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Abstract: In this paper, we come up with three secure chaos-based stream ciphers, implemented on
an FPGA board, for data confidentiality and integrity. To do so, first, we performed the statistical
security and hardware metrics of certain discrete chaotic map models, such as the Logistic, Skew-Tent,
PWLCM, 3D-Chebyshev map, and 32-bit LFSR, which are the main components of the proposed
chaotic generators. Based on the performance analysis collected from the discrete chaotic maps, we
then designed, implemented, and analyzed the performance of three proposed robust pseudo-random
number generators of chaotic sequences (PRNGs-CS) and their corresponding stream ciphers. The
proposed PRNGs-CS are based on the predefined coupling matrix M. The latter achieves a weak
mixing of the chaotic maps and a chaotic multiplexing technique or XOR operator for the output
function. Therefore, the randomness of the sequences generated is expanded as well as their lengths,
and divide-and-conquer attacks on chaotic systems are avoided. In addition, the proposed PRNGs-
CS contain polynomial mappings of at least degree 2 or 3 to make algebraic attacks very difficult.
Various experimental results obtained and analysis of performance in opposition to different kinds of
numerical and cryptographic attacks determine the high level of security and good hardware metrics
achieved by the proposed chaos system. The proposed system outperformed the state-of-the-art
works in terms of high-security level and a high throughput which can be considered an alternative
to the standard methods.

Keywords: chaos-based stream ciphers; PRNGs-CS; FPGA; security analysis; hardware metrics

1. Introduction

As we increasingly rely on intelligent and interconnected devices in every aspect of
our lives (residences, transports, hospitals, factories, . . . ), how do we protect potentially
billions of these connected devices from passive and active attacks that could compromise
personal privacy or threaten public safety? We all live today in a cyber world. For that,
most of the world’s web traffic (digital multimedia content such as images and videos,
emails) is encrypted because of security threats.

The revised eSTREAM project, September 2008, contains seven stream ciphers that fall
into two profiles. Profile 1 contains HC-128, Rabbit, Salsa20/12, and SOSEMANUK stream
ciphers, which are best suited for software applications requiring high throughput. Profile
2 contains Grain, MICKEY 2.0, and Trivium stream ciphers, which are particularly suitable
for hardware applications with constrained resources and limited power consumption [1,2].
However, these days, most of these stream ciphers are weak against various attacks and then
can’t be used to secure exchanged and stored data [3]. Likewise, 5G Security uses the NEA3-
128 algorithm for privacy and the NIA3-128 algorithm for integrity. Both NEA3-128 and
NIA3-128 are based on ZUC stream cipher [4]. However, many published researchers [5,6]
noticed that there are some weaknesses and vulnerabilities in the ZUC algorithm for
differential power analysis attacks (SCA), Chosen IV attacks, etc.
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For this, we use chaos-based stream ciphers, which are very secure against cryp-
tographic attacks because chaotic signals are intrinsically secure and have high nonlin-
earity [7]. The security of a stream cipher relies heavily on the pseudo-random number
generator (PRNG), which acts as the primary component in the system.

There has been a development of various cryptosystems in recent years that em-
ploy chaotic systems and maps, including those for the generation of pseudo-random
numbers and encryption. Some of them have issues with security or poor computational
performance [8–16]. Moreover, some of these cryptosystems are not well-suited for use on
smart devices with limited resources, such as low memory, limited processing capabilities,
and energy efficiency issues [17–19].

Devices used in the Internet of Things are low-power and resource constrained, so
for these devices, hardware implementation of cryptosystems is more suitable than the
software implementation. It is noteworthy that currently, there are only a limited number
of chaotic systems that have been implemented on Field-Programmable Gate Array (FPGA)
boards [20–24]. FPGAs are used for various reasons, including Speed (FPGAs can perform
certain operations much faster than microprocessors), customizability, power efficiency,
flexibility, and parallelism. A new lightweight chaos-based stream cipher, using two
nonlinear feedback shift registers (NLFSR), was proposed by Ding et al. [25] in 2019.
The results obtained indicate the good cryptographic characteristics of their stream cipher.
To provide security in multimedia applications dealing with high voluminous data, several
effective chaos-based encryption systems using four combined chaotic maps (Logistic,
Arnold, Lorenz, and Chebyshev) published by Abdelfatah et al. [26] in 2020 and a novel
medical image encryption system based on the Logistic-Tent map, Arnold’s scrambling,
and a special nonlinear function based LFSR was proposed by Subhrajyoti et al. [27] in
2021. Experimental works reveal that the proposed cryptosystems have good prospects
for real-time image encryption. In 2022, Jun et al. [28] developed a highly secure stream
cipher based on the analog–digital hybrid chaotic system consisting of the Chen chaotic
system and a modified three-dimensional Logistic map. The proposed stream cipher has
the advantages of huge key space, virtually infinite cycle length, and tight security.

We propose in this research work to design, and implement on an FPGA board, three
chaos-based stream ciphers and evaluate their performance, in terms of security against
statistical attacks, and cryptographic attacks, as well as in terms of hardware metrics,
including throughput and efficiency. The proposed solutions cope with the trade-offs
between security, performance, and cost, and have a better level of security compared to
standard methods (thanks to the high non-linearity of chaotic systems).

The remainder of this article is organized as follows: In Section 2, we introduce,
implement, and evaluate the statistical and hardware performance of some discrete chaotic
maps used here, specifically Logistic, Skew-Tent (STM), PWLCM, 3D-Chebyshev (3D-Ch),
and a Linear Feedback Shift Register (LFSR) as the basis for the chaos-based stream ciphers
design proposed in this work. Based on the performance results of the studied chaotic
maps, we designed, implemented, and analyzed in Section 3 three-stream encryption
methods that utilize three secure pseudo-chaotic number generators (PRNGs-CS), known
as LSP-PRNG, LST-PRNG, and LSPT-PRNG, by combining different chaotic maps such
as the Logistic map, STM, PWLCM, and 3D-Ch map. Then, we present the results of
the experiments in terms of security evaluation and hardware metrics of the proposed
PRNGs-CS and their corresponding stream ciphers. Finally, Section 4 summarizes the
whole article.

Notice that, for the proposed chaotic systems, in all statistical experiments, 100 random
secret keys are utilized to produce 100 different sequences of 3,125,100 32-bit samples.
However, just 3,125,000 samples were utilized per sequence (i.e., 108 bits). While the system
internally generates the first 100 samples per sequence for each key, they are not employed
to deviate from the transitional phase.
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2. Study of Used Discrete Chaotic Maps: Statistical Test and Hardware Metrics

In information security, chaotic maps are used in stream ciphers [7,29], block ci-
phers [30,31], hashing [32], steganography, and digital watermarking [33,34]. They can
replace traditional pseudo-random number generators such as maximum length PN se-
quences, and Gold and Kasami generators. However, the use of these chaotic maps alone
in practical data security applications is not secure, as we will see in this paragraph.

