
HAL Id: hal-03791689
https://nantes-universite.hal.science/hal-03791689

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Innovative Practices for Knowledge Sharing in
Large-Scale DevOps

Aymeric Hemon, Brian Fitzgerald, Barbara Lyonnet, Frantz Rowe

To cite this version:
Aymeric Hemon, Brian Fitzgerald, Barbara Lyonnet, Frantz Rowe. Innovative Practices for Knowledge
Sharing in Large-Scale DevOps. IEEE Software, 2019, 37 (3), pp.30-37. �10.1109/MS.2019.2958900�.
�hal-03791689�

https://nantes-universite.hal.science/hal-03791689
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Innovative practices for knowledge sharing in large-scale DevOps

Aymeric Hemon, Brian Fitzgerald, Barbara Lyonnet, Frantz Rowe

Publication date

01-01-2019

Published in

IEEE Software; 37 (3), pp. 30-37

Licence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document Version
1

Citation for this work (HarvardUL)

Hemon, A., Fitzgerald, B., Lyonnet, B.and Rowe, F. (2019) ‘Innovative practices for knowledge sharing in
large-scale DevOps’, available: https://hdl.handle.net/10344/8544 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2958900, IEEE
Software

Innovative Practices for Knowledge Sharing in
Large-Scale DevOps

Aymeric Hemon, ESSCA School of Management and University of Nantes

Brian Fitzgerald, Lero and University of Limerick

Barbara Lyonnet, University of Nantes

Frantz Rowe, University of Nantes and SKEMA Business School

Abstract:

Agile development methods and DevOps require adaptation during

implementation to meet the needs of a constantly changing software

development environment. The emergence of knowledge-sharing practices for

large-scale DevOps has not been the subject of much research. Our in-depth case

study, comprising 106 interviews at a large multinational company operating in a

DevOps at scale environment, identified a number of innovative practices which

had emerged, principally to resolve knowledge-sharing challenges. These

practices seem to be more likely to emerge in large-scale DevOps environments.

While similar results might have been achieved due to the large-scale nature of

the projects, it is difficult to determine definitively whether the main causal factor

is project size or DevOps. We believe that self-organization and continuous

improvement over a long period of time are also critical influencing factors.

Keywords:

Agile method, DevOps, Large-Scale, Innovative Practices, Knowledge Sharing

1. Introduction

I find myself more and more exasperated with the

great inflexible sets of rules that many companies

pour into concrete and sanctify as methods...Use the

prevailing method only as a starting point for

tailoring. -- Tom DeMarco (1982)

Agile methods emerged from the inability

of conventional (e.g. waterfall) methods to

deliver software to meet the needs of a

rapidly changing environment. Initially

agile methods were considered to have a

“home-ground” where they were best

suited, namely small projects, with co-

located developers, in non-critical domains.

This home-ground has been challenged

considerably in the past 15 years as

researchers and practitioners have tailored

the application of agile methods with new

roles, ceremonies and artefacts to meet the

needs of the development context, for

example in critical and regulated domains.

In addition, a bottleneck has emerged

due to a lack of alignment between the

Operations function (Ops), coordinating the

software release, and the Development

function (Dev). Consequently, releases to

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2958900, IEEE
Software

customers took more time. To solve this

problem, Debois1 advocated for more

collaboration between the Dev and Ops

functions through a tighter integration, a

rapprochement called DevOps. This term

DevOps comes from the fusion of two

words related to specific component

activities, Development and Operations.

While agile methods can achieve a more

frequent cadence of development of

software and a better alignment with

customer expectations, DevOps strives for a

continuous delivery of value through

continuous integration, delivery and

deployment. DevOps is hence an extension

of agile2 to the entire software delivery

pipeline, aiming to optimize lead time

between code writing and its use by end-

users in a real production environment.

We consider large-scale DevOps as we

focused on the four DevOps pillars

(Culture, Automation, Measure, Share) that

involve a large number of actors, systems

and interdependencies with more than two

teams working in the same project3 and

applying continuous integration, delivery

and deployment.
Roles and responsibilities do still matter in

the agile world, particularly when using

prescriptive methods as Scrum. DevOps

breaks silos and hence possibly blurs lines

(i.e. organizational, hierarchical) regarding

jobs, roles, collaborations, responsibilities,

skills and practices. DevOps potentially

amplifies this blurring between boundaries

when applied at large-scale.

