
HAL Id: hal-04037221
https://nantes-universite.hal.science/hal-04037221v1

Submitted on 20 Mar 2023 (v1), last revised 31 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Developing and reusing bioinformatics data analysis
pipelines using scientific workflow systems

Marine Djaffardjy, George Marchment, Clémence Sebe, Raphael Blanchet,
Khalid Bellajhame, Alban Gaignard, Frédéric Lemoine, Sarah Cohen-Boulakia

To cite this version:
Marine Djaffardjy, George Marchment, Clémence Sebe, Raphael Blanchet, Khalid Bellajhame, et al..
Developing and reusing bioinformatics data analysis pipelines using scientific workflow systems. Com-
putational and Structural Biotechnology Journal, 2023, 21, pp.2075-2085. �10.1016/j.csbj.2023.03.003�.
�hal-04037221v1�

https://nantes-universite.hal.science/hal-04037221v1
https://hal.archives-ouvertes.fr

Graphical Abstract

Developing and reusing bioinformatics data analysis pipelines using
scientific workflow systems

Marine Djaffardjy, George Marchment, Clémence Sebe, Raphael Blanchet,
Khalid Bellajhame, Alban Gaignard, Frédéric Lemoine, Sarah Cohen-Boulakia

How scientific workflows help in implementing and reusing
bioinformatics pipelines?

State-of-the-art solutions Assessing reuse in workflows

Combining and analysing datasets in life sciences requires: computing infrastructures,
easy to update pipelines, documented analysis, reproducible analyses & results

2,461
retained

workflows

15,540
processors

Syntactic
similarity?

Owners
contributions?

1,166
owners

Impact of
workflow registries?

35%
of owners contribute to
multiple workflows

Most reused
processors are present in
82 Nextflow and 130
Snakemake workflows

Top-10 most used tools
are present in

78% of processors

Pipeline layer

Software environment layer

Execution layer (HPC clutsters, grid, clouds)

(Meta-)Data layer

…

…

…

…

Highly reused
Nextflow processors

originate from
nf-core registry

Highlights

Developing and reusing bioinformatics data analysis pipelines using
scientific workflow systems

Marine Djaffardjy, George Marchment, Clémence Sebe, Raphael Blanchet,
Khalid Bellajhame, Alban Gaignard, Frédéric Lemoine, Sarah Cohen-Boulakia

• Elicitation of the problems faced when designing large-scale bioinfor-
matics pipelines.

• Review of existing solutions for developing reuseable bioinformatics
pipelines.

• Quantitative and qualitative study on current reuse of bioinformatics
workflow systems.

Developing and reusing bioinformatics data analysis

pipelines using scientific workflow systems

Marine Djaffardjya, George Marchmenta, Clémence Sebea, Raphael
Blanchetb, Khalid Bellajhamec, Alban Gaignardb, Frédéric Lemoined,e,

Sarah Cohen-Boulakiaa

aUniversite Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du
Numérique, Orsay, 91405, France

bNantes Université, CNRS, INSERM, l’institut du thorax, 8 quai
Moncousu, Nantes, F-44000, France

c PSL, Universite Paris-Dauphine, LAMSADE, Place du Maréchal de Lattre de
Tassigny, Paris, 75775, France

dInstitut Pasteur, Université Paris Cité, G5 Evolutionary Genomics of RNA
Viruses, 28, rue du Dr Roux, Paris, 75015, France

eInstitut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris,
France, 28, rue du Dr Roux, Paris, 75015, France

Abstract

Data analysis pipelines are now established as an effective means for spec-
ifying and executing bioinformatics data analysis and experiments. While
scripting languages, particularly Python, R and notebooks, are popular and
sufficient for developing small-scale pipelines that are often intended for a
single user, it is now widely recognized that they are by no means enough to
support the development of large-scale, shareable, maintainable and reusable
pipelines capable of handling large volumes of data and running on high per-
formance computing clusters. This review outlines the key requirements for
building large-scale data pipelines and provides a mapping of existing so-
lutions that fulfill them. We then highlight the benefits of using scientific
workflow systems to get modular, reproducible and reusable bioinformatics
data analysis pipelines. We finally discuss current workflow reuse practices
based on an empirical study we performed on a large collection of workflows.

Keywords: Scientific workflows, bioinformatics, reuse, reproducibility

Preprint submitted to CSBJ March 20, 2023

1. Introduction

The availability of large datasets along with data transformation and anal-
ysis tools, has revolutionized how bioinformaticians conduct computational
experiments [1]. These data analyses are increasingly performed through
pipelines implemented using scripting languages or notebooks [2]. These
pipelines link and intertwine data transformation and analysis tools to con-
vert raw input data into results that allow scientists to gain insights and
draw conclusions about the validity of a hypothesis or known fact.

The above approach, mainly involving custom scripts, has been exten-
sively used for small-scale experiments involving a small number of datasets
and a small number of analysis and transformation tools [3]. For instance, in
the case a single user (bioinformatician) is responsible for the design and the
execution of the pipeline as well as the analysis of its results, she or he has
prior knowledge of the datasets involved and the analysis tools being used.
It is also fair to assume that the pipeline is being run on a single local and
homogeneous computing environment.

However, with the above approach, developing large and complex pipelines
handling massive amounts of data becomes challenging [4, 5], especially when
teams with different expertise and operating in a distributed (and potentially
heterogeneous) computing execution environment are involved. In addition,
it does not facilitate pipeline sharing and reuse [3]. A moderately sized
pipeline can quickly become difficult to understand and maintain, and even
more difficult to reuse by third parties. This has become a major concern
as bioinformaticians (and scientists in general) are expected to share their
resources, including datasets, analysis tools, and also pipelines, in a form
that can be readily understood and reused by peers.

The objective of this review article is threefold.
Firstly, we highlight the barriers that need to be overcome to enable the

development, sharing and reuse of large-scale pipelines.
Secondly, we show that scientific workflows (e.g., [6, 7, 8]), in combi-

nation with other auxiliary technologies, such as tool registries [9], address
some of these barriers. Even though scientific workflow systems are not new,
they have been around for over two decades, and are now mature enough to
be used routinely. The first generation of scientific workflow systems (e.g.,
Taverna [10]) was designed for users with a low level of programming skills
and featured a workbench to compose workflows by graphically dragging and
dropping ”modules” and linking them together. Thus, these systems had lit-

2

tle acceptance among proficient bioinformatics developers. In recent years,
however, there has been an emergence of a new generation of scientific work-
flow systems, notably Nextflow [7] and Snakemake [6]. These script-based
systems offer developers significant control over workflow design, configura-
tion and execution. This second generation of workflow systems has gained
wider acceptance among bioinformaticians as they address many of the chal-
lenges faced by pipeline developers and users.

Thirdly, we focus on reuse, one of the major benefits that can be drawn
from scientific workflows. In particular, we examine the practical impact of
workflow reuse by thoroughly examining a pool of real-world workflows.

Accordingly, the article is structured as follows. We begin by outlining
the challenges that need to be overcome to enable the management of large-
scale pipelines in section 2. We then present elements of solutions that can be
adopted to overcome some of these hurdles, particularly scientific workflows,
in section 3. We report on an empirical analysis that examines the state of
workflow reuse in practice in section 4, before concluding and discussing the
paper in section 5.

2. Difficulties in the development of bioinformatics pipelines

This section outlines why managing large-scale pipelines throughout all
stages of their life cycle, from development to sharing and reuse (see Fig. 1)
is a difficult task.

Pipeline
life cycle

1
Development

2
Testing

3
Deployment
Execution

4
Maintenance

6
Sharing
Reuse

5
Reproducing

Figure 1: Life cycle of a bioinformatics pipeline.