In the following, we first consider the discrete equations of the 1-D chaotic maps
used (we also give the original equations of these chaotic maps in Appendix A): Logistic,
Skew-Tent, PWLCM, and the 3D-Chebyshev map and the primitive polynomial expression
of an LFSR of 32-bit. Then we present the statistical security performance (in terms of
NIST test, histogram, and Chi-square test) and hardware metrics of these chaotic maps,
the 32-bit LFSR, and also for the 3D-Chebyshev chaotic map coupled with the 32-bit
LSFR used. The results of these statistical tests indicate the degree of randomness of the
generated sequences.

2.1. Discrete Equations of the Chaotic Maps and the 32-Bit LFSR Used

We give below the discrete equations of the chaotic maps, and the 32-bit LFSR used to
design the proposed chaotic systems:

Discrete Logistic map
The logistic map, created by Pierre Verhulst in 1845, was initially designed as a model

for population growth [35]. Due to the recurrence equation’s simplicity, Ulam and Von
Neumann in 1947 used the logistic map as a pseudo-random number generator [36]. Since
then, it has been widely used in cryptographic applications. When the control parameter
value is set to 4, the discrete Logistic map equation is as follows:

XL(n) =



⌊
XL(n−1)[2N−XL(n−1)]

2N−2

⌋
i f XL(n− 1) 6=

[
3× 2N−2 − 1, 2N−1]

3× 2N−2 − 1 i f XL(n− 1) = 3× 2N−2

2N − 1 i f XL(n− 1) = 2N−1

(1)

where XL(n) is an integer that falls within the range [1, 2N − 1] with N = 32 as the precision
used and bZc (Floor function) returns the highest integer that is less than or equal to Z.

Discrete Skew-Tent map
The Skew-Tent map is a piecewise linear map, the equation of the discretized Skew-

Tent map is defined by:

XS(n) =



⌊
2N×XS(n−1)

Ps

⌋
i f 0 < XS(n− 1) < Ps⌊

2N × [2N−XS(n−1)]
2N−Ps

⌋
i f Ps < XS(n− 1) < 2N

2N − 1 otherwise

(2)

where XS(n) is an integer that falls within the range [1, 2N − 1] and Ps is the Skew-Tent
map’s control parameter, with a value in the range [1, 2N − 1].

Discrete PWLCM map
Another piecewise linear chaotic map is the Piecewise Linear Chaotic Maps (PWLCM);

due to its good cryptographic characteristics, compared to the other chaotic maps studied
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in this section, the PWLCM map is commonly employed in data encryption. The discrete
PWLCM map’s equation is as follows:

XP(n) =



⌊
2N×XP(n−1)

Pp

⌋
i f 0 < XP(n− 1) < Pp⌊

2N × [XP(n−1)−Pp]
2N−1−Pp

⌋
i f Pp < XP(n− 1) < 2N−1

⌊
2N × [2N−XP(n−1)−Pp]

2N−1−Pp

⌋
i f 2N−1 < XP(n− 1) < 2N − Pp

⌊
2N × [2N−XP(n−1)]

Pp

⌋
i f 2N − Pp < XP(n− 1) < 2N

2N − 1 otherwise

(3)

where Pp is the PWLCM map’s control parameter, with a value in the range [1, 2N−1 − 1]
and XP belongs to the same interval as XS and XL.

Discrete 3D-Chebyshev map
The discrete 3D-Chebyshev (third order) map is given by:

XT(n) =
⌊

2(−2N+2) ×
(

4×
(

XT − 2(N−1)
)3
− 3× 2(2N−2) ×

(
XT − 2(N−1)

))
+ 2(N−1)

⌋
(4)

where 1 ≤ XT(n) ≤ 2N − 1.
32-bit LFSR based on primitive polynomial with internal feedback (Galois imple-

mentation)
The 32-bit LFSR with maximum length feedback used in our work is defined by the

following primitive polynomial:

Q(x) = x32 + x22 + x2 + x + 1 (5)

Its circuit diagram is shown in Figure 1. The sequences generated (random outputs)
are periodic of period equal to 232 − 1 = 4,294,967,295.

CLK

𝐷31 ...𝐷30 𝐷22 𝐷21 ...𝐷20 𝐷2 𝐷1 𝐷0 

Figure 1. Circuit Diagram of 32-bit (internal feedback) LFSR.

2.2. Statistical Performance: NIST, Histogram, and Chi-Square Test

NIST statistical test
The NIST test is widely considered one of the most effective standards for evaluating

the randomness of binary data [37]. This test is a statistical package consisting of 188 pro-
posed tests and sub-tests (15 different tests in total) for evaluating the randomness of binary
sequences of arbitrary length. These tests focus on different kinds of non-randomness that
can be present in sequences. A p-value is calculated for each test to show the results of
the test. A p-value ≥ 0.01 indicates that the sequence was considered random with 99%
confidence. A p-value ≤ 0.01 implies the conclusion that the sequence is not random with
99% confidence.
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Histogram and Chi-square test analysis
Another key property of any robust pseudo-chaotic number generator is to provide

a uniform distribution in the whole phase space. To assert the uniformity of generated
sequences, it is necessary to apply on them the chi-square test χ2 given by the following
formula:

χ2
exp =

Nc−1

∑
i=0

(Oi − Ei)
2

Ei
(6)

where Nc = 1000 represents the number of classes, Oi represents the number of calculated
samples in the ith class Ei, where the class Ei is the expected number of samples of a
uniform distribution, which is equal to Ns/Nc.

To confirm the uniformity of a produced sequence, the experimental chi-square value
must be smaller than the theoretical value χ2

exp < χ2
th. Furthermore, if the experimental

chi-square value is less than the theoretical one, the resulting sequence is more uniform.
At the top of Figure 2a–f, from left to right, we present the proportion achieved versus

the test for the discrete Logistic map, Skew-Tent map, PWLCM, 3D-Chebyshev map, 32-bit
LFSR, and 3D-Chebyshev map coupled with a 32-bit LFSR respectively (see Figure 3).
As we can see, the sequences generated by the discrete chaotic maps alone and the 32-bit
LFSR do not successfully pass all NIST tests, and some are far from the acceptance criterion
of a test indicated by the red line. In addition, we note that the PWLCM map outperforms
the other chaotic maps studied, in terms of several tests passed. Moreover, obtained results
for the generated sequences by the coupled 3D- Chebyshev map with the 32-bit LFSR
show that all NIST tests, except the Block-frequency test, have passed, demonstrating that
the coupled technique with the 32-bit LFSR improves the cryptographic properties of the
3D-Chebyshev map (this is true for any type of chaotic map).
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Figure 2. NIST test and histograms of studied chaotic maps, 32-bit LFSR, and the 3D-Chebyshev
coupled with the 32-bit LFSR. (a) NIST test results of the discrete Logistic map. (b) NIST test results
of the discrete Skew-Tent map. (c) NIST test results of the discrete PWLCM map. (d) NIST test results
of the discrete 3D-Chebyshev map. (e) IST test results of the 32-bit LFSR. (f) NIST test results of
the discrete 3D-Chebyshev map coupled with LFSR. (g) The histogram of a sequence XL. (h) The
histogram of a sequence XS. (i) The histogram of a sequence XP. (j) The histogram of a sequence XT.
(k) The histogram of a sequence Q. (l) The histogram of a sequence XTI.
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3D-Chebyshev Map𝑋𝑇(𝑛 − 1) 𝑋𝑇𝐼 𝑛  

LFSR

𝑄 𝑛  

Figure 3. 3D-Chebyshev map coupled with the used LFSR using a XOR operator.

