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Difference in Patient-Reported Outcomes
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Abstract

Background: Using a real dataset, we highlighted several major methodological issues raised by the estimation of
the Minimal Clinically Important Difference (MCID) of a Patient-Reported Outcomes instrument. We especially
considered the management of missing data and the use of more than two times of measurement. While
inappropriate missing data management and inappropriate use of multiple time points can lead to loss of precision
and/or bias in MCID estimation, these issues are almost never dealt with and require cautious considerations in the
context of MCID estimation.

Methods: We used the LIGALONGO study (French Randomized Controlled Trial). We estimated MCID on the SF-36
General Health score by comparing many methods (distribution or anchor-based). Different techniques for
imputation of missing data were performed (simple and multiple imputations). We also consider all measurement
occasions by longitudinal modeling, and the dependence of the score difference on baseline.

Results: Three hundred ninety-three patients were studied. With distribution-based methods, a great variability in
MCID was observed (from 3 to 26 points for improvement). Only 0.2 SD and 1/3 SD distribution methods gave
MCID values consistent with anchor-based methods (from 4 to 7 points for improvement). The choice of missing
data imputation technique clearly had an impact on MCID estimates. Simple imputation by mean score seemed to
lead to out-of-range estimate, but as missing not at random mechanism can be hypothesized, even multiple
imputations techniques can have led to an slight underestimation of MCID. Using 3 measurement occasions for
improvement led to an increase in precision but lowered estimates.

Conclusion: This practical example illustrates the substantial impact of some methodological issues that are usually
never dealt with for MCID estimation. Simulation studies are needed to investigate those issues.

Trial registration: NCT01240772 (ClinicalTrials.gov) registered on November 15, 2010.

Keywords: Minimal clinically important difference, Minimal important difference, Patient-reported outcomes,
Methodology, Missing data, Longitudinal modeling
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Background
Nowadays, medical practice tends to be patient-centered,
after being mostly based on objective outcomes. Subjective
concepts like quality of life or satisfaction are now as rele-
vant endpoints as mortality in clinical studies. Since they
can be assessed mostly by patients’ speech, these concepts
are at best reported directly by the patient himself without
interpretation by a clinician with instruments called
Patient-Reported Outcomes (PRO) [1]. These instruments
are increasingly used in studies and clinical practice, since
it gives the patient a central place in his medical care.
However, one of the major issues with the use of PRO is

to correctly identify whether a change in scores is relevant
or not, beyond statistical significance. Indeed, statistical
significance only tells an observed difference is unlikely to
have occurred by sampling hazard alone, but it does not
tell if this difference has meaning, especially for the pa-
tient. For instance, an improvement of four points on a
Health-Related Quality of Life (HRQoL) score after an
intervention can be enough to reach statistical significance
with appropriate sample size, but it can be hard to tell
anyway if it is a meaningful difference.
To this end, in 1989 Jaeshcke defined the concept of

the Minimal Clinically Important Difference (MCID), as
“the smallest difference in score in the domain of interest
which patients perceive as beneficial and which would
mandate, in the absence of troublesome side-effects and
excessive cost, a change in the patient’s management” [2].
Thus, determining the MCID of a PRO is interesting in
clinical practice and research. For instance, a clinician
wishing to evaluate his patients before and after a treat-
ment can interpret the score difference by comparing it
to the MCID. In clinical research, the MCID allows to
calculate the number needed to treat in a clinical trial
where the effect of a treatment is evaluated with a PRO.
Several methods have been proposed for MCID deter-

mination, classified as distribution-based and anchor-
based methods mainly [3, 4]. It will be more detailed
below, but briefly, distribution-based methods use the
variability of overall responses to estimate MCID. They
don’t consider the patient’s perspective, but still are use-
ful because easy to estimate. The anchor-based methods
use an external indicator (the anchor) to classify patients
as improved or worsened and link it to the score differ-
ence. They can consider the patient’s point of view and
are often assumed as the best way to estimate MCID [5].
Nonetheless, major methodological issues still need to

be explored about MCID determination. The MIDIPRES
project (Minimal clinically Important DIfference deter-
mination for patient reported outcomes in Presence of
REsponse Shift), aims at defining the most adequate
method for MCID determination. Among others, rele-
vant existing methods will be compared using simulation
studies. In these studies, responses to PRO will be

generated by models. To adequately simulate data, pa-
rameters to account for are numerous. Certain categor-
ies of issues are frequently discussed in reviews about
MCID estimation [4, 6, 7]. Nonetheless, as shown in a
systematic review of all the methods used for MCID de-
termination on empirical data since the inception of the
concept, some of these issues are massively overlooked,
or at least dealt with in an inappropriate manner [8].
Therefore, their impact on empirical data is still not sys-
tematically investigated. First, there must be at least a
moderate correlation between the anchor and the mea-
sured score, to allow linking one with the other [6]. Sec-
ond, very few studies consider missing values. There are
often numerous in PRO data, but almost all the studies on
MCID estimation on empirical data assume a complete
case analysis is the appropriate data analysis. Nonetheless,
depending on the missingness mechanism, these missing
data cannot be ignored, since their exclusion can lead to a
loss in precision and/or bias in estimation due to the non-
representativeness of the complete-case sample. The ap-
propriate method to deal with these missing values in the
context of MCID estimation should be approached with
great caution. Third, most of the time, patients are
assessed on only two times of measurement. The few
studies that consider more than two times of measure-
ment generally don’t take the correlation of repeated mea-
sures into account and simply estimate an overall mean
pooling data of each time of measurement, which is not
appropriate [8]. Finally, it is admitted MCID estimate
could be influenced by the baseline score level, but it is an
issue that is still mostly overlooked [7–10].
To help planning adequate simulation studies, we wanted

to investigate the potential impact of some of the aforemen-
tioned issues by comparing numerous methods of MCID
determination to estimate the variability of MCID value,
using a real dataset (the LIGALONGO study [11], a ran-
domized control trial measuring HRQoL as secondary end-
point) as an illustration. Particularly, we aimed to
investigate the methodological challenges of dealing with
missing data in the context of MCID estimation and the
variability of MCID estimates when managing missing data
with recommended techniques. Another point of consider-
ation was to investigate the impact of incorporating more
than two times of measurement on MCID estimation. A
last issue was to investigate the need in this context to con-
sider baseline value in HRQL score in MCID estimation.