3

To illustrate such difficulties, we use a few real examples encountered dur-
ing the large scale biomedical project “understanding the pathophysiology of
IntraCranial ANeurysm” (ICAN). ICAN aims to better understand and pre-
dict the development and rupture of intracranial aneurysms [11, 12]. For
this study, biologists and physicians have set up a large collection of biolog-
ical samples from a population of 3,000 individuals. This bio-collection has
been used to generate and analyse various types of data, including genomic
sequencing data, cerebral vascular organ neuroimaging data, and clinical
data (like family history and lifestyle). This data is used to create predic-
tive models for assessing the risk of development and rupture of intracra-
nial aneurysms. Integrating and analysing such heterogeneous data requires
specific expertise and a wide variety of software tools, which makes the im-
plementation, execution and sharing among the project stakeholders (and
ultimately the community) a difficult task.

Pipeline development. The first type of problem we can define is related
to the actual development of the pipeline, which usually involves multiple
programming languages and software environments.

In the ICAN project, sequencing data is analyzed with multiple tools
(e.g., BWA [13], GATK[14], Picard Tools [15]), and statistical analyses are
performed using Python and R librairies1 in Jupyter Notebooks [2]. The
identification of the right tools to use is a first barrier to overcome. The
combination of these multiple tools, languages and environments adds a layer
of complexity to the development of the pipeline.

Pipeline Testing. Code testing constitutes the next difficulty. Whether it is
functional unit testing (testing one part of the program in isolation), inte-
gration testing (testing the combination of multiple parts of the program),
or environment testing (testing how the program can be run on various plat-
forms), requires significant effort from the pipeline developer(s) to delineate
the boundaries of a test (which part of a pipeline to test), and to specify the
test cases (selecting example inputs and defining expected outputs).

Deployment. Most pipelines cannot be run locally, on a single server contain-
ing all the necessary data. They usually need to be deployed on a large-scale
High Performance Computing (HPC) infrastructure. This deployment step

1https://github.com/ICAN-aneurysms/RIA-predict

4

https://github.com/ICAN-aneurysms/RIA-predict

can be tedious, time-consuming, and requires a technical expertise beyond
programming (see [16]). Executing a pipeline on a HPC cluster requires set-
ting the computing tasks in the right order, this is called a job submission.
For example, the challenges lie in executing the right commands to submit
jobs on the right waiting queue, with the right amount of CPUs and memory,
task success or failure (e.g., manually check whether the jobs finished suc-
cessfully, and re-submit them if necessary), availability of computing nodes
and deployed workloads (e.g., choosing the right queue depending on the
planned run time or memory requirements).

Maintenance. Maintaining consistency and robustness of the pipeline over
time is crucial. However, given the complexity of the pipelines, a previously
functioning pipeline may experience failure or produce unexpected results
due to one or more of the following causes: changes in hardware environ-
ment, changes in software environment (e.g., tools are no longer available or
have been updated) or changes in datasets (for example, reference genome
sequences are constantly evolving). This may require regular updates of the
pipeline itself.

Reproducing. Ensuring a pipeline can be run over time (maintenance) and
over site (deployment) is directly related to the ability to reproduce its re-
sults. A pipeline that runs successfully at one site may not work at another
site, or may yield unexpected results, due to a different cluster scheduler,
hardware, or software environment.

Reuse. Reusing an analysis pipeline cannot be performed if the pipeline is
not reproducible. In other words, Reproducibility is the basis of cumulative
science: if the pipeline has been designed to be reproducible then there is
hope for it to be more easily shared and reused (in part or in whole) by third
parties.

Three needs should be met for reuse.
First, for pipelines to be shared and reused, they must be easily under-

standable to determine their relevance and how they can be reused in different
analyses. Here both pipeline documentation and pipeline modularity (were
pipelines are not written as linear code/scripts) play a key role.

Second, once developed, pipelines should be made available in registries
that enable developers and curators to document, share with a team or com-
munity, or publish pipelines. Pipeline registries must have the capability to
track a pipeline’s history over time, various versions and modifications of a

5

pipeline may be developed (to adapt to changes in the execution environment
and/or to changes in functional needs).

Third, in addition to sharing pipelines, sharing their constituting ”mod-
ules”, that are called processors, can help developers save valuable time dur-
ing development. These processors should be documented with dedicated
metadata and annotations in order to be easily found.

3. Landscape of available solutions

In this section, we present elements of solutions to the problems described
in the previous section. We will first focus on generic solutions for manag-
ing tools, environments, and code. These elements of solutions are generic,
meaning they do not rely on the specific language or technology used to
develop the pipelines: pipelines can be developed as scripts, notebooks, or
scientific workflows.

We then describe a specific solution to manage pipelines, namely using
scientific workflow systems, and show how this solves several of the major
problems encountered.

3.1. Generic elements of solutions

Available solutions can be used to support different facets of pipeline
management. Figure 2 summarizes generic solutions to deal with the multiple
layers of pipeline management: data, pipeline, environment, and execution
layers.

3.1.1. Supporting Pipeline Development

Identifying the right tools to use. As mentioned earlier, bioinformatics pipelines
are rarely made of purely new pieces of code. Rather, they make calls to ex-
isting tools. In this regard, bio.tools [17] provides an element of solution
by offering a large repository of bioinformatics tools. As of January 2023,
bio.tools provides 27,538 entries. bio.tools is the successor of Biocatalogue
[18], the pioneer tool repository.

Developing pipelines. The “Pipeline layer” defined in Figure 2 provides el-
ements of solution for pipeline implementation. They include Notebooks
(e.g., Jupyter) and scientific workflows (e.g., Snakemake, Nextflow). Note-
books are increasingly used as a mean to share and display source code while
interactively providing a visualization of the results [2]. Workflow systems
will be described in section 3.2.

6

Input Data Output Data

Pipeline layer

Data layer

Env 1

- Tools
- Libraries
- OS

Env 2

- Tools
- Libraries
- OS

Env 3

- Tools
- Libraries
- OS

Env 4

- Tools
- Libraries
- OS

Execution layer

Cloud
Cluster Local(Amazon, Google, IFB, etc.)

Singularity

PROV

Environment layer

Collaborative
development

Figure 2: Generic elements of solutions. Analysis can be defined with four layers: Data,
pipeline, software environment, and execution layers. On each layer some elements of
solutions which are widely used nowadays.

On the left hand side of Figure 2, a few examples of software able to
support collaborative development are presented. Bioinformatics developers
use various IDE (integrated development environments) equipped with plu-
gins; they work in collaborative platforms like GitHub or GitLab to share
and review code. In this domain, Git has become the universal reference to
manage code version and collaboration.

3.1.2. Tracing data for testing and reuse

Once a first version of the pipeline has been developed, the testing phase
may start and needs dedicated datasets. The “Data layer” defined in Figure 2
represents the datasets consumed and produced during an execution of a
given bioinformatics pipeline. Representing and tracing such data provenance
in a uniform way is key, both for testing and documenting pipelines which
will allow reuse.

Elements of solutions include the W3C PROV recommendation2 that

2https://www.w3.org/TR/prov-overview/

7

https://www.w3.org/TR/prov-overview/

offers a highly generic model for exchanging provenance data on the Web.
As PROV does not explicitly provide all the concepts necessary for modeling
pipelines or their executions, several PROV-compliant extension languages
co-exist: wfprov3, prov-wf [19] and ProvONE4.

A recent initiative to annotate scientific datasets with lightweight prove-
nance metadata has been introduced, namely, RO-crate5. It benefits from
Schema.org annotations [20], a controlled vocabulary initially proposed to
increase the findability of digital objects on the web.

3.1.3. Ensuring pipelines to stand over time and place

Deployment. The “Execution layer” defined in Figure 2 represents the vari-
ous execution infrastructures, from cloud to cluster or grid. Developers must
ensure their pipelines are able to run in such various configurations. For
example, in HPC cluster environments, different schedulers may be available
(e.g., SLURM [21], PBS [22], LSF or SGE). Even if they solve some diffi-
culties (job scheduling, parallel execution, queue mananagement, etc.), users
still have to interact with potentially heterogeneous schedulers, to submit
the right jobs in the right order, and to deal with re-submission of failed job
executions.

Many tips and solutions have been suggested to handle pipeline job sub-
missions in these environments (see [16]). However, workflow systems, de-
scribed in section 3.2, currently constitute one of the easiest solution.