At the bottom of Figure 2g–l, we give the corresponding histogram for each chaotic
map, the 32-bit LFSR, and the coupled 3D-Chebyshev map with the 32-bit LFSR. We notice
that, visually, the histograms obtained by the chaotic maps are not uniform, except for the
32-bit LFSR and the discrete 3D-Chebyshev coupled with the 32-bit LFSR. This observation
is asserted by the obtained experimental and theoretical results of the chi-square tests given
in Table 1.

Table 1. Chi-square results on the tested histograms.

Chi-Square Test Logistic STM PWLCM 3D-Ch LFSR 3D-Ch with LFSR

χ2
exp 38,698.41 1113.45 1146.92 41,865.00 989.48 999.48

χ2
th (1000, 0.05) 1073.64 1073.642 1073.64 1073.64 1073.64 1073.64

2.3. Hardware Metrics

We interpret the implementation of the chaotic maps in regard to the resources utilized
(area, DSPs), the speed (WNSi, Max. Freq., throughput), and the efficiency (throughput-to-
slices ratio). Furthermore, we give the power consumption.

Max.Freq. =
1

Ti−WNSi
(MHz). (7)

where Ti is the target clock period (ns) used during the implementation run “i” and WNSi
is the Worst Negative Slack (ns) of the target clock used during the implementation run “i”
and must be positive, and very close to zero.

The data Throughput is calculated by Equation (8).

Throughput = N ×Max.Freq.(Mbps). (8)

The Efficiency is calculated by using Equation (9).

E f f iciency =
Throughput

Slices
(Mbps/Slices). (9)

The chaotic systems implementation was carried out on the Xilinx-manufactured
PYNQ-Z2 FPGA board. To implement the chaotic systems, the code was written in VHDL
using 32-bit fixed-point data format, then synthesized and implemented using Xilinx Vi-
vado design suite (V.2017.2). The Vivado design suite tools are a set of tools provided by
Xilinx for designing and implementing digital circuits on FPGA boards. These tools enable
the complete design flow from creating the RTL design, to implementation, synthesis,
and programming of the FPGA. The Vivado design suite includes a powerful integrated
development environment (IDE) that allows users to easily design, debug, and test their de-
signs. It also includes various features such as timing analysis, power analysis, and design
exploration, which can help in fine-tuning the design for optimal performance and power
consumption. As illustrated in Figure 4, we present a summary of the various stages of the
conception flow that were executed using Vivado for evaluating the metrics of the discrete
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Skew-Tent map as an example of demonstration. Note that the same steps for all studied
chaotic systems were repeated since Design entry up to configuration bitstream generation.

Design entry

top_skewtent.VHD

Design 

Synthesis

Behavioral 

Simulation

(Xsim)

Check syntaxe

Design Implementation

Timing 

Similation

Configuration Bitstream 

Generation

XDC 

file Translate

Map

Place & Route

Optimize Design

XS0

Ps

Testbench

tb_top_skewte

nt.VHD

skewtent.bit

skewtent.tcl

(Keystream)

Fmax
Output 

Xs(n)

Figure 4. The design flow of the Skew-Tent map on FPGA using Vivado.

The areas of the implementations of the chaotic systems on FPGA are compared
using slices, Flip-Flops (FFs), and lookup tables (LUTs), which are the basic logic block of
Xilinx FPGAs. Latency, maximum frequency, and throughput together determine execution
speed. The efficiency parameter represents the throughput-to-slices ratio and provides a
general understanding of the implementation’s hardware performance as measured by the
hardware metrics.

All designs have been tested after place and route using simulation to ensure the
correct functionality and produce one sample at each clock cycle.

At the end of the Place & Route process, we get the hardware metrics of chaotic
systems implemented on the PYNQ-Z2 FPGA chip. Table 2, resume the obtained hardware
metrics of studied chaotic maps, the 32-bit LFSR, and the 3D-Chebyshev map coupled with
the 32-bit LFSR.
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Table 2. Hardware metrics of studied chaotic maps, the 32-bit LFSR, and the 3D-Chebyshev map
coupled with the 32-bit LFSR.

Logistic
Map STM PWLCM 3D-Ch

Map
32-Bit
LFSR

3D-Ch
with LFSR

Resources used
Area

LUTs 77/0.14% 2830/5.32% 7374/13.86% 286/0.05% 2/< 0.01% 319/0.60%
FFS 49/0.05% 57/0.05% 63/0.06% 47/0.04% 62/0.06% 71/0.07%

Slices * 33/0.25% 853/6.41% 2171/16.32% 87/0.65% 16/0.12% 99/0.74%

DSPs 4/1.82% 0/0.00% 0/0.00% 12/5.45% 0/0.00% 12/5.45%

Speed

WNSi (ns) 0.102 0.059 0.108 0.031 6.078 0.096
Ti (ns) 12 28 31.2 22 8 21.6
Max. Freq. (MHz) 84.04 35.78 32.16 45.51 520.29 46.50
Throughput (Mbps) 2689.52 1145.27 1029.20 1456.59 16,649.32 1488.09

Efficiency (Mbps/Slices) 81.500 1.342 0.476 16.742 1040.58 15.031

Power (W) 0.083 0.070 0.105 0.048 0.118 0.055

* Note: Each slice contains four 6-input LUTs and 8 flip-flops.

In terms of computing performance, the PWLCM is slower when compared to other
chaotic maps and uses approximately three times more hardware resources than the Skew-
Tent map. Moreover, the obtained values for the discrete Logistic map show that a high
throughput characterizes the Logistic map compared to the throughput of the other studied
chaotic maps and uses fewer hardware resources. Furthermore, the 3D-Chebyshev map
coupled with the 32-bit LFSR achieves a throughput of approximately 1.5 Gbps.

3. Proposed Chaos-Based Stream Ciphers Based on Secure PRNGs of Chaotic Sequences

Based on statistical results obtained in the previous Section 2, we can confirm that
chaotic maps cannot be used alone as a secure PRNG-CS. The question is how to combine
some of them to build PRNGs-CS secure against statistical and cryptanalytic attacks,
and efficient, in terms of hardware cost, throughput, and efficiency. A compromise between
security and effectiveness is usually made, and it is first about the degree of security
required for a given application.