Methods and patients
Determination methods of MCID
Distribution-based methods
Distribution-based methods use the variability of overall
responses to estimate MCID. They did not incorporate
any form of external assessment about clinical meaning
or patients’ perspective. Thus, some authors consider
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distribution-based MCID estimates only lead to what is
called Smallest Detectable Differences (SDD): a statistical
definition for quantifying the significance of differences
[12, 13]. Nonetheless, distribution-based MCID esti-
mates are easy to compute. In addition, as there is today
no consensus of the best method to estimate MCID,
some authors recommend what is called “triangulation”
which corresponds to assess MCID using multiple
methods of estimation to provide au plausible range
where the true MCID could be [14]. In this context,
distribution-based methods are still often considered as
adding info about MCID estimation. We can distinguish
two approaches of distribution-based methods.

1. Those only based on the score change

Effect-Size (ES) is obtained by dividing the difference in
mean scores from baseline x1 to post-intervention x2 by the

standard-deviation of the baseline score (SDb):
x2−x1
SDb

[15].

Cohen [16] empirically defined an effect size of 0.2 as small,
0.5 as moderate, and 0.8 as large. Then, one can consider 0.2
SDb, 1/3 SDb or 0.5 SDb to determine the MCID (equated to
a minimal standardized observed change).
Standardized response mean (SRM) is defined by divid-

ing the difference in mean scores from baseline to post-
intervention by the SD of that difference (SDch) [17, 18],

or x2−x1SDch
. MCID is then considered as 0.2 SDch, 1/3 SDch

or 0.5 SDch. SDch tends to diminish with increasing sam-
ple size. Thus, the SRM becomes increasingly dependent
of the sample sizes for a constant SRM [13].

2. Those based on the instrument capacity to detect a
change beyond measurement error

Standard Error of Measurement (SEM), defined by

SEM ¼ σ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Reliability

p
with σ the baseline standard

deviation. The reliability is usually estimated using an in-
ternal consistency estimate, for example Cronbach’s alpha,
but some authors also use a test-retest reliability estimate
(such as an Intra-Class Correlation coefficient) or, more an-
ecdotally, a split-half reliability measurement. SEM is as-
sumed to be fairly sample-independent [19], which is its best
advantage: a growing standard deviation is balanced by a
higher reliability. Some authors like Wyrwich et al. consider
one SEM as an approximation of the MCID [20, 21], based
on the analysis of few studies comparing the value of one
SEM with established standards for clinically relevant intra-
individual change of HRQoL scores.
A related measure is the Minimal Detectable Change

(MDC), which gives a 95% confidence interval around
the value of the score: MDC95 ¼ 1:96� ffiffiffi

2
p � SEM .

Some authors use the value of 1 MDC as an estimate of

the MCID of a PRO instrument [22]. The MDC can be
considered also as an SDD but can be useful to compare
it with anchor-based estimates. Indeed, if a difference is
larger than the MDC, it reflects a change larger than a
difference that may occur due to an error of measure-
ment with 95% confidence [13, 23, 24].

Anchor-based methods
The anchor-based approaches use an external indicator
to define patient’s evolution. Usually, anchors are pre-
sented as Global Rating of Changes (GRC), a change
measured by a single item, most of the time a Likert
scale. The GRC is often completed by the patient him-
self, but sometimes by a relative or clinician(s) [25]. Pa-
tient is then assigned into several groups ranging from
large negative to large positive changes in clinical or
health status. Usually, it’s recommended to estimate dif-
ferent values of MCID for improvement and deterior-
ation, since they are not symmetrical [26].

Correlation between the GRC and the observed
change A good GRC should be appropriately linked
with the score difference. In the field of behavioral sci-
ences, Cohen defined a correlation as small when it is
between 0.10 and 0.30, medium between 0.30 and 0.50
and large above 0.50. Thus, the minimal correlation of
0.30 between the GRC and the measured score differ-
ence that is usually recommended in the literature [10]
corresponds to a moderate correlation, initially proposed
for behavioral science, and without any evidence but rule
of thumb.
When the GRC is an ordinal variable, serial correlation

coefficients should be computed to examine the associ-
ation between anchor and score difference.

Estimation of MCID We used different approaches,
using two or three repeated measures of the PRO to esti-
mate MCID.

1. Two-measure approaches

Mean change score: MCID was first estimated by the
mean change score of patients who felt a little change
(improvement or deterioration) at follow-up visit, with
95% confidence interval calculated on the base of its SD.
This is the approach initially proposed by Jaeshcke et al.
[2]. A closely-related approach was considered by Redel-
meier et al.: the “mean change method” [27, 28]. Here,
the MCID is the difference between the mean change
score of patients who felt a little change (improvement
or deterioration) at follow-up and the mean change
score of patients who felt no change. The purpose is to
adjust for possible bias in ratings. As shown below, the
mean change score of patients who felt no change for
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our outcome of interest was 1 point. Thus, we did not
report MCID estimates using Redelmeier estimate be-
cause it would have resulted only in a systematic transla-
tion of 1 point as compared to Jaeshcke approach.
If the aforementioned anchor-based estimates are