Maintenance, reproducibility and reuse. The “Environment layer”, defined
in Figure 2, displays several approaches that have been proposed to describe,
store and share the execution environment of the pipeline and its scientific
context. Capturing this information is key to ensure the pipeline mainte-
nance and thus reproducibility, its ability to continue running over time, and
therefore make it reuseable by third parties.

Three families of solutions co-exist.
First, virtualization technologies such as VMware6, KVM7, VirtualBox8,

3http://purl.org/wf4ever/wfprov
4http://vcvcomputing.com/provone/provone.html
5https://www.researchobject.org/ro-crate
6https://www.vmware.com/
7https://www.linux-kvm.org
8https://www.virtualbox.org/

8

http://purl.org/wf4ever/wfprov
http://vcvcomputing.com/provone/provone.html
https://www.researchobject.org/ro-crate
https://www.vmware.com/
https://www.linux-kvm.org
https://www.virtualbox.org/

and Vagrant9 can be used (and have been widely used in the past) to pack-
age or “freeze” pipeline software environments. As they require storing and
executing the entire runtime environment (including the operating system),
these solutions are particularly expensive.

The second kind of solutions are based on containers and represent re-
markable and lightweight alternatives. They only capture specific depen-
dencies required by applications, and share low-level components provided
by the operating system. The containers are built from recipes, simple text
files describing how they are constructed, and facilitating their composition,
management and sharing. Examples include OpenVZ10, LXC11, and more
widely used in bioinformatics: Docker [23], and Singularity [24].

The third kind of solutions are based on package management systems,
such as Conda12. They facilitate tool and dependency installation, envi-
ronment management and sharing (to some extent), but do not completely
solve the heterogeneity of execution machines and operating systems. They
are also often used to easily create containers (e.g., BioContainers [25, 26]).

These tools are a huge step forward for maintenance, reproducibility and
reuse. However, they are still difficult to integrate in pipelines, which is the
responsibility of the developer. Again, workflows systems are a great help in
orchestrating all these solutions together.

3.2. Scientific workflow systems

Scientific workflow systems [1] have been designed to help bioinformatics
scientists to design and execute workflows at multiple levels [27] throughout
pipelines life cycle. Scientific workflow systems define workflows as a chain
of processors, each performing specific bioinformatics operations by encap-
sulating a tool or a script. These processors are chained together by data
flow: the input of a processor is connected to the output of the previous one,
which determines the order in which they are executed.

Pioneer systems include Taverna [10], Kepler [28] and VisTrails [29] have
been excellent research prototypes, but are no longer maintained. Over the
past decade, three systems - Galaxy [8], Snakemake [6], and Nextflow [30]

9https://www.vagrantup.com/
10https://openvz.org/
11https://linuxcontainers.org/
12http://conda.pydata.org

9

https://www.vagrantup.com/
https://openvz.org/
https://linuxcontainers.org/
http://conda.pydata.org

- have reached a good level of maturity and are now frequently used by
bioinformaticians for managing their data analysis.

The main difference between Galaxy and the other two is the targeted
users. While Galaxy targets end-users without programming skills (workflow
development is made by drag-and-drop actions on predefined steps), Nextflow
and Snakemake target bioinformaticians who are proficient in scripting lan-
guages, making them increasingly popular in a community with growing de-
velopment skills.

We will now review scientific workflow systems, especially Snakemake and
Nextflow, in light of their ability to provide solutions at each stage of the
pipeline life cycle.

3.2.1. Supporting pipelines life cycle with scientific workflows

Scientific workflow systems play a central role in the orchestration of all
the layers described in Figure 2, and act at all stages of pipelines life cycle.

Development. Workflows propose an abstract representation of pipelines, al-
lowing easily mixing multiple programming languages and tools. In workflow
implementations, scripts are encapsulated : each step of the analysis is de-
scribed in a unified form, a processor, in a language specific to the workflow
system. A processor contains a script (e.g., Python, R, Shell) or a call to
a bioinformatics tool (available in the software environment). The encapsu-
lation defines an interface (in the programming point-of-view) as simple as
possible: inputs (data types and parameters), outputs, and executions are
specified in a language and a format recognized by the workflow system.

Pipeline testing. The abstract representation of pipelines provided by work-
flow systems facilitates testing, which can be then performed within a single
development environment. Integration tests and deployment tests are then
performed within workflow systems, still in the same development environ-
ment.

Snakemake proposes a dedicated unit test framework, it is also possi-
ble in Nextflow to implement unit tests via nf-core [31] (described in next
paragraphs).

Deployment. As orchestrators of all the analysis layers (processing, execu-
tion, tools and environment, see section 2 and Figure 2), workflows sched-
ule job execution using workflow structure, monitor job execution and re-

10

submission (success and failure), and manage job submissions on a large
diversity of HPC infrastructures with almost no effort from the developer.

More precisely, workflow systems allow the underlying execution machines
(local, clustered, cloud, etc.) to be completely decoupled from the work-
flow implementation, by separating the workflow logic from its configuration
(which machine and scheduler it runs on). As for the optimization of execu-
tion, workflow systems add a layer of task scheduling on top of the operating
system that executes the task and the HPC scheduler (e.g., SLURM), there-
fore allowing to fully leverage the parallel nature of the workflow to execute
the tasks in the right order and distribute them on all the available com-
puting resources. Workflow systems supporting distributed scheduling have
been discussed in detail in [32].

Maintenance and Reproducibility. Workflow systems make use of containers
(Docker/Singularity) or environments (Conda). In doing so, they decouple
the implementation of each step from its environment configuration (which
determines the container it runs in). They are able to manage both the
software environment (via Docker, Singularity, Conda) and the execution
environment. Maintaining and updating the software and execution environ-
ments used by a workflow, thus making it reproducible, becomes simpler as
a result.

Sharing/Reuse. To increase their reusability, workflows can be composed of
independent processors that can be reused and chained to form new work-
flows. With encapsulation and modularity, sub-workflows can be created,
allowing designers to partially hide workflow complexity and facilitate the
reuse of its individual units.

For example, Snakemake proposes several levels of encapsulation and
modularity: ”wrappers” encapsulate steps, ”includes” include an external
workflow in the current one, and ”modules” define external workflows. Since
the transition to the second version of its language (DSL2), Nextflow also
offers increased encapsulation and modularity. In particular, DSL2 defines
”modules” and ”sub-workflows” that allow individual processes (i.e., steps)
and sub-workflows to be used across several workflows.

A second element of solution for sharing and reusing workflows is also
facilitated by workflow repositories. A few of them have been developed in the
past, such as myExperiment [33] (pioneer system), CrowdLabs [34] or SHIWA
[35] to name a few. These repositories are no longer maintained as they

11

were associated to Taverna, Kepler and VisTrails systems. Currently active
repositories include the Galaxy repository [36] and WorkflowHub [37] (the
successor of myExperiment). Other initiatives propose databases of curated
workflows, such as nf-core [31] (42 workflows) and sequana [38] (11 workflows)
for Nextflow and Snakemake respectively. However, GitHub remains the
most important source of workflows, with several thousands of bioinformatics
workflows available to users. We shall get back to this point in the next
section.

3.2.2. Workflow example from the ICAN project

The ICAN project is a very good illustration of the needs met in large-
scale multidisciplinary health projects. In particular in such projects, due to
legal constraints regarding the protection of personal data, it is not possible to
relocate data from one partner’s site to another. Pipelines must be deployed
at the site of the data-holding partner. It is thus crucial to follow good
practices during the entire pipeline life cycle. This facilitates the pipeline
sharing among partners, ensuring the pipeline runs properly and delivers the
expected results, even in HPC environments differing from the development
and testing environment. Importantly, the use of standards over proprietary
languages for specifying the pipeline and its configuration, as well as for
specifying software and execution environments is crucial to achieve a good
level of reproducibility.

Figure 3: Schematic representation of BAM QC, the workflow performing sample quality
control. It is made of 7 steps: i) InsertCompute and StatsInserts estimate the length of the
sequence fragments, ii) SamRun and catStats compute several statistics about mapping,
and iii) somalier extract and somalier relate compute relatedeness between samples.