In this section, we created three secure pseudorandom number generators (PRNGs),
known as LSP-PRNG, LST-PRNG, and LSPT-PRNG, by combining different mathematical
maps such as the Logistic map, Skew-Tent map, PWLCM map, and 3D-Chebyshev map.
We also examined the stream cipher systems associated with each PRNG.

3.1. Block Diagram of Stream Ciphers Based on Secure PRNGs-CS

Figure 5 depicts a stream encryption/decryption system’s block diagram. The stream
cipher method uses the XOR function for both encryption and decryption, by combining
the keystream with the plaintext for encryption and with the ciphertext for decryption.

The security of such a system relies entirely on the PRNG-CS keystream. An en-
cryption/decryption system is considered unconditionally secure when the keystream is
perfectly random and the period is infinite (a so-called one-time pad).

PRNG-CS takes as input a secret key (K) and an initial value (IV) utilized to defeat
a known plaintext attack. The IV changes with each new session and can only be used
once. Therefore, generated sequences in different sessions using the same secret key will
differ. Note that stream ciphers are used to continuously cipher data, such as selective
video encryption or network communications. Below we will describe the proposed secure
PRNGs-CS in detail.
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PRNG-CS

Plain text 

Pi

Cipher Text

Ci Plain Text

Pi

ENCRYPTION

PRNG-CS

DECRYPTION

Secret Key

 K
IV Secret Key

 K
IV

Keystream Keystream

Cipher Text

Ci

Communication 

channel

Figure 5. A stream encryption/decryption system’s block diagram.

3.2. Architectures Description of the Proposed PRNGs-CS

All the proposed secure PRNGs-CS have the same general design, though different
internal states and just slightly different output functions. In this section, we describe
in detail the architectures of the proposed secure PRNGs-CS and perform their security
analysis and hardware metrics.

3.2.1. The Proposed LSP-PRNG

Figure 6 shows the architecture of the proposed LSP-PRNG. Its internal state is formed
by three weakly coupled discrete chaotic maps: Logistic map, Skew-Tent, and Piecewise
Linear Chaotic Map (PWLCM). The output function is based on chaotic multiplexing tech-
niques.

LogisticXL(0)

[M]XS(0) SkewT

XL(n)

XS(n)

XLC(n-1)

XSC(n-1)

XLC(n)

XSC(n)

IV

K

Internal State Output Function

XP(0) PWLCM
XP(n) XPC(n)

XPC(n-1)

+
X(n)

XTh

Figure 6. LSP-PRNG design architecture proposed.

The proposed LSP-PRNG takes a secret key K and an initialization vector IV as input
and computes initial values XL(0), XS(0) and XP(0) of the three chaotic maps: Logistic,
Skew-Tent, and PWLCM respectively. The IV of the system supplies the initial vectors of
the three chaotic maps: IVL, IVS, and IVP each are of size N = 32 bits, and the secret key
K provides all the initial conditions and parameters of the chaotic maps and the parameters
of the coupling matrix M, as summarized in Table 3.
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Table 3. The initial conditions and parameters that form the secret key.

Symbol Definition

XL0, XS0, and XP0 Initial conditions of the chaotic maps: Logistic, Skew-Tent, and PWLCM
respectively, ranging from 1 to 2N − 1.

Ps Skew-Tent map’s control parameter, in the range [1,2N − 1].
Pp PWLCM map’s control parameter, in the range [1,2N−1 − 1].
εij The coupling matrix’s parameters, in the range [1,2k] where k ≤ 5.

The size of the secret key, noted |K1|, of the proposed LSP-PRNG is given by

|K1| = |XL0|+ |XS0|+ |XP0|+ |Ps|+
∣∣Pp
∣∣+ (6× ∣∣εij

∣∣) = 189 bits (10)

(see below the form of the Matrix M containing εij) where |XL0| = |XS0| = |XP0| = |Ps| =
32 bits,

∣∣Pp
∣∣= 31 bits, and

∣∣εij
∣∣= 5 bits.

The key space of the secret key is 2189 different combinations which are large enough
to make the brute-force attack infeasible [38]. Indeed, it is commonly agreed upon that a
key space of at least 2128 is required to make the brute-force attack infeasible.

The secret key K provides initial conditions and parameters for chaotic maps as follows:

XL0 = K(0 to 31)
XS0 = K(32 to 63)
XP0 = K(64 to 95)
Ps = K(96 to 127)
Pp = K(128 to 158)
ε12 = K(159 to 163)
ε13 = K(164 to 168)
ε21 = K(169 to 173)
ε23 = K(174 to 178)
ε31 = K(179 to 183)
ε32 = K(184 to 188)

(11)

The initial values XL(0), XS(0), and XP(0) of the three chaotic maps are calculated as
follows: 

XL(0)= mod ((XL0 + IVin), 2N)
XS(0)= mod ((XS0 + IVin), 2N)
XP(0)= mod ((XP0 + IVin), 2N)

(12)

where:
IVin = IVL⊕ IVS⊕ IVP (13)

and 
IVL = IV(0 to 31)
IVS = IV(32 to 63)
IVP = IV(64 to 95)

(14)

The function that controls the internal state creates a loose connection between the
chaotic maps, generating future samples of XLC(n), XSC(n), and XPC(n). The output
sequence X(n) is then created by applying a chaotic switching method to these samples
(see Figure 6).

This equation describes how the coupling system works: XLC(n)
XSC(n)
XPC(n)

 = M×

 XL(n)
XS(n)
XP(n)

 (15)
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where:

M =

 M11 ε12 ε13
ε21 M22 ε23
ε31 ε32 M33

 (16)

with εij are the weakly coupling parameters, and M11 = (2N − ε12 − ε13); M22 = (2N −
ε21 − ε23); M33 = (2N − ε31 − ε32).

XL(n), XS(n), and XP(n) are denoted as the maps output values at instant n of the:
Logistic, Skew-Tent, and PWLCM map, respectively, defined as follows:

The first three outputs of the matrix M, XLC(1), XSC(1), XPC(1) are given by the
following equation:  XLC(1)

XSC(1)
XPC(1)

=M×

 XL(1)
XS(1)
XP(1)

 (17)

with:
XL(1) =Logistic

{
mod

(
XL(0),2N

)}
(18)

XS(1) =STM
{

mod
(

XS(0),2N
)

, Ps

}
(19)

XP(1) =PWLCM
{

mod
(

XP(0),2N
)

, Pp

}
(20)

Then, if 2 ≤ n ≤ Ns, (Ns represents the number of samples desired), the three outputs
of the matrix M are governed by Equation (15), with:

XL(n) =Logistic
{

mod
(

XLC(n− 1),2N
)}

(21)

XS(n) =STM
{

mod
(

XSC(n− 1),2N
)

, Ps

}
(22)

XP(n) =PWLCM
{

mod
(

XPC(n− 1),2N
)

, Pp

}
(23)

The obtained multiplexed samples of the sequence X(n) are controlled by the chaotic
sample Xth(n) and a threshold T:

X(n)=


mod

(
(XPC(n) + XLC(n)), 2N) i f 0 <Xth(n)<T

XSC(n) otherwise
(24)

where Xth(n)=XPC(n)⊕ XSC(n) and T= 0.8× 2N .