based on averaging the distribution of the change using
data from the subgroups of patients who felt little
change, other anchor-based estimates were proposed
and are commonly used [6, 8]. Usually these other esti-
mates are trying to find a cut point discriminating best
patients with little change from patients with no change.
Receiver Operating Characteristic (ROC) curve: We ob-

tained ROC curve by comparing patients with little improve-
ment versus those who were unchanged or worsened, or
comparing patients with little deterioration versus those who
were unchanged or improved to get the ability of the score
difference to discriminate a patient as little changed in a dir-
ection (e.g., slightly improved) or unchanged/changed in the
other direction (e.g., unchanged or worsened).
We estimated the Area Under the Curve (AUC),

reflecting whether the score difference correctly distin-
guished patients who changed a little and those who
didn’t (as classified by the anchor).
The best threshold was chosen to minimize classifica-

tion errors, i.e. to find the best compromise between
sensitivity and specificity. Youden index (the farthest
point from the diagonal line) and the Closest point to
the Top-Left (Euclidian distance) were used to deter-
mine the MCID. 95% confidence intervals of the cut-off
point values was estimated using bootstrap.
Intersection between two distribution curves: In 2010,

Gerlinger at al. proposed another discrimination tech-
nique: the cut point is defined as the intersection of the
density curves of “little changed” (better or worse) pa-
tients and unchanged patients. In their paper, it was de-
termined by non-parametric discriminant analysis [29].
If this method does not make any assumption about the
shape of the distribution of the change in score in the
subgroups, it was not detailed. We propose here a para-
metric equivalent. It makes an assumption on the shape
of the distributions but it can be solved analytically with
ease Assuming two normal distributions with means μ1
and μ2 and standard deviations σ1 and σ2, we can write

the equation of their intersection: 1
σ1� ffiffiffiffi

2π
p e

− 1

2ðx−μ1σ1 Þ2

¼ 1
σ2� ffiffiffiffi

2π
p e

− 1

2ðx−μ2σ2 Þ2 .

After development, we obtain ax2 + bx + c = 0, with
a = (σ1 − σ2); b = (2μ1. σ22 − 2μ2. σ12) and c = σ12. μ22
− μ12. σ22 − 2σ12. σ22 (lnσ1 − lnσ2).
Given the solution of an equation with two un-

knowns Δ = b2 − 4ac, we can deduce the two points

where the distribution curves cross: x ¼ −b�√Δ
2a . These

points represent the cutoff where the probabilities of
having no change or either little improvement or wors-
ening are equal.
We estimated parametric distributions’ densities of the

patients with no change/little improvement/little degrad-
ation, as we had the mean and the SD of each of these
categories. We assumed that the score difference was
following a normal distribution. An example is provided
in the Fig. 1.

2. Several (> 2) measures approach

Very few studies about MCID estimation on empirical
dataset are based on more than two times of measure-
ment [8]. Most of the times they don’t take the correl-
ation of repeated measures into account and simply
estimate an overall mean pooling data of each time of
measurement [8]. To our knowledge, we identified one
study with repeated measures with a fully described and
written appropriate model to deal with the multiple time
points [30]. This approach can be advantageous, since it
incorporates more data into MCID estimation, resulting
in a potential improved precision if the correlation of re-
peated measures is properly accounted for.
Using repeated measures, we constructed a mixed lin-

ear regression, with a random effect on the individual
(random intercept model) to estimate the mean change
score in each category of patients (those who felt a little
better, stable, or little worse), which was considered as
the MCID (Eq. (1)):

Δscore i j½ � ¼ βanchor j½ � þ ui þ ϵi j½ � with ui
� N 0;Bð Þ; ϵi � N 0; σ2

� �
: ð1Þ

With Δscore i[j] the score difference between two times
of measurement for the i individual who would meet the
j level of the GRC; βanchor [j] the fixed effect parameter
associated with the anchor at level j, ui the coefficient as-
sociated with the random intercept effect on the individ-
ual, and ϵi the residual.

Considering the baseline score
To determinate whether considering the baseline score
was meaningful to estimate MCID, we also ran a mixed
linear regression using the baseline score (cut into ter-
tiles) as a fixed effect, and an interaction between base-
line score and the GRC (Eq. (2)):

Δscore i j;k½ � ¼ βanchor j½ � þ γanchor�score bs j;k½ � þ ui
þ ϵi j;k½ � with ui

� N 0;Bð Þ; ϵi j;k½ � � N 0; σ2
� �

: ð2Þ

With Δscore i[j, k] the score difference between two times
of measurement for the i individual who would meet the
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j level of the GRC and would have a baseline score at a
level k; γanchor × score _ bs [j, k] the interaction term between
the baseline score at level k and the GRC at level j, and
ϵi[j] the residual.
We used a likelihood-ratio test to compare Model (1)

with Model (2) (i.e. without and with the interaction be-
tween baseline score and anchor as a fixed effect). We
used a p-value < 0.05 as the threshold of statistical sig-
nificance between the two likelihood values. If statistical
significance was reached: it was used as an assessment of
the need to consider baseline dependency of the MCID
estimate. The MCID was estimated by linear combin-
ation of coefficients, with estimates of parametric 95%
confidence interval.

Missing data management (Fig. 2)
Numerous longitudinal studies with PRO data have
missing data. When these data are used to estimate

MCID, almost all the times, missing data are never dealt
with and statistical analyses are conducted on the
complete case sample [8]. Depending on the mechanism
(i.e. missing data can be missing completely at random
(MCAR), missing completely at random conditionally on
observed variables (CD-MCAR), missing at random
(MAR), or missing not at random (MNAR) according to
Little and Rubin’s classification [31]), missing data will al-
ways have an impact on precision (due to loss of data) and
can biased the results. Complete case analysis will always
result in a loss precision but will not be biased only if miss-
ing data are MCAR. However, in the context of longitudinal
PRO data collection, MCAR can be unlikely to assume.
First, we imputed missing items with Personal Mean

Score (PMS), which consists in the imputation of miss-
ing items by the average of the items of the same dimen-
sion answered by the individual, if more than half of its
items are filled [32].