12

As highlighted previously, scientific workflow systems provide concrete
answers to such needs. We introduce one example of a workflow developed
in the context of the ICAN project which performs data analysis (quality con-
trol). Our workflow has been developed in Snakemake, it is called BAM QC 13

and is depicted in Figure 3. Such a workflow assesses the quality of raw se-
quencing data by computing several useful metrics (e.g. sequence length,
level of contamination or percentage of sequences mapped onto the reference
genome) on all the samples. The results of this workflow are used to decide
whether to accept or reject the samples.

rule InsertCompute:

input:
cram = "sample1.cram","sample2.cram"

output:
pdf = temp("{sample}.insert_size_histogram.pdf"),
txt = temp("{sample}.insert_size_metrics.txt"),

params:
reference = "reference_genome.fasta",

threads: 1

conda: "insert_env.yaml"

shell:
"""

SAMPLE=’samtools samples {input.cram}|cut -f1’

picard CollectInsertSizeMetrics -I {input.cram} -O

${{SAMPLE}}.insert_size_metrics.txt -H

${{SAMPLE}}.insert_size_histogram.pdf -M 0.5 -R {params.reference}
"""

Figure 4: Example of a Snakemake rule that estimates the length of sequenced fragments.
It specifies its inputs (two cram files), its outputs (one pdf and one txt file), its parameters
(one reference fasta file), its environment (Conda, defined in a yaml file alongside), the
number of threads that it will use, and the script to execute (involving the call to two
bioinformatics tools namely Samtools and Picard).

Each step of the workflow is implemented as a rule in Snakemake (see Fig-
ure 4), a rule specifies i) its inputs and outputs, ii) the script to execute, and
iii) its configuration (software environment and execution machines to use),
usually documented in an independent file. While this workflow is rather
simple, it would have been more difficult to satisfy all the requirements de-
scribed in section 2 (in terms of reuse, maintenance, etc.) without a scientific
workflow system.

By using a workflow system, the pipeline code (which implements the

13Code available at https://github.com/r-blanchet/BAM_QC

13

https://github.com/r-blanchet/BAM_QC

logic of the experiment or data analysis) is decoupled from the input datasets
and the configuration setup. This allows the same workflow (code) to be
portable and executable using different input datasets and across different
environments/platforms.

4. Workflow systems and bioinformatics pipelines reuse

In this section, we present the results of a comprehensive study we con-
ducted on the reuse of scientific workflows. Our aim is to show how these
workflow systems are being used in practice by the bioinformatics community
and gain a better understanding of reuse practices. While previous studies
(e.g., [39]) focused on Taverna [10] and Galaxy [8] workflow systems, our
study is the first to consider the increasingly popular Snakemake [6] and
Nextflow [30] workflow systems.

To do so, we studied the reuse of Nextflow and Snakemake workflows
available on GitHub.

After presenting how we have collected workflows, we will introduce our
results through three main points. First, workflow reuse through the perspec-
tive of repository owners and contributors is studied. Second, reuse practices
are examined by comparing workflow code (copy paste, forks, etc.). Third,
reuse of individual workflow steps between users is analyzed. While these
aspects are mainly quantitative, we will then shift to a qualitative perspec-
tive about reuse by examining the bioinformatics operations executed in the
collected workflows.

The source code for the data collection and the reuse analyses is avail-
able on three GitHub repositories: extraction of information from Snakemake
workflows14, extraction of information from Nextflow workflows15, and exper-
iments and Figures of the papers 16.

4.1. Collection of workflows

Figure 5 illustrates our approach for extracting and collecting information
about the workflows used in our study. We implemented and executed the

14https://github.com/mdjaffardjy/Snakemake_workflow_analysis#snakemake_

workflow_analysis/blob/main/README.md
15https://github.com/mdjaffardjy/AnalyseDonneesNextflow#

analysedonneesnextflow/blob/main/README.md
16https://github.com/mdjaffardjy/Reuse_in_processes#reuse_in_processes/

blob/main/README.md

14

https://github.com/mdjaffardjy/Snakemake_workflow_analysis#snakemake_workflow_analysis/blob/main/README.md
https://github.com/mdjaffardjy/Snakemake_workflow_analysis#snakemake_workflow_analysis/blob/main/README.md
https://github.com/mdjaffardjy/AnalyseDonneesNextflow#analysedonneesnextflow/blob/main/README.md
https://github.com/mdjaffardjy/AnalyseDonneesNextflow#analysedonneesnextflow/blob/main/README.md
https://github.com/mdjaffardjy/Reuse_in_processes#reuse_in_processes/blob/main/README.md
https://github.com/mdjaffardjy/Reuse_in_processes#reuse_in_processes/blob/main/README.md

three software components (CrawlWF, ParsWF, and WF2BT) to search, ex-
tract, parse and annotate Snakemake and Nextflow workflows from GitHub.

Figure 5: Workflow extraction and annotation process. It is made of three main soft-
ware components: i) CrawlWF searches and extracts workflows from GitHub, ii) ParsWF
parses the workflows to extract meaningful informations, and iii) WF2BT matches work-
flow processors to bio.tools annotations.

After workflow collection and extraction from GitHub, CrawlWF harvests
GitHub metadata to associate each workflow with its owner (who owns the
repository) and contributors (who contributed to the repository). ParsWF
then examines the content of the repository, and retains only the well-formed
workflow files by syntactically checking Nextflow and Snakemake specifica-
tions. It then extracts information about the workflow steps (workflow pro-
cessors). Finally, WF2BT annotates workflow steps with metadata retrieved
from the bio.tools [9] registry. WF2BT proceeds in three steps: (i) extracts
the shell script from the processor implementation; (ii) extracts the com-
mand names from the shell script to constitute a set of candidate tools; (iii)
matches the candidate tools to the list of tool names in bio.tools. Candidate
tools that could not be matched to the bio.tools registry (no match with any
bio.tool name) were compared to biocontainers[25] metadata, as each con-
tainer is associated with bio.tools identifiers and comes with a list of shell
commands it provides. That way, WF2BT lists the set of tools used by each
processor and which have a bio.tools entry.

15

Date

Figure 6: Evolution of the monthly and cumulative number of Nextflow and Snakemake
workflows available on GitHub since 2014.

Using the above approach, as of May 2022, CrawlWF was able to extract
1,790 Nextflow and 3,866 Snakemake workflows. Of these, ParsWF retained
1,675 well-formed Nextflow and 2,946 well-formed Snakemake workflows
(Figure 6 provides the evolution of the number of Snakemake and Nextflow
workflows available on GitHub in the past eight years). From these,
WF2BT retained only 1,186 Nextflow and 1,257 Snakemake matched-tools
workflows (containing at least one processor associated with at least one
tool in bio.tools), which represents a total of 2,443 retained workflows. Such
workflows contain respectively 9,652 and 5,888 matched-tools processors
(individual processors for which at least one tool has a bio.tools entry).

Matched-tools processors and matched-tools workflows are the
objects of interest in the rest of the study.

4.2. Workflow owners and contributors

We first focus on how the workflows are distributed among reposi-
tory/workflows owners and contributors. To do so, we have extracted this
information from GitHub using CrawlWF. Each workflow is associated to

16

exactly one owner (the owner of the GitHub repository), and potentially
several contributors (the GitHub users that have contributed at least once
to the repository).

We found that the 1,186 Nextflow and 1,257 Snakemake matched-tools
workflows were owned by 650 and 535 owners respectively. This represents
a total of 1,166 workflow owners (19 owners published both Nextflow and
Snakemake workflows).

Considering the ten owners who have provided the largest number of
workflows in Nextflow and Snakemake (top ten owners), they have actually
published 15% of all Nextflow and of all Snakemake workflows. We are thus
not in a situation where workflows are systematically uploaded by a restricted
number of owners. Interestingly, 31% (Snakemake) vs. 42% (Nextflow) au-
thors have published at least two workflows. There exists a set of owners who
provide several workflows to the community, and overall, workflow authors
in general produce several workflows and are willing to share their workflows.

While these results have been obtained on workflow owners, similar trends
are observed on workflow contributors (in Nextflow, 37% of contributors
have contributed to two workflows or more, and this figure reaches 44% for
Snakemake).