3.2.2. The Proposed LST-PRNG

The design of the proposed LST-PRNG is given in Figure 7. The internal state of the
system is constructed by weakly coupling three discrete chaotic maps: Logistic map, STM,
and 3D-Ch coupled with an LFSR. The latter can improve the 3D Chebyshev periodicity
and its uniformity, as shown in Section 2. The output function is based on modulo addition
and XOR operations.
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Figure 7. LST-PRNG design architecture proposed.

Compared with the architecture in Figure 6, the proposed LST-PRNG architecture
has better hardware performance because the hardware performance of the 3D Ch map is
better than those of the PWLCM map. Moreover, using 3D Ch increases the robustness of
the system against algebraic attacks.

The size of the secret key of the proposed LST-PRNG is:

|K2|=|XL0|+ |XS0|+ |XT0|+ |Ps|+ (6×
∣∣εij
∣∣) + |Q0|= 190 bits (25)

where |XT0|=|Q0|= 32 bits; and XT0, Q0 are the initial conditions of the 3D Ch and the
Linear Feedback Shift Register (LFSR), respectively.

The key space contains 2190 different values, which is large enough to make brute-force
attacks infeasible.

The initial values XL(0), XS(0) and XT(0) of the used chaotic maps are given by:
XL(0)= mod ((XL0 + IVin), 2N)
XS(0)= mod ((XS0 + IVin), 2N)
XT(0)= mod ((XT0 + IVin), 2N)

(26)

where:
IVin = IVL ⊕ IVS ⊕ IVT (27)

and IVL, IVS and IVT are provided by the initial value IV as follows:
IVL=IV(0 to 31)
IVS=IV(32 to 63)
IVT=IV(64 to 95)

(28)

Using the output samples of XLC(n), XSC(n) and XTIC(n), the coupling matrix M
(defined in (16)) produces the output sequence X(n) as shown in Figure 7. The internal
system is governed by the following equations. XLC(n)

XSC(n)
XTIC(n)

=M×

 XL(n)
XS(n)
XTI(n)

 (29)

with:
XTI(n) = XT(n)⊕Q(n) (30)

and XL(n), XS(n), and XT(n) are denoted as the maps output values at instant n of the:
Logistic, Skew-Tent, and 3D-Ch map, respectively.
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The first three outputs of the matrix M, XLC(1), XSC(1), XTIC(1) are given by: XLC(1)
XSC(1)

XTIC(1)

=M×

 XL(1)
XS(1)
XTI(1)

 (31)

with:
XTI(1) = XT(1)⊕Q(1) (32)

and:
XL(1) =Logistic

{
mod

(
XL(0),2N

)}
(33)

XS(1) =STM
{

mod
(

XS(0),2N
)

, Ps

}
(34)

XT(1) = 3D− Ch
{

mod
(

XT(0),2N
)}

(35)

Then, for n ≥ 2 and n ≤ Ns, the matrix M output is given by Equation (29), with:

XL(n) =Logistic
{

mod
(

XLC(n− 1), 2N
)}

(36)

XS(n) =STM
{

mod
(

XSC(n− 1), 2N
)

, Ps

}
(37)


XT(n)=3D− Ch

{
mod

(
XTIC(n− 1), 2N)}

XTI(n)=XT(n)⊕Q(n)
(38)

Finally the output X(n) is calculated by (see Figure 7):

X(n) = mod
(
(XLC(n) + XTIC(n)), 2N

)
⊕ XSC(n) (39)

3.2.3. The Proposed LSPT-PRNG

Some applications (military, industrial, etc.) need to sacrifice hardware metrics for
maximum security. For this purpose, we propose the LSPT-PRNG architecture shown in
Figure 8. The proposed generator was studied, implemented in Matlab code, and published
in [30], but it only performs security analysis, currently focusing on hardware metrics.
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Figure 8. LSPT-PRNG design architecture proposed.

3.3. Security Analysis and Hardware Metrics of the Proposed PRNGs-CS
3.3.1. PRNGs-CS Resilience against Statistical Attacks

A set of tests should be applied to assess the statistical cryptographic characteristic
of the generated sequences by the proposed PRNGs-CS. Each test checks for a particular
feature, such as the correlation between generated sequences or their uniformity, and the
composite results of these tests give an insight into the level of randomness of the generated
sequences. The statistical properties of the generated sequences are closely linked to the
pseudo-chaotic behavior of these sequences. The National Institute of Standards and
Technology (NIST) test, among other tests (TestU01, DieHARD), serves as a reference for
quantifying and comparing the statistical effects of pseudo-random sequences.

Phase space test
We draw in Figure 9a–c the phase space or mapping of sequences X1, X2, and X3

generated by the suggested LSP-PRNG, LST-PRNG, and LSPT-PRNG, respectively, and
created by 3,125,000 samples. In Figure 9d–f, we present the mapping of 1000 samples (a
zoom) selected randomly from X1, X2, and X3, respectively.
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Figure 9. Phase space and zoom of the produced sequences X1, X2, and X3 by LSP-PRNG, LST-PRNG,
and LSPT-PRNG, respectively. (a) Mapping of sequence X1. (b) Mapping of sequence X2. (c) Mapping
of sequence X3. (d) Zoom on the mapping of X1. (e) Zoom on the mapping of X2. (f) Zoom on the
mapping of X3.

Already, from Figure 9d–f, The area seems chaotic, indicating a lack of association
between nearby sample results.

Histogram and Chi-square tests
A fundamental characteristic of a secure PRNG-CS is that the generated sequences are

equally distributed. Histograms of the produced sequences X1, X2, and X3 are shown in
Figure 10. Their uniformities are visually observed.
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Figure 10. Histograms of the produced sequences X1, X2, and X3 by LSP-PRNG, LST-PRNG,
and LSPT-PRNG respectively. (a) The histogram of the produced sequence X1. (b) The histogram of
the produced sequence X2. (c) The histogram of the produced sequence X3.
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The chi-square test, as defined by Equation (6), should be used to check visual unifor-
mity results. Table 4 shows the experimental and theoretical chi-square tests for sequences
X1, X2, and X3 generated by LSP-PRNG, LST-PRNG, and LSPT-PRNG, respectively.

Table 4. Chi-Square test.

Chi-Square Test Value LSP-PRNG LST-PRNG LSPT-PRNG

χ2
th 1073.6426 1073.6426 1073.6426

χ2
exp 941.5878 896.3603 915.5385

The experimental chi-square test values are lower than the theoretical values for all
proposed PRNGs-CS, confirming the uniformity of the histograms.