Fig. 1 Distributions of the patients with no change, little improvement and little degradation between first (t1) and second measurement (t2):
intersection points are here considered as a possible estimate for MCID

Fig. 2 Illustration of the imputation methods used. MD Missing data. X completed item; MICE Multivariate Imputation with Chained Equations.
1PMS Personal Mean Score : each item is imputed 2Missing data in scores were imputed by the mean of observed scores ; missing data in anchor
were imputed using a random sample weighted with observed probabilities of answers at corresponding anchor. 3Missing scores were imputed
using personal mean matching, missing anchors were imputed using a polytomous regression, both using clinical and demographic variables.
4Missing scores were imputed using personal mean matching, missing anchors were imputed using a polytomous regression, both using clinical
and demographic variables, and all scores from other dimensions
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Then, we described the demographic and clinical char-
acteristics of patients with and without missing values at
each visit. The typology of missing data was described
(Online only supplement), as well as their potential
mechanisms by comparing, at each visit, the variables
between those who had and those who hadn’t missing
data for the score (proportions were compared using
Chi-square or Fisher test, and means were compared
using Student T-test).
We first made our analyses only considering complete

cases. Due to the nature of PRO, we expected a signifi-
cant rate of missing data, so we planned to impute them
using several imputation techniques to conduct sensitiv-
ity analyses. In the specific context of MCID estimation,
imputation techniques require practical careful consider-
ations, because not only quantitative scores have to be
imputed, but also responses to the GRC which are on a
Likert-scale.
First, we applied a simple imputation model, using the

mean of observed scores to impute missing scores; the
missing GRC responses were imputed using a random
sample weighted with observed probabilities of answers.
This simple imputation technique can prevent the loss of
precision of a complete case analysis but assume MCAR
mechanism. If the true mechanism generating missing
data is not MCAR, MCID estimates are biased [33].
Second, missing scores and GRC responses were im-

puted using Multiple Imputation by Chained Equation
(MICE). If MICE techniques are recommended for CD-
MCAR or MAR missing data, they will not result in bias
only if the models for imputations are adequately speci-
fied [34]. We explored different strategies of modeling
imputations here. Missing scores were imputed using
personal mean matching (to avoid imputed scores with
out of range values), considering all clinical and demo-
graphic data and scores (from previous and/or following
visit). Missing GRC responses were imputed using a
polytomous regression, considering all clinical and
demographic data, and the score difference between the
current visit and the first. Then, we applied a more
“complex” MICE method, adding all scores from other
dimensions of the PRO multidimensional questionnaire
as predictors for imputations. Finally, we reiterated those
two MICE procedure using only available information
(i.e. without imputation of missing data other than
scores or anchors).

Illustrative example
All the aforementioned methods of MCID determination
have been applied on real datasets, to figure out the vari-
ability on the subsequent values.
We illustrated our purpose with the results from

LIGALONGO study [11], which was a French

multicenter randomized trial conducted from 2010 to
2013 designed to compare two types of intervention in
the treatment of symptomatic hemorrhoidal disease.
Three hundred ninety-three patients were submitted to
a clinical evaluation, and filled auto-questionnaires the
day before intervention, then at 3 months (visit 5) and
12months (visit 7).

Subjective concept of interest and questionnaire used to
measure it
We aimed to estimate the MCID of HRQoL related
concept.
The French MOS-SF36 (v2) [32, 35] is a generic

HRQoL 36-items questionnaire divided into eight sub-
scales addressing physical, mental and social health, and
one item assessing the health transition (HT). For the
present study, the analyses were performed on the five
items of the General Health (GH) subscale, since it
showed the best correlation with the GRC based on the
available data. Each of these items was rated on an or-
dinal scale with five categories. The five responses of
each patient were summed and the result was recali-
brated to a score ranging from zero (worst perceived
general health) to 100. By dividing the sample in three
groups of approximately equal sizes, GH scores at base-
line were considered as low when ranged from 0 to 65,
medium from 66 to 82, or high from 83 to 100.
We used the Health Transition (HT) item as the

patient-based GRC, at follow-up visits 5 (3 months) and
7 (1 year), which was worded as: “Compared to one year
ago, how would you rate your health in general now?”.
The patient could choose among five responses: “Much
better”, “Somewhat better”, “About the same”, “Some-
what worse” and “Much worse”.
All statistical analyses were done using R Software

(v3.3.2) [36], with packages mice [37] and pROC. The
estimation of SF-36 scores for each individual of the
dataset were done using the Stata Software 13 [38]
(sf36fr package [39]). We rounded up the obtained
MCID estimations to the nearest integer, as this is the
way we usually interpret scores.

Results
Figure 3 shows the main characteristics, the mean GH
scores and anchors at each visit of the Intention To
Treat population of the LIGALONGO trial.
The GRC (HT) was adequately correlated with the GH

score-difference at visit 5 and 7 (respectively, biserial
correlation coefficient r = − 0.35 and − 0.32). The internal
consistency of the GH score at visits 1, 5 and 7 was re-
spectively α = 0.80, 0.85 and 0.83, which is consistent
with the psychometric properties of SF-36 scale on
French general population [32].
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Estimation of MCID: one and two measures- approaches
Table 1 shows the MCIDs obtained with different
distribution-based methods.
There was a high variability between the different

distribution-based methods, and the MCID of the GH-
score was estimated to be between 3 and 26 points.
Table 2 shows different MCID values obtained with

anchor-based methods. Considering the MCID as the mean
GH score difference, it was estimated between 4 and 5
(95% CI ranging from 1 to 8 points) in the group who felt
little improved, and between − 1 and 2 (95% CI ranging
from − 10 to 5) in the group who felt little worsened.