4.3. Identifying reused workflows

The question of workflow reuse is now explored, considering complete
(whole workflow) rather than partial (workflow parts) reuse.

To do so, two complementary metrics are used. First, we looked for
exact matches among texts of the workflow codes to detect copy and paste
between workflows. Second, we examined GitHub’s project forking to identify
workflow reuse. Forking allows a Git user to explicitly create a new project
starting from the code of a parent project, by copying its full content and
history. For each workflow project, we have access to its number of forks, and
so to the number of times it has been taken as a source of a new workflow.

As a result, we did not find any pair of workflows with identical source
code. Then looking at the number of forks provided more interesting insights.
Table 1 provides the number of Nextflow and Snakemake workflows forked
more than n times (n = 3, 5, 10, 50). As a reminder, the total number of
workflows is 1, 186 and 1, 257, respectively in Nextflow and Snakemake. This
means, for instance, that there are 45 Nextflow and 57 Snakemake workflows
which have been forked more than 10 times.

17

Threshold 3 5 10 50
Nextflow 13.7% 7.8% 3.8% 0.8%
Snakemake 14.5% 7.9% 4.6% 0.2%

Table 1: Percentage of Nextflow and Snakemake workflows that have been forked more
than 3, 5, 10 and 50 times.

A close look at workflow forking revealed two predominant practices: (i)
a workflow is forked, the copy then undergoes modifications to re-purpose
the workflow to a new context of use, (ii) a popular workflow is forked to
create a stable, unchanged snapshot for its current users, allowing the original
workflow to continue to evolve to meet new users’ needs. In both cases, the
original and forked workflows are deemed not to be identical. In view of the
above, it is assumed in this paper that, while workflow reuse was identified
via the presence of forking, the workflows were modified sufficiently to not
be considered identical by the other metric.

4.4. Identifying reused processors

Another objective of this study is to identify fine-grain reuse, notably by
detecting copy-paste followed by slight modifications of processors by users.
Detecting such similar processors can be performed using plagiarism tools [40]
or following the methods also used in other studies [41, 42]. Plagiarism tools
are more suited to longer code than processor code, we thus chose to follow
the same direction as previous reuse studies [40] by using the Levenshtein’s
distance (as implemented in jellyfish 17) classically normalized by the size
of the processor. As a result the normalized distance lies between 0 (no
similarity) and 1 (identical codes).

In order to identify reuse (as copy-paste and slight changes), we thus
deemed two processors similar if their Levenshtein’s similarity score was
higher than 0.9. This threshold has been chosen based on an inspection
of the similar processors obtained considering four values of threshold (0.80,
0.85, 0.90 and 0.95). As a result, 0.90 appeared to be the best value to
account for the action of copy-pasting followed by slight changes. We then
formed ”groups” of processor occurrences using this threshold. Each
group represents a unique processor gathering all the highly similar pro-
cessor occurrences.

17https://GitHub.com/jamesturk/jellyfish

18

https://GitHub.com/jamesturk/jellyfish

Comparative processor reuse study between Nextflow and Snakemake.
Barplots in Figure 7 represent the distribution of the number of workflows a
processor is reused in (reuse across workflows) in Nextflow and Snakemake.
As Nextflow and Snakemake have approximately the same amount of work-
flows, we do not normalize the quantity of workflows.

Figure 7: Distribution of processors reuse across workflows in Nextflow and Snakemake

The barplot of Figure 7 shows that the reuse profile is similar between
Nextflow and Snakemake. Interestingly, the most reused processors are more
frequently reused in Nextflow than in Snakemake. Looking at the ”top-x pro-
cessors” (the x processors that are found in the most workflows), Nextflow
processors are more reused across workflows: the top-25 processors are reused
in 3.34% (resp. 1.85%) of Nextflow (resp. Snakemake) processors; the top-30
processors are reused in 2.42% of Nextflow processors and 0.93% of Snake-
make processors.

Comparative Nextflow processor reuse study: role of nf-core. nf-core [31] be-
ing a well-known curated repository of Nextflow workflows, the next experi-
ment aims to investigate whether nf-core has an impact on reuse of processors
in Nextflow workflows.

19

Figure 8: Distribution of processors reuse across non nf-core workflows. Both nf-core and
non nf-core processors are considered.

In this experiment

• an nf-core workflow is a workflow whose owner is nf-core

• a non-nf-core workflow has an owner different from nf-core,

• an nf-core processor is a processor that is used in at least one nf-core
workflow,

• a non-nf-core processor is a processor which is never used in an nf-core
workflow.

Considering only non-nf-core workflows, the question is: is there a differ-
ence between nf-core processors reuse and non-nf-core processors reuse?

Figure 8 represents the distribution of nf-core processor reuse (top) ver-
sus the distribution non-nf-core processors reused (bottom) in non-nf-core
workflows. It can be observed that nf-core processors reuse is slightly higher
than the reuse of non-nf-core processors.

20

4.5. Identifying reused tools

We now focus on identifying the kind of operations users implemented in
their workflows using the the bioinformatics tools used as a proxy. In order
to identify reuse of tools, we count the number of times each tool is used
considering all workflow processors.

When studying the tools used in processors, we found that some of them
were widely used, as much as 2,841 times, indicating that many users per-
formed very similar tasks.

When looking at the list of the most used tools (top tools) for Nextflow
and Snakemake, we notice that 9 out of 10 top tools are common between
Nextflow and Snakemake. In the following, we will focus on the 14 tools
which are common between the top 20 tools of Nextflow and Snakemake.
Such tools are presented in Table 2.

Tool # NF # SM Category
Samtools 2,841 2,045 GT
BEDTools [43] 384 603 GT
BCFtools [44] 929 360 GT
BWA 412 356 MAP
GATK 1067 269 GT
FastQC [45] 770 236 QC
Bowtie [46] 243 177 MAP
STAR [47] 234 152 MAP
MultiQC [48] 707 137 QC
Minimap2 [49] 149 137 MAP
Picard 269 137 GT
seqtk 96 94 GT
Cutadapt [50] 80 81 GT
QIIME [51] 207 90 DST

Table 2: 14 tools in common between the top 20 Nextflow tools and the top 20 Snakemake
tools. # NF: Number of Nextflow processors in which they appear, # SM: Number of
Snakemake processors in which they appear. Category: (i) genomic toolkits (GT), (ii)
sequence mappers (MAP), (iii) quality control (QC) tools, and (iv) domain-specific tools
(DST).

While some tools are used for generic bioinformatics data processing (e.g.
Samtools), a number of them are domain-specific tools performing specific
bioinformatic tasks and reflecting trends of tool usage in bioinformatics work-
flows (e.g. QIIME for microbiome analysis). Not surprisingly, toolkits, map-
pers and quality control tools are widely used, as they are involved in many

21

workflows (even several times in some workflows) for different types of anal-
ysis: BWA and FastQC are used prior to most sequence data analyses, and
Samtools is used for multiple tasks (e.g., converting between mapping for-
mats, filtering reads) involved in different kinds of analyses (e.g., RNA-Seq,
SNP calling).

Generally, we find that (i) a few tools are widely re-used, and (ii) widely
used tools depend little on the workflow system used, as the top used tools
are almost the same in Nextflow and Snakemake.

The next section discusses the paper and in particular the results obtained
in this study of reuse.

5. Discussion and perspectives

An increasing number of papers highlight the benefits of using scientific
workflow systems to develop complex pipelines instead of considering only
(python, R or bash) scripts. In [52], authors emphasize how Nextflow, Snake-
make and Galaxy are helpful solutions to design, execute and share large-scale
multi-omics pipelines. In [1], authors focus on the ability of workflow sys-
tems to design reproducible experiments. Good practices papers have also
emerged: [53] provides guidelines to develop scientific workflows in the con-
text of high-throughput sequencing data analysis; [54] guides developers of
research software in developing computational tools fully utilized in workflow
management systems.