NIST test
A further important effect of a secure PRNG-CS is that the generated sequences

must pass the NIST statistical tests (previously defined in Section 2). The results obtained
show that the sequences generated by the proposed PRNGs-CS pass all 15 statistical tests,
as shown in Figure 11 and Table 5.
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Figure 11. NIST test results of the proposed PRNGs-CS. (a) NIST test for LSP-PRNG. (b) NIST test
for LST-PRNG. (c) NIST test for LSPT-PRNG.

Table 5. p-values and Proportion results of NIST test for the proposed PRNGs-CS.

Test
LSP-PRNG LST-PRNG LSPT-PRNG

p-Value Prop. (%) p-Value Prop. (%) p-Value Prop. (%)

Frequency test 0.494 100 0.475 98 0.115 97
Block-frequency test 0.760 99 0.319 99 0.851 97
Cumulative-sums test (2) 0.757 100 0.691 98 0.394 96.500
Runs test 0.367 100 0.883 98 0.988 98
Longest-run test 0.983 99 0.936 100 0.437 98
Rank test 0.720 98 0.972 99 0.658 98
FFT test 0.575 98 0.475 97 0.475 99
Nonperiodic-templates (148) 0.527 99.115 0.489 99.074 0.484 99.054
Overlapping-templates 0.596 99 0.911 100 0.384 100
Universal 0.335 98 0.335 99 0.035 97
Approximty entropie 0.475 99 0.367 100 0.262 100
Random-excursions (8) 0.352 99.792 0.471 98.242 0.371 99.107
Random-excursions-variant (18) 0.468 98.611 0.367 98.438 0.374 98.710
Serial test (2) 0.460 99 0.900 99.500 0.647 99.500
Linear-complexity 0.401 99 0.554 99 0.071 99

Key sensitivity analysis (using Hamming Distance)
Key sensitivity is a critical property for PRNGs. Of course, a slight modification in the

secret key should result in a significant difference in the output sequence. To prove this
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property, for all proposed PRNGs-CS, we compute the Hamming Distance between two
sequences produced (S1, S2) that are just the LSB (Least Significant Bit) of parameter Ps
different. Compute the mean Hamming Distance HD among the two generated sequences
for five random secret keys. HD(S1, S2) is illustrated by the formula below:

HD(S1, S2)=
1

Nb

Nb

∑
i=1

(S1(i)⊕ S2(i)) (40)

where Nb is the number of bits in a produced sequence.
Table 6 illustrates the average Hamming distance values for the proposed LSP-PRNG,

LST-PRNG, and LSPT-PRNG. These values are relative to the optimal value of 50%. This
result demonstrates the high sensibility of the secret key of the proposed PRNGs-CS.

Table 6. Values of HD for the proposed PRNGs-CS.

PRNG-CS HD %

LSP-PRNG 50.0022
LST-PRNG 50.0004
LSPT-PRNG 50.0012

3.3.2. Hardware Metrics of the Proposed PRNGs-CS

We quantify the performance of the proposed PRNGs-CS implementation in regard to
the resources utilized, the speed, the efficiency, and the power consumption.

Table 7 lists the results of our three proposed PRNGs-CS designs.

Table 7. Harware metrics comparison of the proposed PRNGs-CS using ZYNQ PYNQ-Z2 FPGA.

PRNGs-CS

LSP-PRNG LST-PRNG LSPT-PRNG

Resources used
Area

LUTs 10,400/19.55% 3525/6.63% 11,391/21.41%
FFs 349/0.33% 434/0.41% 480/0.45%

Slices 3096/23.28% 1024/7.70% 3337/25.09%

DSPs 13/5.91% 25/11.36% 28/12.73%

Speed

WNSi (ns) 0.022 0.056 0.072
Ti (ns) 31.60 26.20 32.30
Max. Freq. (MHz) 31.66 38.24 31.09
Throughput (Mbps) 1013.36 1224 995.14

Efficiency (Mbps/Slices) 0.32 1.20 0.29

Power (W) 0.146 0.083 0.162

We can observe that the LST-PRNG consumes the minimum slice at 1024 slices, and the
LSPT-PRNG consumes the maximum slice at 3337 slices. All proposed PRNGs-CS offer high
speed. 1013.36 Mbps, 1224 Mbps, and 995.14 Mbps for LSP-PRNG, LST-PRNG, and LSPT-
PRNG respectively. The LST-PRNG offers the best throughput. Additionally, the LST-
PRNG architecture offers lower power consumption (83 mW) compared to LSP-PRNG
and LSPT-PRNG. The LST-PRNG design is ideal for IoT applications, and its efficiency is
1.20 Mbps/Slices.

We perform below a comparison of hardware metrics with several chaotic and non-
chaotic systems for various stream ciphers based on the PRNGs-CS proposed above.
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3.4. Performance Analysis of Stream Ciphers Based on Proposed PRNGs-CS

In this section, we first evaluate the security of stream ciphers (SC) based on the
proposed PRNGs-CS using well-known cryptanalytic analysis. We then provide hardware
metrics and compare them to several released systems.

3.4.1. Cryptanalytic Analysis

To evaluate the security of the proposed chaos-based stream cipher against the most
common attacks, we perform key sensitivity and statistical analysis on various encrypted
images below.

Sensitivity analysis
A robust cryptosystem must also be sensitive to secret keys. In other words, a small

change to the secret key will generate a completely different ciphered image. The sensitivity
is typically determined by two criteria, NPCR (Number of Pixel Change Rate) and UACI
(Unified Average Changing Intensity) [39]. We also apply the Hamming Distance (HD),
which is measured in bits. In our view, the HD parameter is more accurate than NPCR and
UACI criteria. The formulas for these parameters are given below, with C1, and C2 being
the two encrypted images of the same original image P.

NPCR =
1

M× N × P

M

∑
i=1

N

∑
j=1

P

∑
p=1

D(i, j, p)× 100% (41)

D(i, j, p) =
{

1 i f C1(i, j, p) 6= C2(i, j, p)
0 i f C1(i, j, p) = C2(i, j, p)

(42)

where M, N, and P are the width, height, and plane sizes (for a gray image, P = 1; for an
RGB color image, P = 3) of C1 and C2.

The NPCR calculates the proportion of distinct pixel numbers in two encrypted images.

UACI =
1

M× N × P× 255

M

∑
i=1

N

∑
j=1

P

∑
p=1
|C1(i, j, p)− C2(i, j, p)| × 100% (43)

which computes the average intensity of differences between C1 and C2.
For a random image, the expected values of NPCR, UACI, and HD are 99.6094%,

33.4635%, and 50%, respectively. We have tested five color images with the same size
512× 512× 3 and different features as shown in Figure 12.

(a) (b) (c) (d) (e)

Figure 12. Five test images with same size 512 × 512 × 3. (a) Lena. (b) Peppers. (c) Baboon.
(d) Barbara. (e) Boats.