Table 2 shows the MCID values estimated consider-
ing the intersection of distributions’ density curves for
patients with no change/little improvement/little deg-
radation (based on their answer to the GRC of the
visit 5).
Considering MCID as the best threshold of a ROC

curve (Table 2), we obtained different results whether
we chose the closest threshold from the top-left or the
Youden threshold. This was illustrated by the low AUC,
which ranged between 0.58 and 0.61 for the “little bet-
ter” group, and between 0.63 and 0.69 for the “little
worse” group.

Fig. 3 General characteristics of the LIGALONGO illustration study sample

Table 1 MCID estimations (with their 95% confidence interval) for different distribution-based methods applied to the LIGALONGO
dataset using different imputation methods

Distribution-based methods

0.5 SDb 1/3 SDb 0.2 SDb SEM MDC 0.5 SDch 1/3 SDch 0.2 SDch

Complete cases 10 [10; 11] 7 [6; 7] 4 [4; 4] 9 [9; 10] 26 [24; 28] 8 [7; 9] 5 [4; 6] 3 [3; 4]

Imputation by the meana 10 [9; 11] 7 [6; 7] 4 [4; 4] 9 [8; 10] 25 [23; 27] 8 [7; 9] 5 [5; 6] 3 [3; 4]

Simple MICE* imputationb 10 [10; 11] 7 [7; 7] 4 [4; 4] 9 [9; 10] 26 [25; 26] 8 [8; 8] 5 [5; 5] 3 [3; 3]

Complex MICE imputationc 11 [10; 11] 7 [7; 7] 4 [4; 4] 9 [9; 10] 26 [25; 27] 8 [8; 8] 6 [5; 6] 3 [3; 3]

Simple MICE imputation (available information)d 10 [10; 11] 7 [7; 7] 4 [4; 4] 9 [9; 10] 26 [25; 26] 8 [8; 8] 5 [5; 6] 3 [3; 3]

Complex MICE imputation (available information)d 10 [10; 11] 7 [7; 7] 4 [4; 4] 9 [9; 10] 26 [25; 26] 8 [8; 8] 5 [5; 6] 3 [3; 3]

Values in bracket are 95% Confidence Interval
MICE Multivariate Imputation with Chained Equations, SDb Standard deviation at baseline score (visit 1), SEM Standard Error of Measurement, MDC Minimal
Detectable Change, SDch Standard deviation of the difference score (score at Visit 5 – score at Visit 1)
aMissing scores were imputed by the mean-score, and missing anchors were imputed on the base of a weighted-probability
bMissing scores were imputed using personal mean matching, anchor was imputed using a polytomous regression, both using clinical and demographic variables,
and GH scores
cMissing scores were imputed using personal mean matching, anchor was imputed using a polytomous regression, both using clinical and demographic variables,
and all SF-36 scores
dThe same MICE methods were applied, using only available information
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Estimation of MCID using a three-measures approach
Table 3 reports the MCID for improvement and deteri-
oration, for the whole sample, and within each groups of
patients on baseline GH score (low, medium or high),

using information from the three times of measurement.
For improvement only, compared to the anchor-based
mean approach with two times only (Table 2), it led to
an increase in precision of the estimates (i.e. narrower

Table 2 MCID estimated with different anchor-based methods and applied to the LIGALONGO dataset using different imputation
methods
Method of imputation MCID estimate Groups (according to anchor at visit 5)

MCID Improvement MCID Worsening Unchanged

MCID 95%
CI

MCID 95% CI Mean GH
Δe

95%
CI

Complete cases Mean 4 [2; 7] −4 [− 9; 2] 1 [−1; 3]

Imputation by the meana 5 [1; 8] −2 [−8; 3] 2 [−1; 4]

Simple MICE imputationb 4 [2; 7] −4 [−9; 2] 1 [−1; 4]

Complex MICE imputationc 5 [2; 8] −3 [−9; 2] 1 [−1; 4]

Simple MICE imputation
(available)d

5 [3; 8] −1 [−6; 5] 1 [−1; 3]

Complex MICE imputation
(available)d

5 [2; 7] −4 [−10; 1] 0 [−1; 3]

MCID 95%
CI

MCID 95% CI

Complete cases Intersection of distribution
curves

8 [−7;15] −3 [−10;12]

Imputation by the meana 14 [6;20] −3 [−13;15]

Simple MICE imputationb 9 [2;12] −4 [−6;3]

Complex MICE imputationc 8 [2;10] −2 [−5;5]

Simple MICE imputation
(available)d

8 [4;10] −10 [−24;12]

Complex MICE imputation
(available)d

7 [2;9] −4 [−7;4]

MCID 95%
CI

AUC Se Sp MCID 95% CI AUC Se Sp

Complete cases ROC: closest from top-left
corner

5 [5; 5] 0.58 0.53 0.66 0 [−3; 5] 0.69 0.62 0.73

Imputation by the meana 5 [5; 5] 0.60 0.56 0.65 3 [−3; 5] 0.66 0.59 0.72

Simple MICE imputationb 5 [2; 6] 0.61 0.57 0.64 2 [−3; 5] 0.69 0.61 0.72

Complex MICE imputationc 5 [2; 7] 0.60 0.57 0.64 4 [−7; 16] 0.68 0.56 0.77

Simple MICE imputation
(available)d

5 [3; 7] 0.60 0.57 0.63 3 [−3; 6] 0.63 0.6 0.66

Complex MICE imputation
(available)d

5 [3; 7] 0.60 0.57 0.64 2 [−3; 5] 0.69 0.61 0.71

MCID 95%
CI

AUC Se Sp MCID 95% CI AUC Se Sp

Complete cases ROC: Youden 5 [−3;
13]