The originality of the present paper is to consider all the stages of the
bioinformatics pipeline life cycle and for each stage both elicit the problems
encountered and provide an overview of a series of solutions. More precisely,
we have first presented generic elements of solutions, that can be used in
the development of any kind of pipeline. We have then focused on scientific
workflow systems and especially on the new generation of workflow systems
- Snakemake and Nextflow - that provide significant technical advancements:
native support of containers help capturing the execution environment, mak-
ing pipelines more easily reproducible thus easier to share and re-execute.
Such workflow management systems also help integrating all components of
a pipeline, such as tools, scripts and bash commands in a seamless way. Fur-
thermore, the modularity of workflow languages makes it easier to isolate
single steps, not only making the pipelines easier for others to understand
but also facilitating reuse of the workflow steps.

22

Another major contribution of this paper is a quantitative and qualita-
tive study of reuse of in-use Snakemake and Nextflow workflows. Our study
reveals that there is already effective reuse and provides three main conclu-
sions. First, between a third and half of the workflow owners have imple-
mented more than one workflow. Second, we found evidence of reuse in the
source code of processors. Third, we have highlighted a set of tools that are
regularly used among pipelines implemented as workflows. Previous reuse
studies were performed ten years ago on the earliest systems. In particular,
[39] considered a set of 898 workflows from the Taverna system. The con-
clusions of [39] differ from ours. Regarding authorship, we showed that the
top 10 workflow owners published 15% of the workflows (compared to 62%
previously), which indicates that workflow system usage is no longer limited
to a restricted community of experts, but to a growing range of scientists. As
a consequence, authors are now more willing to share and reuse workflows
with each other. Our study finally reveals that the existence of dedicated
curated repositories such as nf-core helps to promote reuse practices.

For an even broader adoption of workflow systems, the main perspectives
are to provide ways to discover, retrieve and compare workflows. This point
has been considered in the previous generation of workflow systems [41] and
is still pointed out by editorials [55], very recent community papers [56] and
review papers [3]. Earlier approaches based on the Taverna workflow systems
(finding workflows [57], [42], indexing workflows [58], recommending work-
flows [59, 33, 60]) are unfortunately not well adapted to the new generation
of systems and repositories where workflows are more heterogeneous in terms
of specification and widely spread on the Web. Technical and algorithmic
challenges remain to deal with the distributed and continuously growing and
evolving nature of (git based) workflow repositories[55, 56].

Last but not least, a key aspect to achieve in the following years for
a wider adoption of workflows by users and for an increase of the work-
flow reuse practices is directly related to the ability to identify high-quality,
namely, FAIR workflows. The ’FAIR Guiding Principles for scientific data
management and stewardship’ [61] provides guidelines to improve the Find-
ability, Accessibility, Interoperability, and Reuse of digital assets. Applying
FAIR principles to scientific workflows [62, 63] is particularly important as
it includes defining metrics e.g. to assess the ability of a workflow to be
reproduced or reused, thus providing key quality information to workflow
(re)users.

23

6. Declaration of interest

Declaration of interest: None.

References

[1] S. Cohen-Boulakia, K. Belhajjame, O. Collin, J. Chopard, C. Froide-
vaux, A. Gaignard, K. Hinsen, P. Larmande, Y. Le Bras, F. Lemoine,
F. Mareuil, H. Ménager, C. Pradal, C. Blanchet, Scientific workflows
for computational reproducibility in the life sciences: Status, challenges
and opportunities, Fut Gen Comput Systems 75 (2017) 284–298.

[2] A. Rule, A. Birmingham, C. Zuniga, I. Altintas, S.-C. Huang, R. Knight,
N. Moshiri, M. H. Nguyen, S. B. Rosenthal, F. Pérez, et al., Ten simple
rules for writing and sharing computational analyses in jupyter note-
books (2019).

[3] L. Wratten, A. Wilm, J. Göke, Reproducible, scalable, and shareable
analysis pipelines with bioinformatics workflow managers, Nature meth-
ods 18 (10) (2021) 1161–1168.

[4] M. Van Vliet, Seven quick tips for analysis scripts in neuroimaging,
PLoS computational biology 16 (3) (2020) e1007358.

[5] O. Spjuth, E. Bongcam-Rudloff, G. C. Hernández, L. Forer, M. Gio-
vacchini, R. V. Guimera, A. Kallio, E. Korpelainen, M. M. Kańdu la,
M. Krachunov, et al., Experiences with workflows for automating data-
intensive bioinformatics, Biology direct 10 (1) (2015) 1–12.

[6] J. Köster, S. Rahmann, Snakemake—a scalable bioinformatics workflow
engine, Bioinformatics 28 (19) (2012) 2520–2522.

[7] J. P. Kurs, M. Simi, F. Campagne, Nextflowworkbench: Reproducible
and reusable workflows for beginners and experts, bioRxiv (2016). doi:
10.1101/041236.

[8] E. Afgan, A. Nekrutenko, B. A. Grüning, D. Blankenberg, J. Goecks,
M. C. Schatz, A. E. Ostrovsky, A. Mahmoud, A. J. Lonie, A. Syme,
A. Fouilloux, A. Bretaudeau, A. Nekrutenko, A. Kumar, A. C. Eschen-
lauer, A. D. DeSanto, A. Guerler, B. Serrano-Solano, B. Batut, B. A.
Grüning, B. W. Langhorst, B. Carr, B. A. Raubenolt, C. J. Hyde, C. J.

24

https://doi.org/10.1101/041236
https://doi.org/10.1101/041236

Bromhead, C. B. Barnett, C. Royaux, C. Gallardo, D. Blankenberg,
D. J. Fornika, D. Baker, D. Bouvier, D. Clements, D. A. de Lima Morais,
D. L. Tabernero, D. Lariviere, E. Nasr, E. Afgan, F. Zambelli, F. Heyl,
F. Psomopoulos, F. Coppens, G. R. Price, G. Cuccuru, G. L. Corguillé,
G. V. Kuster, G. G. Akbulut, H. Rasche, H.-R. Hotz, I. Eguinoa,
I. Makunin, I. J. Ranawaka, J. P. Taylor, J. Joshi, J. Hillman-Jackson,
J. Goecks, J. M. Chilton, K. Kamali, K. Suderman, K. Poterlowicz,
L. B. Yvan, L. Lopez-Delisle, L. Sargent, M. E. Bassetti, M. A. Tan-
garo, M. van den Beek, M. Čech, M. Bernt, M. Fahrner, M. Tekman,
M. C. Föll, M. C. Schatz, M. R. Crusoe, M. Roncoroni, N. Kucher,
N. Coraor, N. Stoler, N. Rhodes, N. Soranzo, N. Pinter, N. A. Goonasek-
era, P. A. Moreno, P. Videm, P. Melanie, P. Mandreoli, P. D. Jagtap,
Q. Gu, R. J. M. Weber, R. Lazarus, R. H. P. Vorderman, S. Hilte-
mann, S. Golitsynskiy, S. Garg, S. A. Bray, S. L. Gladman, S. Leo,
S. P. Mehta, T. J. Griffin, V. Jalili, V. Yves, V. Wen, V. K. Nagam-
palli, W. A. Bacon, W. de Koning, W. Maier, P. J. Briggs, The galaxy
platform for accessible, reproducible and collaborative biomedical analy-
ses: 2022 update, Nucleic Acids Research 50 (W1) (2022) W345–W351.
doi:10.1093/nar/gkac247.
URL https://doi.org/10.1093/nar/gkac247

[9] J. Ison, H. Ienasescu, P. Chmura, E. Rydza, H. Menager, M. Kalaš,
V. Schwammle, B. Gruning, N. Beard, R. Lopez, S. Duvaud,
H. Stockinger, B. Persson, R. S. Vařekova, T. Raček, J. Vondrašek,
H. Peterson, A. Salumets, I. Jonassen, R. Hooft, T. Nyronen, A. Valen-
cia, S. Capella, J. Gelpi, F. Zambelli, B. Savakis, B. Leskošek, K. Ra-
packi, C. Blanchet, R. Jimenez, A. Oliveira, G. Vriend, O. Collin, J. Van
Helden, P. Løngreen, S. Brunak, The bio.tools registry of software tools
and data resources for the life sciences, Genome Biology 20 (1) (2019)
1–4. doi:10.1186/s13059-019-1772-6.

