more suitable to characterize the TF feature of fault signal. Next, we verify the

reconstruction performance of TEWT in Fig. 11. As shown in Fig. 11 (a), the signal

reconstructed by TEWT is highly consistent with the time-domain fault signal, and

the reconstruction error and RQF (22.7 dB) in Fig. 11 (b) also further verify the

accuracy of TEWT reconstruction. It can be concluded that the TEWT behaves the

best TF performance and perfect reconstruction performance.

5.3 Bat signal

A bat signal recorded is employed to validate the effectiveness of the TEWT

[39], which is sampled at 400 points and its sampling frequency is 140 kHz. The

waveform of the signal and its spectrum are displayed in Fig. 12 (a), (b), it can be

observed that it is far from enough to describe the features of the signal only from

its waveform and spectrum, so the TFA method is needed to further characterize the

signal. In order to characterize the bat signal precisely, we used four TFA methods
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Fig. 12: (a) The waveform of the bat signal, (b) The spectrum of the bat signal, (c) The original

signal and the reconstructed signal, (d) The reconstructed signal and the reconstructed error.
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Fig. 13: (a) WT result, (b) zoom of the WT result, (c) SWT result, (d) zoom of the SWT result.

to process the bat signal in Figs. 13, 14, including WT, SWT, TSST and TEWT.

The analysis results show that the TEWT has the best performance to generate the

most energy-concentrated TFR among above TFA methods. Fig. 12 (c), (d) shows

the reconstructed results by TEWT, it can be seen that TEWT can reconstruct

signals extremely well and obtain a high RQF (20.7 dB), thus TEWT has the good

reconstruction ability. Therefore, the TEWT is suitable for characterizing the bat

signal.
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Fig. 14: (a) TSST result, (b) zoom of the TSST result, (c) TEWT result, (d) zoom of the TEWT

result.

6 Conclusion

The two contributions of this paper are the proposal of TEWT and the theoretical

analysis of TEWT for frequency-domain signals. In this regard, for the impulsive sig-

nal and its frequency-domain harmonic signal, we propose the TEWT that achieves

highly-concentrated TFRs while allowing signal reconstruction, only by retaining the

closely-related TF energy with discarding weakly-related TF information. On the oth-

er hand, we provide a rigorous theoretical analysis of TEWT under a mathematical

framework for the frequency-domain signal model. Specifically, we define a function

class as a set of all superposition of well-separated frequency-domain harmonic-like

functions, where each function can be locally regarded as a sum of a finite number

of harmonic signals in the frequency domain, and establish error bounds for WT ap-

proximate expression, GD estimation and component recovery. Finally, we verify the

superiority of the TEWT in terms of the concentration, robustness, and invertibility

with two quantitative indicators, by using numerical experiments of frequency-domain

signals, time-domain signals and real signals. It can be concluded that theoretical

analysis and numerical experiments demonstrate that TEWT is a powerful tool for

analyzing time-domain impulsive-like signals or frequency-domain harmonic-like sig-

nals.
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