0.58 0.48 0.72 0 [−5; 13] 0.69 0.60 0.76

Imputation by the meana 7 [5; 13] 0.60 0.51 0.72 3 [−3; 12] 0.66 0.57 0.76

Simple MICE imputationb 6 [0; 11] 0.61 0.52 0.70 3 [−8; 13] 0.69 0.58 0.76

Complex MICE imputationc 7 [1; 12] 0.60 0.52 0.70 2 [−3; 5] 0.68 0.60 0.72

Simple MICE imputation
(available)d

7 [−1;
12]

0.60 0.53 0.68 2 [−11;
14]

0.63 0.61 0.66

Complex MICE imputation
(available)d

6 [−1;
12]

0.60 0.53 0.69 3 [−7; 14] 0.69 0.57 0.77

MCID Minimal Clinically Important Difference, MICE Multivariate Imputation by Chained Equations, CI Confidence Interval, AUC Area Under the Curve, Se Sensitivity,
Sp Specificity, ROC Receiver Operating Curve
aMissing scores were imputed by the mean-score, and missing anchors were imputed on the base of a weighted-probability
bMissing scores were imputed using personal mean matching, anchor was imputed using a polytomous regression, both using clinical and demographic variables,
and GH scores
cMissing scores were imputed using personal mean matching, anchor was imputed using a polytomous regression, both using clinical and demographic variables,
and all SF-36 scores
dThe same MICE methods were applied, using only available information
eMean GH difference between visits 1 and 5 within the unchanged group of patients
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CI), with estimates of a lower magnitude (1 to 4 points
instead of 4 to 5).
In all dataset (complete or imputed ones), the Likeli-

hood Ratio Test concluded to the dependence of the
score difference on the baseline GH score (Table 3).

Management of missing data
Comparison of demographic and clinical characteristics for
patients with and without missing data at visits 5 and 7 are
shown in eTables 1, 2, 3 and 4. We didn’t notice any differ-
ence in the two groups regarding all demographic charac-
teristics, except for BMI at visit 5 (patients with missing
data at visit 5 had a significantly higher BMI (=25.7 kg/m2)
than those without missing data (=24.5 kg/m2)).
Concerning clinical characteristics, the only difference evi-

denced at visit 5 were for disease grade (patients with missing
data had a lower grade disease (respectively, the ration of
grade II/grade III disease was 40/60 in the missing data group,
versus 24/76 in the complete-case group, p= 0.013). There
also was a difference at visit 7 for disease grade (patients with
missing data had a lower grade disease (respectively, the ration
of grade II/grade III disease was 35/65 in the missing data
group, versus 24/76 in the complete-case group, p=0.029).
eTable 5 shows the amount of missing data at the dif-

ferent visits of the study. The amount of missing data

for the difference in GH scores and GRC was substantial
enough to justify the need to perform missing data im-
putation. In terms of mechanism, the observed relation-
ships between the disease grade and missingness seems
to imply a part of the missing data mechanism in this
study is likely to be MNAR.
The imputed MCID estimates are displayed in

Tables 1, 2 and 3. Imputation had no impact on
MCID estimates with distribution-based methods. It
had various impact for the other methods. For mul-
tiple imputation techniques, the greater variability was
especially observed for the estimation of MCID for
deterioration with intersection of distribution curve
method, less with ROC (Table 2) and longitudinal
models (Table 3). The simple imputation by the mean
sometimes produced estimates very different from the
others (intersection of distribution curve method
(Table 1) or longitudinal models (Table 3)).
Finally, Fig. 4 summarizes the variability of MCID esti-

mation using different methods (results displayed for im-
provement, with “simple” MICE imputation).

Discussion
Illustrating our point by the LIGALONGO trial, we
highlighted different issues in the MCID determination.

Table 3 MCID estimated by the coefficients of linear-mixed effect model, considering baseline General Health scores, and applied to
the LIGALONGO dataset using different imputation methods for missing data

MCID for improvement MCID for deterioration

All range
baseline GHa

Low
baseline
GHb

Medium
baseline GHb

High
baseline
GHb

All range
baseline GHa

Low
baseline
GHb

Medium
baseline GHb

High
baseline
GHb

Complete casesi 3 [1; 5] 12 [8; 15] 2 [−2; 5] −7 [− 12; −
3]

− 10 [− 15; −
5]

− 4 [− 10; 3] −16 [− 27; − 5] − 17 [− 27;
− 7]

Imputation by the
meanic

3 [1; 5] 14 [10; 18] − 1 [− 7; 5] −13 [− 19;
− 6]

− 11 [− 16; −
6]

5 [− 3; 13] − 8 [− 20; 4] − 19 [− 32;
− 5]

Simple MICE
imputationd

3 [1; 5] 12 [8; 15] 2 [− 2; 5] −7 [− 11; −
4]

−8 [− 13; − 4] −2 [− 8; 5] − 15 [− 24; −
5]

− 17 [− 26;
− 7]

Complex MICE
imputatione

3 [1; 6] 10 [7; 14] 1 [− 2; 4] − 6 [− 10; −
3]

− 8 [− 13; − 4] − 3 [− 8; 3] −12 [− 18; − 7] − 19 [− 25;
− 13]

Simple MICE imputation
(available)f

4 [1; 6] 13 [10; 16] 0 [− 3; 3] − 6 [− 10; −
2]

−9 [− 14; − 4] 0 [− 5; 5] −12 [− 18; − 7] − 19 [− 24;
− 13]

Complex MICE
imputation (available)f

1 [− 1; 4] 10 [7; 13] − 1 [− 4; 2] −8 [− 11; −
4]

− 10 [− 15; −
5]

− 3 [− 8; 2] −14 [− 19; − 8] − 20 [− 26;
− 15]