Table 8 displays the NPCR, UACI, and HD values obtained for the original images of
Lena, Peppers, Baboon, Barbara, and Boats. These findings show that the generated NPCR,
UACI, and HD values are extremely near the optimal values. These results exhibit that the
proposed chaos-based stream ciphers are highly sensitive to slight changes in the secret key.
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Table 8. NPCR, UACI, and HD values.

Chaos-Based
Stream Ciphers

Test Lena Peppers Baboon Barbara Boats

LSP-SC
NPCR % 99.5966 99.6156 99.6206 99.6206 99.5966
UACI % 33.4374 33.4900 33.4769 33.4863 33.4377
HD % 49.9755 50.0010 49.9868 49.9868 49.9755

LST-SC
NPCR % 99.6059 99.6111 99.6181 99.5933 99.6199
UACI % 33.4565 33.4634 33.4486 33.4971 33.4809
HD % 50.0162 50.0079 50.0050 49.9926 50.0480

LSPT-SC
NPCR % 99.6159 99.6135 99.6056 99.6135 99.6159
UACI % 33.4637 33.4453 33.4751 33.4373 33.4606
HD % 50.0391 49.9834 49.9912 49.9834 49.9912

Statistical analysis
To analyze the resilience of the proposed chaos-based stream cipher against most

statistical attacks, we perform the following statistical analysis: histogram, chi-square,
entropy, and correlation.

Histogram and chi-square tests
The histogram of the ciphered image plays a crucial role in determining the effective-

ness of the encryption process. This indicates the pattern in which the gray levels of pixels
in an encrypted image are arranged, and it should be highly similar to a uniform distribu-
tion. Figures 13 and 14 show the results for Barbara and Boats of size 512 × 512 × 3 as an
example, in (a) the plain images, (b) the cipher images by LSP-SC, (c) the cipher images by
LST-SC, (d) the cipher images by LSPT-SC, and in (e–h) their histograms, respectively.
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Figure 13. Results of Barbara image. (a) Plain image. (b) Encrypted image by LSP-SC. (c) Encrypted
image by LST-SC. (d) Encrypted image by LSPT-SC. (e) Histogram of plain image. (f) Histogram of
the ciphered image by LSP-SC. (g) Histogram of the ciphered image by LST-SC. (h) Histogram of the
ciphered image by LSPT-SC.
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Figure 14. Results of Boats image. (a) Plain image. (b) Encrypted image by LSP-SC. (c) Encrypted
image by LST-SC. (d) Encrypted image by LSPT-SC. (e) Histogram of plain image. (f) Histogram of
the ciphered image by LSP-SC. (g) Histogram of the ciphered image by LST-SC. (h) Histogram of the
ciphered image by LSPT-SC.

We can see that the histogram of the ciphered image is highly similar to a uniform
distribution and vastly different from the original image. Using Equation (6), we perform a
chi-square test on ciphered images to establish their uniformity statistically, where here: Nc
is the number of levels, which is equal to 28 = 256.

As demonstrated in Table 9, the chi-square test results indicate that the histograms of
the encrypted images tested are distributed uniformly, as he theoretical values are higher
than the experimental ones.

Table 9. Chi-square test.

Chi-Square Test Value Lena Peppers Baboon Barbara Boats

χ2
th 293.2478 293.2478 293.2478 293.2478 293.2478

χ2
exp

LSP-SC 240.8893 251.3581 257.1510 243.0104 240.6367
LST-SC 221.4082 265.3704 241.5293 266.8132 228.1328

LSPT-SC 264.9030 244.7487 260.0397 280.6595 254.4102

Entropy analysis
The randomness of the encrypted image can be quantitatively measured through the

entropy information provided by Shannon [40]:

H(C) = −
Nc−1

∑
i=0

P(ci)× log2(P(ci)) (44)

with H(C) represents the entropy of the ciphered image and P(ci) denotes the probability
of occurrence of each gray level (ci = 0, 1, . . . , 255). When the probability is the same,
the entropy reaches its peak value (=8). The encryption algorithm is more robust when the
experimental entropy value is closer to the maximum value. The results of the entropy test
on the original and ciphered images are displayed in Table 10.
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Table 10. Entropy results obtained.

Entropy Lena Peppers Baboon Barbara Boats

Plain image 5.68222 7.66982 7.72644 7.69869 7.30541

Ciphered image LSP-SC 7.99977 7.99976 7.99976 7.99977 7.99977
LST- SC 7.99979 7.99975 7.99977 7.99975 7.99979
LSPT- SC 7.99975 7.99977 7.99976 7.99973 7.99973

The entropies of the encrypted images are close to the optimal value; therefore, the
stream cipher proposed in this study has a high level of robustness, as demonstrated by
these results.

Correlation analysis
In an original image, correlation analysis can be used to measure the relationship

between adjacent pixels in horizontal, vertical, and diagonal directions. This can be useful
in identifying patterns and features in the image, such as edges and textures. An effective
encryption process should result in ciphered images with minimal correlation and redun-
dancy between adjacent pixels (as close to zero as possible). We carry out the following
steps to evaluate the correlation: First, 8000 pairs of adjacent pixels are chosen at random
from the test image, and then the correlation coefficients are calculated using the formula
below.

ρxy =
Cov(x, y)√
D(x)

√
D(y)

(45)

where:

Cov(x, y) =
1
N

N

∑
i=1

[xi − E(x)][yi − E(y)] (46)

E(x) =
1
N

N

∑
i=1

xi (47)

D(x) =
1
N

N

∑
i=1

[xi − E(x)]2 (48)

The x and y are grayscale values of two pixels that are close to each other in the image
under test. The results achieved are presented in Table 11.

Table 11 indicates that the correlation coefficients for the original images are almost
one, demonstrating that the pixels are highly related, On the other hand, for the encrypted
images, the correlation coefficients are nearly zero, indicating that there is no correlation
between the original and encrypted images. As a result, there is no similarity between the
original and ciphered images, which demonstrates the high level of confusion achieved by
the proposed chaos-based stream ciphers.

Based on the analysis of histogram, entropy, and correlation, the proposed chaos-based
stream ciphers have a high capability to defend against statistical attacks.

Table 11. Correlation coefficients of two adjacent pixels in the plain and ciphered images.

Image Horizontal Vertical Diagonal

Lena

Plain image 0.97444 0.98468 0.96601

Ciphered image

LSP−SC 0.01204 0.00549 0.00739

LST−SC −0.00414 0.00020 −0.00595

LSPT−SC −0.00770 0.00437 −0.03169



Fractal Fract. 2023, 7, 197 22 of 26

Table 11. Cont.