[10] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al.,
The taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud, Nucleic acids research
(2013) gkt328.

[11] R. Bourcier, S. L. Scouarnec, S. Bonnaud, M. Karakachoff,
E. Bourcereau, S. Heurtebise-Chrétien, C. Menguy, C. Dina, F. Simonet,

25

https://doi.org/10.1093/nar/gkac247
https://doi.org/10.1093/nar/gkac247
https://doi.org/10.1093/nar/gkac247
https://doi.org/10.1093/nar/gkac247
https://doi.org/10.1093/nar/gkac247
https://doi.org/10.1186/s13059-019-1772-6

A. Moles, C. Lenoble, P. Lindenbaum, S. Chatel, B. Isidor, E. Génin,
J.-F. Deleuze, J.-J. Schott, H. L. Marec, G. Loirand, H. Desal, R. Re-
don, Rare coding variants in angptl6 are associated with familial forms
of intracranial aneurysm., American journal of human genetics 102 1
(2018) 133–141.

[12] O. Rousseau, M. Karakachoff, A. Gaignard, L. Bellanger, P. Bijlenga,
P. Constant Dit Beaufils, V. L’Allinec, O. Levrier, P. Aguettaz, J.-P.
Desilles, C. Michelozzi, G. Marnat, A.-C. Vion, G. Loirand, H. De-
sal, R. Redon, P.-A. Gourraud, R. Bourcier, Location of intracranial
aneurysms is the main factor associated with rupture in the ican popu-
lation, Journal of Neurology, Neurosurgery & Psychiatry 92 (2) (2021)
122–128. doi:10.1136/jnnp-2020-324371.

[13] H. Li, R. Durbin, Fast and accurate short read alignment with burrows–
wheeler transform, bioinformatics 25 (14) (2009) 1754–1760.

[14] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, et al.,
The genome analysis toolkit: a mapreduce framework for analyzing
next-generation dna sequencing data, Genome research 20 (9) (2010)
1297–1303.

[15] Broad Institute, Picard tools, http://broadinstitute.github.io/

picard/ ((Accessed: 2022/10/24; version 2.27.4)).

[16] J. J. Alnasir, Fifteen quick tips for success with hpc, ie, responsibly
bashing that linux cluster, PLOS Computational Biology 17 (8) (2021)
e1009207.

[17] J. Ison, K. Rapacki, H. Ménager, M. Kalaš, E. Rydza, P. Chmura, C. An-
thon, N. Beard, K. Berka, D. Bolser, et al., Tools and data services reg-
istry: a community effort to document bioinformatics resources, Nucleic
acids research 44 (D1) (2016) D38–D47.

[18] J. Bhagat, F. Tanoh, E. Nzuobontane, T. Laurent, J. Orlowski, M. Roos,
K. Wolstencroft, S. Aleksejevs, R. Stevens, S. Pettifer, et al., Biocata-
logue: a universal catalogue of web services for the life sciences, Nucleic
acids research (2010) gkq394.

26

https://doi.org/10.1136/jnnp-2020-324371
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/

[19] F. Costa, V. Silva, D. de Oliveira, K. A. C. S. Ocaña, E. S. Ogasawara,
J. Dias, M. Mattoso, Capturing and querying workflow runtime prove-
nance with PROV: a practical approach, in: Joint 2013 EDBT/ICDT
Conferences, EDBT/ICDT ’13, Genoa, Italy, March 22, 2013, Workshop
Proceedings, 2013, pp. 282–289.

[20] R. V. Guha, D. Brickley, S. Macbeth, Schema. org: evolution of struc-
tured data on the web, Communications of the ACM 59 (2) (2016)
44–51.

[21] M. A. Jette, A. B. Yoo, M. Grondona, Slurm: Simple linux utility for
resource management, in: In Lecture Notes in Computer Science: Pro-
ceedings of Job Scheduling Strategies for Parallel Processing (JSSPP)
2003, Springer-Verlag, 2002, pp. 44–60.

[22] H. Feng, V. Misra, D. Rubenstein, Pbs: a unified priority-based sched-
uler, in: Proceedings of the 2007 ACM SIGMETRICS international con-
ference on Measurement and modeling of computer systems, 2007, pp.
203–214.

[23] C. Boettiger, An introduction to docker for reproducible research, ACM
SIGOPS Operating Systems Review 49 (1) (2015) 71–79.

[24] G. M. Kurtzer, V. Sochat, M. W. Bauer, Singularity: Scientific contain-
ers for mobility of compute, PloS one 12 (5) (2017) e0177459.

[25] F. da Veiga Leprevost, B. A. Grüning, S. Alves Aflitos, H. L. Röst,
J. Uszkoreit, H. Barsnes, M. Vaudel, P. Moreno, L. Gatto, J. Weber,
et al., Biocontainers: an open-source and community-driven framework
for software standardization, Bioinformatics 33 (16) (2017) 2580–2582.

[26] B. Grüning, R. Dale, A. Sjödin, B. A. Chapman, J. Rowe, C. H.
Tomkins-Tinch, R. Valieris, J. Köster, Bioconda: sustainable and com-
prehensive software distribution for the life sciences, Nature methods
15 (7) (2018) 475–476.

[27] C. Pradal, S. Artzet, J. Chopard, D. Dupuis, C. Fournier, M. Mielewczik,
V. Nègre, P. Neveu, D. Parigot, P. Valduriez, S. C. Boulakia, In-
fraphenogrid: A scientific workflow infrastructure for plant phenomics
on the grid, Future Generation Comp. Syst. 67 (2017) 341–353.

27

[28] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, Y. Zhao, Scientific workflow management and the
kepler system, Concurrency and Computation: Practice and Experience
18 (10) (2006) 1039–1065.

[29] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, H. T.
Vo, Vistrails: visualization meets data management, in: S. Chaudhuri,
V. Hristidis, N. Polyzotis (Eds.), Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Chicago, Illinois, USA,
June 27-29, 2006, ACM, 2006, pp. 745–747.

[30] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
C. Notredame, Nextflow enables reproducible computational workflows,
Nature biotechnology 35 (4) (2017) 316.

[31] P. A. Ewels, A. Peltzer, S. Fillinger, H. Patel, J. Alneberg, A. Wilm,
M. U. Garcia, P. Di Tommaso, S. Nahnsen, The nf-core framework for
community-curated bioinformatics pipelines, Nature Biotechnology 2020
38:3 38 (3) (2020) 276–278. doi:10.1038/s41587-020-0439-x.
URL https://www.nature.com/articles/s41587-020-0439-x

[32] G. Juve, A. L. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K. Vahi,
Characterizing and profiling scientific workflows, Future Generation
Comp. Syst. 29 (3) (2013) 682–692.

[33] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides,
D. Newman, M. Borkum, S. Bechhofer, M. Roos, P. Li, et al., myexper-
iment: a repository and social network for the sharing of bioinformatics
workflows, Nucleic acids research 38 (suppl 2) (2010) W677–W682.

[34] P. Mates, E. Santos, J. Freire, C. T. Silva, Crowdlabs: Social analysis
and visualization for the sciences, in: Scientific and Statistical Database
Management, Springer, 2011, pp. 555–564.

[35] V. Korkhov, D. Krefting, J. Montagnat, T. T. Huu, T. Kukla, G. Ter-
styanszky, D. Manset, M. Caan, S. Olabarriaga, Shiwa workflow interop-
erability solutions for neuroimaging data analysis, Stud Health Technol
Inform 175 (2012).

28

https://www.nature.com/articles/s41587-020-0439-x
https://www.nature.com/articles/s41587-020-0439-x
https://doi.org/10.1038/s41587-020-0439-x
https://www.nature.com/articles/s41587-020-0439-x

[36] D. Blankenberg, G. Von Kuster, E. Bouvier, D. Baker, E. Afgan,
N. Stoler, J. Taylor, A. Nekrutenko, et al., Dissemination of scientific
software with galaxy toolshed, Genome Biol 15 (2) (2014) 403.