The presented scores were obtained with a linear-mixed effects regression, with a random effect on the individual (random intercept model) to estimate the
mean change score in each category of patients (little better/ same/ little worse), and the baseline GH score as a fixed effect (+/− an interaction between baseline
GH score and the anchor). The models including an interaction term are signaled with i

MICE Multivariate Imputation by Chained Equations, GH General Health
aMinimal Clincally Important Difference estimated by the Mean GH-score difference between visits 1 and 5 or 1 and 7
bMinimal Clincally Important Difference estimated by the Mean GH-score difference between visits 1 and 5 or 1 and 7, according to each group of baseline GH
score. Baseline GH scores are classified as low [0,65], medium (65,82] or high (82,100). The mean GH differences correspond to the fixed-effect associated
coefficients of the patients who answered respectively “little better”, “little worse” and “same” at the anchor question. Values in bracket are Confidence Interval at
a 95% level
cMissing scores were imputed by the mean-score, and missing anchors were imputed on the base of a weighted-probability
dMissing scores were imputed using personal mean matching, anchor was imputed using a polytomous regression, both using clinical and demographic variables,
and GH scores
eMissing scores were imputed using personal mean matching, anchor was imputed using a polytomous regression, both using clinical and demographic variables,
and all SF-36 scores
fThe same MICE methods were applied, using only available information
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The choice of method
Distribution-based methods don’t consider the patient’s
feeling and generally are considered as worst compared
to anchor-based methods [5]. Though, they offer some
advantages; notably, SEM, MDC and estimations from
baseline SD can be used to estimate MCID with a single
time of measurement.
We can note in our example an agreement between

techniques of MCID determination (Fig. 4 and Table 2).
Hence, anchor methods for MCID for improvement
stood around 4 and 7 points (except the intersection
method), which corresponded to 0.2 to 1/3 SDb or SDc.
For distribution methods, MDC, SEM and 0.5 SDb gave
the higher MCID values.
As some authors do regarding MCID estimation [14],

we suggest to first use anchor-based method, and to ac-
company it with a distribution-based method to enhance
its accuracy (i.e a process sometimes called “triangula-
tion”). Based on the agreement observed in this dataset,
within distribution-based methods, we think that SEM,
MDC and 0.5 SDb or SDc should be disregarded, in favor
of 0.2 or 1/3 SDb or SDc, since it returns values closer to
those obtained with the most popular anchor-based
methods (mean and ROC-curves [8]). This result is not in
line with the agreement found by Wyrwich et al. [20, 21]
between SEM estimate and anchor-based methods.
Considering ROC-based methods, we note in our data-

set that MCID values for improvement were more pre-
cise but less discriminant for deterioration. Indeed, in
LIGALONGO study, the expected evolution was a global
improvement after the intervention for hemorrhoidal
disease. Thus, patients with an improvement below their
expectation would have been more likely to see them-
selves as unchanged. Hence, there was a thin difference
between the thresholds of unchanged and improved pa-
tients, but the 95% CI was more accurate because there
were a significant number of patients (n = 93 (26.8%)).
Conversely, there was a clear difference between the
thresholds of unchanged and slightly worsened patients,
with a better AUC, but a large 95% CI, since there were
few patients (n = 21 (6%)). Therefore, context (expected

evolution in the sample used as data) is paramount to
consider to correctly interpret MICD estimates.
The appropriate form of the function between change

in score and responses to the GRC is unknown but
could be complex. The now widely available machine
learning techniques such as artificial neural network
could be a potential tool to model this complexity. For
example, those techniques could be used to train a clas-
sifier to predict if someone is a responder or not based
on other available data rather than estimating a numer-
ical MCID value and compared an individual change in
score against this value. Nonetheless, such an approach
would constitute a paradigm shift regarding the issue of
the interpretation of a change in PRO score and would
raise many unanswered questions [40].

Management of missing data
We saw missing data imputation had different impacts,
depending on which method for MCID determination
was applied.
We chose to directly impute missing scores rather

than missing items. Indeed, scores were already imputed
by personal mean score if more than half of its items
were filled (for example, three or more items for the GH
dimension). Then, if scores were still missing, in fact
more than half of its items were filled, and it represented
a too big amount to impute with too few information.
We can note that imputation of missing data by the

mean produced results that were out of step with other
imputation techniques and complete cases. Hence, there
were notable differences in estimated values with inter-
section points on density distributions, and in longitu-
dinal models. These results can reflect the fact
imputation by the mean is not appropriate when missing
data are not MCAR, hence the current recommenda-
tions which advocate the use of multiple imputation
techniques [31, 37]. Nonetheless, as noted above, we can
hypothesize the mechanism at play in this study regard-
ing missing data can, in part, be MNAR. Indeed, it was
observed that patients with a lower disease grade tend to
have missing data on PRO scores and GRC more often.

Fig. 4 Variations of MCID values for improved patients (Missing data imputed by simple MICE).
Note: Red are anchor methods. Blue are distribution-based methods. Missing scores were imputed using personal mean matching, anchor was
imputed using a polytomous regression, both using a demographic nariables, and General Health scores. SDc Standard Deviation of the change
in scores. SDb Standard of teh baseline score. ROC01 Closet-point to rhe left of the reciever Operating curve diagram. Intesect Intersection point
between the distributions of the change om scores between unchanged and improved patient. SEM Standard Error of Measurement. MDC
Minimal Detectable Change
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Therefore, we can hypothesize some patients with a low
disease severity did not come to follow-up visits because
they did not feel the need of a close follow-up. To this
date, even sophisticated imputation techniques such as
MICE are biased when data are MNAR [33]. Thus, even
after MICE imputation, we cannot rule out a slight (be-
cause we only found one relevant association between
missingness and baseline characteristics) bias on MCID
estimates. Therefore, there is a need to try to
hypothesize what is the bias at stake here. If our as-
sumption regarding disease severity is sound, it means
missingness in this study was associated with a favorable
outcome. Thus, we can expect missingness concerned
patients who would have mainly answered having expe-
rienced a strong improvement. Therefore, for
distribution-based anchor, we can hypothesize a slight
underestimation of MCID estimates. For anchor-based
estimates, it is trickier because statistical analyses are
based on the data of subgroups: data from people who
experienced large change are discarded. Thus, it is pos-
sible the aforementioned mechanism did not impact
anchor-based estimates or impact it in the same way
than distribution-based estimated.