Image Horizontal Vertical Diagonal

Peppers

Plain image 0.96216 0.96712 0.95239

Ciphered image

LSP−SC 0.01803 −0.01284 0.00973

LST−SC −0.00927 −0.00896 −0.00004

LSPT−SC −0.00797 0.01538 −0.00102

Baboon

Plain image 0.95444 0.93200 0.91957

Ciphered image

LSP−SC −0.00380 −0.00371 −0.00347

LST−SC 0.00374 −0.00295 −0.01533

LSPT−SC −0.01895 −0.00289 −0.00559

Barbara

Plain image 0.92453 0.97042 0.90707

Ciphered image

LSP−SC 0.00939 −0.02223 0.00264

LST−SC −0.01218 −0.00765 0.01441

LSPT−SC −0.00748 0.00685 −0.00556

Boats

Plain image 0.96971 0.97280 0.94049

Ciphered image

LSP−SC −0.01362 0.00053 0.01487

LST−SC −0.01202 −0.00099 0.02195

LSPT−SC −0.01370 −0.00055 −0.01461

3.4.2. Hardware Metrics

To quantify the performance of the proposed implementation of the chaos-based
stream ciphers in regard to the resources utilized (area, DSPs), the speed (Max. Freq.,
Throughput), the efficiency, and the power consumption, we cipher just four pixels. The pro-
posed PRNGs-CS produce at each clock cycle a 32-bit sample, and we used the least signif-
icant 8 bits for XORing with each pixel (8 bits) to generate the corresponding encrypted
pixel. Hardware metrics results for the proposed chaos-based stream ciphers are shown in
Table 12 and, as expected, are linked to results for the various proposed PRNGs-CS.

Table 13 provides an overview of the hardware metrics comparison of the chaos-based
stream ciphers proposed, the ZUC cipher, and chaotic and non-chaotic systems that are
part of the eSTREAM project phase 2-focus hardware profile. It is hard to make sense of this
comparison due to the varying characteristics of the used FPGAs. However, considering
the clock rate of the FPGA board and the efficiency achieved, this comparison can be made.
Therefore, with the exception of the Trivium and ZUC ciphers, the proposed chaos-based
stream ciphers have competitive hardware performance when compared to most other
chaotic and non-chaotic systems. Nevertheless, since 2007, several kinds of attacks have
been launched against the eSTREAM cipher and ZUC stream cipher, revealing several
vulnerabilities to cryptanalysis attacks [3,41–44].
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Table 12. Hardware metrics results of the proposed chaos-based stream ciphers.

Chaos-Based Stream Ciphers

LSP-SC LST-SC LSPT-SC

Resources used
Area

LUTs 10,420/19.59% 3549/6.67% 11,416/21.46%
FFs 448/0.42% 531/0.50% 577/0.54%

Slices 3160/23.71% 1049/7.89% 3385/25.45%

DSPs 13/5.91% 25/11.36% 28/12.73%

Speed

WNSi (ns) 0.050 0.060 0.149
Ti (ns) 30.90 27.20 32.40
Max. Freq. (MHz) 32.41 36.84 31.00
Throughput (Mbps) 1037.27 1179.07 992.21

Efficiency (Mbps/Slices) 0.32 1.12 0.29

Power (W) 0.152 0.099 0.182

Table 13. Comparison of hardware metrics usage among various chaotic and non-chaotic systems.

Cipher Device
Frequency (MHz)

Slices Throughput
(Mbps)

Efficiency
(Mbps/Slices) Power (W)

Clock Frequency Max. Freq.

LSP-SC PYNQ-Z2 125 32.41 3160 1037.27 0.32 0.152
LST-SC PYNQ-Z2 125 36.84 1049 1179.07 1.12 0.099
LSPT-SC PYNQ-Z2 125 31.00 3385 992.21 0.29 0.182
LST_RC-SC [7] PYNQ-Z2 125 36.78 1186 1177.20 0.99 0.101
LWCB SC [20] Zynq-7000 - 18.5 2363 LUTs 565 - -
Lorenz’s chaotic System [21] Virtex-II 50 15.598 1926 124 0.06 -
Chaos-ring [22] Virtex-6 125 464.688 1050 464.688 0.44 -
Trivium [45] Spartan 3 50 190 388 12,160 31.34 -
Grain-128 [46] Virtex- II 50 181 48 181 3.77 -
Mickey-128 [46] Virtex- II 50 200 190 200 1.05 -
ZUC stream cipher PYNQ-Z2 125 79.52 246 2544.53 10.34 0.23

Note: Nowadays, promising new fractional chaotic functions have appeared, which
seem very robust against cryptographic attacks. We believe they deserve further study
to build chaotic fractional systems for data security. The design of such fractional chaotic
systems must deal with the trade-offs between safety, performance, and cost.

4. Conclusions

In this paper, we evaluate the statistical security and hardware metrics on a Xilinx
PYNQ-Z2 FPGA board using VHDL of some chaotic maps, which are the basic compo-
nents of the proposed PRNGs-CS. We first demonstrated that the studied chaotic maps
have good hardware metrics but cannot be used alone as a secure PRNG. They are weak
against statistical attacks and have recognized attractors. Furthermore, we have shown
that XORing the output of a chaotic map with an LFSR improves the cryptographic proper-
ties of the coupled system. We then studied and implemented a new chaos-based stream
cipher (SC) based on a proposed secure PRNGs-CS. The proposed chaotic systems use
a weakly coupled matrix that prevents divide-and-conquer attacks on the initial vector
(IV) and improves the randomness of the generated sequences. We then evaluated the
cryptographic features of the proposed PRNGs-CS and analyzed their performance on
hardware metrics. The achieved results show a high level of security on the one hand
and good hardware metrics achieved by the proposed PRNGs-CS on the other hand. We
then realized corresponding chaos-based stream ciphers and confirmed their resistance to
cryptanalysis attacks. We also evaluated their hardware performance and compared them
to several chaotic and non-chaotic systems. All the obtained results demonstrate that the
proposed chaos-based stream ciphers are alternative candidates for data confidentiality
and integrity.
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Appendix A. Original Equations of Chaotic Maps Used

The logistic map is given by:

x(n) = f (x(n− 1), r) = r× x(n− 1)× (1− x(n− 1)) (A1)

with 0 < x(n) ≤ 1 and r ∈ [1, 4] the control parameter.

The Skew-Tent map is given by:

x(n) = f (x(n− 1), p) =


x(n−1)

p i f 0 ≤ x(n− 1) ≤ p

1−x(n−1)
1−p i f p < x(n− 1) ≤ 1

(A2)

where 0 < x(n) ≤ 1 and p is the control parameter of the chaotic map, which varies in the
following interval: 0 < p < 1.

The PWLCM is described by:

x(n) = f (x(n− 1), p) =



x(n−1)
p i f 0 ≤ x(n− 1) < p

[x(n−1)−p]
0.5−p i f p ≤ x(n− 1) < 0.5

f (1− x(n− 1), p) otherwise

(A3)

where 0 < x(n) ≤ 1 and p the control parameter: 0 < p < 0.5.

The standard 3D Chebyshev map is given by:

x(n) = f (x(n− 1)) = 4[x(n− 1)]3 − 3x(n− 1) (A4)

with x(n) ∈ [−1, 1].
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