In this paper, we focus on innovative

practices for knowledge sharing (KS) which

is one of the four DevOps pillars and will

argue that these practices are more likely to

emerge in large-scale DevOps. A KS

practice occurs when an individual transfer

what he knows to another individual.

When moving to large-scale agile,

challenges of KS and related success

criteria have been identified4, 5 which raises

the question about ensuring and improving

learning and KS practices. Ghobadi et al.

identified barriers6 and risks to effective KS

in agile teams. Risk perception is even

higher in DevOps than in agile7.

Consequently, KS challenges are larger and

more complex, since more points of view

come into consideration when using large-

scale DevOps. Managing knowledge

dependencies become critical in a large-

scale DevOps context8. Indeed, some

individuals could form a bottleneck to

knowledge transfer when moving to large-

scale DevOps. Despite the need for

innovation and tailoring, as expressed by

DeMarco in the opening quote, new KS

practices emerging for large-scale DevOps

have not been extensively studied. In that

respect Nielsen et al. proposed a DevOps

knowledge sharing framework (DOKS)9

and used the CESI dimensions

(Combination, Externalisation,

Socialisation, Internalisation) to increase

awareness of KS modes within the

organization. They concluded that the size

of the team and the size of the company

influence the move towards continuous

delivery and DevOps. They showed that

larger companies would need a more

structured plan when moving to DevOps to

ensure KS among their IT teams while

smaller companies do not need it.

Consequently, moving to large-scale

DevOps might impact KS practices.

In sum, the following KS challenges in

DevOps have been identified in the

literature:

1) More intense cross-functional

collaboration between Dev and Ops10, 11

2) Multiple environment

incompatibilities leading to specialized

teams12, 13

3) Capability to self-organize14

4) Loss of global vision of the project

and knowledge of application due to

automation7

5) Confinement of knowledge sharing to

hierarchical organisational structure and

process ‘red tape’7

6) Limited sharing when parts of

development or operations are outsourced15

Moving from DevOps to large-scale

DevOps amplifies the challenges linked to

DevOps, i.e. coordination and collaboration

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2958900, IEEE
Software

improvement, dependency management,

knowledge development and sharing. Three

of the six KS challenges above are

particularly salient. First, the capability to

self-organize could be affected by the

scaling-up of DevOps due to a larger

number of team members covering a wider

organizational perimeter. Second,

notwithstanding a higher level of

automation at scale, more frequent commits

(release) require manual coding

adjustment16 which needs a common

coordination mechanism, hence more

intense cross-functional collaboration.

Third, scaling DevOps could impact KS due

to more frictions with organisational

structure and process ‘red tape’.

2. Context

Our study was conducted in a large

multinational company (more than 100,000

employees) that has been practicing

DevOps for eight years, being one of the

very early adopters of the DevOps

approach. We followed the case study

method combining interviews, observations

and documentation. To identify KS

practices implemented by project teams, we

carried out direct observations during field

visits, attended 20 meetings plus an eight-

hour DevOps coaching day, and semi-

structured interviews with 106 employees

in total. These teams included multiple

functions associated with software

development, such as developer, project

manager, release engineers, UX designers,

PO and architects.

For each project, three of the four authors

worked together on a deep analysis. Firstly,

we collected information regarding the

agile methods and actual practices

supporting KS both inside and outside of

teams and related to the use of space (i.e.

common work area), to agile methodologies

(i.e. scrum of scrum meetings, daily

standup), and to collaborative tools

enabling KS (i.e. Slack or Atlassian JIRA).

Secondly, we compared our findings with a

baseline reference (12th State of Agile

Report) to identify potential innovative

practices. We studied specific adaptations

of agile practices and the development of

KS practices which had emerged to suit the

contingencies of the development

environment. Thirdly, we investigated the

literature where we found practices in use in

the company but not found in the baseline

reference report.

Identifying innovative KS practices thus

meant identifying those most advanced

within the 18 projects investigated in this

company. Those innovative KS practices

are likely to be “new to the firm”, but we do

not claim that they are “new to the world”.

However, they help address challenges

when moving towards large-scale DevOps.