Correlation between the GRC and the score difference
The correlation between the HT GRC (“Compared to
one year ago, how would you rate your health in general
now?”) and the GH score difference was just above 0.30,
which was correct, but maybe not optimal. This possibly
explained the low values of AUC (which all were under
0.70). We hypothesized several reasons for this subopti-
mal correlation value.
The formulation of the GRC question influences its

correlation with the score difference. The generic HT
anchor was adapted to the measured concept (GH),
since it verbalized the “health in general”. However, this
GRC was not well-adapted for other concepts like phys-
ical functioning or mental health, which would have re-
quired specific wording to correctly measure it as a
GRC.
The reference date was not clearly stated in the ques-

tion HT, since it asked the patient “Compared to one
year ago, how would you rate your health in general
now?”. At one-year follow-up visit, it was unclear
whether the patient should have compared his state with
the period before or after the operation. Then, the refer-
ence date should be explicit on the GRC question. We
can cite the Thyrqol study as an example (data not
shown), which aimed at evaluating quality of life of pa-
tients, 2 and 6 months after their thyroidectomy. The
GRC question explicitly stated the reference date as “be-
fore the operation”. Then, correlation coefficient be-
tween GH-score and HT GRC was 0.45 at 2 months,
and 0.43 at 6 months visit. Even if it’s difficult to

compare two studies with different populations, it ap-
pears that being precise in the formulation of the date
could result in a better correlation between score differ-
ence and the GRC.

The use of a three measures approach
For improvement, when using appropriate longitudinal
mixed-level modeling to consider the available data from
the three times of measurement, we observed an in-
crease in precision (i.e. narrower CI) of MCID estimates.
This result was plausible as one of the expected interests
to use more than two-times of measurement is to base
estimation on a higher quantity of data, therefore in-
creasing precision. Nonetheless, compared to anchor-
based mean on two-times of measurement only, there
was also a change in the magnitude of MCID estimates.
This variability can be the result of sampling hazard, but
it could also be due to the reference date of the GRC
question which always was “compared to one year ago”
either at visit 5 or 7. Thus, responses to GRC with a dif-
ferent baseliner as reference could have been used by pa-
tients at the different visits, which can have led to bias
in estimation. Therefore, if using data from multiple
times of measurement with appropriate modeling can be
an interesting way to enhance precision, the choice of
the reference date for the GRC question must be dealt
with caution: at each time of measurement: the GRC
question should each time reference the same baseline.
We pointed the great dependence of the MCID on

the baseline score, which is a quite-known
phenomenon [17, 24, 26, 27].

Limits of our study
We note that the mean GH difference in the group who
felt no change was around 1 point and not 0. Although
the 95% CI of this estimate contains zero, this could be
a sign of response-shift [41, 42].
Like the Wyrwich et al. studies [20, 21] which sug-

gested one SEM as an appropriate approximation of
MCID values, our current study only bases its recom-
mendations on the use of sample datasets whose popula-
tion parameter values are unknown. Thus, the
suggestions made here cannot be taken as experimental
proofs of high epistemological values. Determining un-
biased, or at least the Best Linear Unbiased Estimate of
MCID should be approached by an experimental design
with population parameters controlled by the researcher,
such as Monte-Carlo simulation studies.

Conclusion
As a conclusion, through the description of one study,
we highlighted several issues in MCID determination.
Currently, we recommend it should be estimated by an
anchor-based method, accompanied by a distribution-
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based method, which should be 1/3 or 0.2 SD of either
the baseline score or the score difference. To ensure a
good correlation between anchor and the score differ-
ence, one should pay much attention to the formulation
of anchor question and the reference date to which the
patient is referred. Baseline score should be considered,
since the score difference depends on it. In the case of
several times (> 2) of measurement, it could be interest-
ing to integrate all measures into a mixed-effects model.
Finally, missing values, which are very often numerous
in PRO-based studies, cannot be ignored. The choice of
a method of imputation may directly influence the
MCID values. Globally, we recommend using a MICE
procedure for imputation, instead of imputation on the
mean, but the modeling of the imputation procedure
should be approached with great caution. MNAR mech-
anism in PRO longitudinal data can be frequently ex-
pected. Thus, a fair discussion of the potential bias on
MCID estimates due to missingness should be engaged
when appropriate. A high level of proof for the best
MCID estimate is still needed. Monte-Carlo simulation
studies can be an appropriate tool to help getting such a
level of proof. Indeed, this type of experimental design
allows a rigorous estimation of bias of many estimators
against a “true” populational value that is controlled by
the investigator. Moreover, the simulation of multiple
scenarios can help investigating the variability of the
statistical properties of estimators under various condi-
tions (e.g. it can be a way of rigorously investigating the
influence of the correlation between change in score and
responses to the GRC on MCID estimation). Nonethe-
less, to perform such an experimental study, it would re-
quire first to formally define what is MCID as a
statistical parameter with a definition in the population.
It means a conceptual model is needed to describe what
are the components engaged when someone has to an-
swer to a PRO at multiple times of measurement and to
a PGRC at the second time. From this model, a simula-
tion model could be devised to simulate data with a
known “true” MCID value. As part of the MIDIPRES
project, these issues will be further investigated and fu-
ture results of a such a simulation study will help in de-
termining the appropriate way of estimating a MCID.
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