[37] C. Goble, S. Soiland-Reyes, F. Bacall, S. Owen, A. Williams, I. Eguinoa,
B. Droesbeke, S. Leo, L. Pireddu, L. Rodŕıguez-Navas, et al., Implement-
ing fair digital objects in the eosc-life workflow collaboratory, Zenodo
(2021).

[38] T. Cokelaer, D. Desvillechabrol, R. Legendre, M. Cardon, ’sequana’: a
set of snakemake ngs pipelines, Journal of Open Source Software 2 (16)
(2017) 352.

[39] J. Starlinger, S. C. Boulakia, U. Leser, (re)use in public scientific work-
flow repositories, in: Scientific and Statistical Database Management
- 24th International Conference, SSDBM 2012, Chania, Crete, Greece,
June 25-27, 2012. Proceedings, 2012, pp. 361–378.

[40] M. Novak, M. Joy, D. Kermek, Source-code similarity detection and
detection tools used in academia: A systematic review, ACM Trans.
Comput. Educ. 19 (3) (may 2019). doi:10.1145/3313290.
URL https://doi.org/10.1145/3313290

[41] S. Cohen-Boulakia, U. Leser, Search, adapt, and reuse: the future of
scientific workflows, ACM SIGMOD Record 40 (2) (2011) 6–16.

[42] J. Starlinger, B. Brancotte, S. Cohen-Boulakia, U. Leser, Similarity
search for scientific workflows, Proceedings of the VLDB Endowment
7 (12) (2014) 1143–1154.

[43] A. R. Quinlan, I. M. Hall, Bedtools: a flexible suite of utilities for com-
paring genomic features, Bioinformatics 26 (6) (2010) 841–842.

[44] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, R. Durbin, The sequence alignment/map format
and samtools, Bioinformatics 25 (16) (2009) 2078–2079.

[45] Fastqc (Jun 2015).
URL https://qubeshub.org/resources/fastqc

29

https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://qubeshub.org/resources/fastqc
https://qubeshub.org/resources/fastqc

[46] B. Langmead, S. L. Salzberg, Fast gapped-read alignment with bowtie
2, Nature methods 9 (4) (2012) 357–359.

[47] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha,
P. Batut, M. Chaisson, T. R. Gingeras, Star: ultrafast universal rna-seq
aligner, Bioinformatics 29 (1) (2013) 15–21.

[48] P. Ewels, M. Magnusson, S. Lundin, M. Käller, Multiqc: summarize
analysis results for multiple tools and samples in a single report, Bioin-
formatics 32 (19) (2016) 3047–3048.

[49] H. Li, Minimap2: pairwise alignment for nucleotide sequences, Bioinfor-
matics 34 (18) (2018) 3094–3100.

[50] M. Martin, Cutadapt removes adapter sequences from high-throughput
sequencing reads, EMBnet. journal 17 (1) (2011) 10–12.

[51] J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bush-
man, E. K. Costello, N. Fierer, A. G. Peña, J. K. Goodrich, J. I. Gordon,
et al., Qiime allows analysis of high-throughput community sequencing
data, Nature methods 7 (5) (2010) 335–336.

[52] M. Krassowski, V. Das, S. K. Sahu, B. B. Misra, State of the field in
multi-omics research: from computational needs to data mining and
sharing, Frontiers in Genetics 11 (2020) 610798.

[53] T. Reiter, P. T. Brooks†, L. Irber†, S. E. Joslin†, C. M. Reid†, C. Scott†,
C. T. Brown, N. T. Pierce-Ward, Streamlining data-intensive biology
with workflow systems, GigaScience 10 (1) (2021) 1–19. doi:10.1093/

gigascience/giaa140.

[54] P. Brack, P. Crowther, S. Soiland-Reyes, S. Owen, D. Lowe, A. R.
Williams, Q. Groom, M. Dillen, F. Coppens, B. Gruning, I. Eguinoa,
P. Ewels, C. Goble, Ten simple rules for making a software tool workflow-
ready, PLoS Computational Biology 18 (3) (2022) 1–11. doi:10.1371/
journal.pcbi.1009823.

[55] M. Atkinson, S. Gesing, J. Montagnat, I. Taylor, Scientific workflows
: Past , present and future, Future Generation Computer Systems 75
(2017) 216–227. doi:10.1016/j.future.2017.05.041.
URL http://dx.doi.org/10.1016/j.future.2017.05.041

30

https://doi.org/10.1093/gigascience/giaa140
https://doi.org/10.1093/gigascience/giaa140
https://doi.org/10.1371/journal.pcbi.1009823
https://doi.org/10.1371/journal.pcbi.1009823
http://dx.doi.org/10.1016/j.future.2017.05.041
http://dx.doi.org/10.1016/j.future.2017.05.041
https://doi.org/10.1016/j.future.2017.05.041
http://dx.doi.org/10.1016/j.future.2017.05.041

[56] R. F. Da Silva, H. Casanova, K. Chard, I. Altintas, R. M. Badia,
B. Balis, T. Coleman, F. Coppens, F. Di Natale, B. Enders, et al.,
A community roadmap for scientific workflows research and develop-
ment, in: 2021 IEEE Workshop on Workflows in Support of Large-Scale
Science (WORKS), IEEE, 2021, pp. 81–90.

[57] A. Goderis, D. D. Roure, C. Goble, J. Bhagat, D. Cruickshank, P. Fisher,
D. Michaelides, F. Tanoh, Discovering scientific workflows: The myex-
periment benchmarks, Project report (April 2008).
URL https://eprints.soton.ac.uk/265662/

[58] J. Stoyanovich, B. Taskar, S. Davidson, Exploring repositories of scien-
tific workflows, Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data (2010). doi:10.1145/1833398.1833405.

[59] D. De Roure, C. Goble, Lessons from myExperiment: Two insights
into emerging e-Research practice, UK eScience All Hands Meeting 2009
(2009) 6–8.
URL http://eprints.ecs.soton.ac.uk/17662/

[60] A. Halioui, T. Martin, P. Valtchev, A. B. Diallo, Ontology-based work-
flow pattern mining: Application to bioinformatics expertise acquisi-
tion, Proceedings of the ACM Symposium on Applied Computing Part
F128005 (2017) 824–827. doi:10.1145/3019612.3019866.

[61] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Ax-
ton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E.
Bourne, et al., The fair guiding principles for scientific data management
and stewardship, Scientific data 3 (2016).

[62] C. Goble, S. Cohen-Boulakia, S. Soiland-Reyes, D. Garijo, Y. Gil, M. R.
Crusoe, K. Peters, D. Schober, Fair computational workflows, Data In-
telligence 2 (1-2) (2020) 108–121. doi:10.1162/dint_a_00033.

[63] R. Celebi, J. R. Moreira, A. A. Hassan, S. Ayyar, L. Ridder, T. Kuhn,
M. Dumontier, Towards FAIR protocols and workflows: The Open-
PREDICT use case, PeerJ Computer Science 6 (2020) 1–29. doi:

10.7717/PEERJ-CS.281.

31

https://eprints.soton.ac.uk/265662/
https://eprints.soton.ac.uk/265662/
https://eprints.soton.ac.uk/265662/
https://doi.org/10.1145/1833398.1833405
http://eprints.ecs.soton.ac.uk/17662/
http://eprints.ecs.soton.ac.uk/17662/
http://eprints.ecs.soton.ac.uk/17662/
https://doi.org/10.1145/3019612.3019866
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.7717/PEERJ-CS.281
https://doi.org/10.7717/PEERJ-CS.281

	Introduction
	Difficulties in the development of bioinformatics pipelines
	Landscape of available solutions
	Generic elements of solutions
	Supporting Pipeline Development
	Tracing data for testing and reuse
	Ensuring pipelines to stand over time and place

	Scientific workflow systems
	Supporting pipelines life cycle with scientific workflows
	Workflow example from the ICAN project

	Workflow systems and bioinformatics pipelines reuse
	Collection of workflows
	Workflow owners and contributors
	Identifying reused workflows
	Identifying reused processors
	Identifying reused tools

	Discussion and perspectives
	Declaration of interest