Six out of the 18 projects studied are

practicing DevOps, and these innovative

KS practices were only found in two of the

projects which were using large-scale

DevOps. Project X started eight years ago,

operating in DevOps mode from the

beginning, and Project Y matured to

eventually operate in DevOps mode since

2016. Both projects are advanced in

DevOps and they practice continuous

delivery or continuous deployment.

Project X involves 85 people, organized

in seven teams, almost all co-located except

for an Ops team located a few miles away.

Teams are not necessarily the same size and

do not have to be composed the same way.

Project members work in DevOps and use

mainly a hybrid agile method derived from

Scrum, Kanban and XP. They scaled-up

their agile method, first with large-scale

Scrum (LeSS), then one year later they

moved to the Scaled Agile Framework

(SAFe). Project Y involves 65 people

divided into 5 teams distributed over four

geographical sites and two distant

countries, distant at many levels according

to Ghemawat’s CAGE model17.

Development activities are essentially

based in the same country while Operations

are mostly in another country. Project

members use mainly Scrum and Scrumban

and scaled-up with LeSS adopting practices

such as Scrum of Scrum. They also

implemented an international cross-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2958900, IEEE
Software

functional daily DevOps meeting.

3. Innovative Practices for
Knowledge Sharing

We propose three different levels of KS

practices based on three levels of DevOps

maturity (agile, continuous integration,

continuous delivery) in the transition from

agile to large-scale DevOps (see Table 1).

At the first DevOps maturity level, agile

teams do not cross functional silos and

DevOps is inexistent. At the second level,

teams practice continuous integration,

hence across silos. At the third level, teams

practice continuous delivery and/or

deployment. We identify four practices

which have emerged through tailoring of

the method and which address the needs of

DevOps in a large-scale development

context: Cross-Functional Dynamic Role

Rotation, Technical Thursdays, Heads-Up

Grooming & Planning, and the Circle. We

discuss each in turn below.

Table 1. Knowledge Sharing Practices in Transition to Large-Scale DevOps
(After 15)

Maturity Level Characteristic of KS Practice Path to Large-Scale DevOps

Level 1: Agile • More frequent KS due to iterative

process and more frequent

releases.

• Better communication and sharing

between customer and developers.

• Limited sharing among the team

and little common culture with PO.

• Large-Scale agile methods are used (e.g.

SAFe, LeSS).

• DevOps is not achieved because silos

still exist.

• KS is limited to specific silos (mostly Dev,

Biz to a lower level).

Level 2:

Continuous

Integration

• KS through the performance of

various tests (unit and non-

regression tests) synchronized with

code development.

• Automation as far as possible, task

automation knowledge transfer.

• Partial KS. Developers need quick

feedbacks.

• Partial common vocabulary and

culture boosting KS.

• Some common tools fostering KS.

• Different metrics and measurement

systems limiting KS.

• Some large-scale frameworks are used

and meet their first limits (i.e. rigidity of

SAFe) along the entire pipeline

• Alignment of Ops function on Dev

function is achieved.

• Some DevOps pillars like Sharing are

partially reached.

• KS is applied across silos between Dev

and Ops.

Level 3:

Continuous

Delivery

• Integration tests with other

components, end-to-end tests,

performance tests, user acceptance

tests are then co-designed,

performed and preferably

automated by Ops in conjunction

with the Dev function.

• Learning and Extensive KS.

• Shared backlog.

• Shared work system.

• Shared metrics and measurement

• Large-scale frameworks are particularly

challenged on KS along the entire

pipeline

• Higher degree of alignment, sharing and

automation.

• Full DevOps practices on 4 pillars with

high level of KS across teams and

beyond.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2958900, IEEE
Software

tools.

• Innovative KS practices appear.

3.1 Cross-Functional Dynamic Role

Rotation (DRR)

A more significant involvement of certain

functions (Project Manager, PO and Scrum

Master) was highlighted during Daily

Standup Meetings. In some projects, this

involvement was even more pronounced as

several of these functions were performed

by the same individuals. To overcome this

difficulty, one of the large project teams at

an advanced level of DevOps maturity

proposed a new practice which involved a

cross-functional DRR and therefore

associated responsibilities. Job rotation in

the software development context has been

identified in a previous study18 as a mean of

addressing organizational concerns and

stimulating innovation. The instantiation of

this role rotation in the cross-functional

DRR practice in our case enabled large-

scale learning and KS since all team

members were able to perform several roles

and became more knowledgeable. DRR is

usually limited to a specific area i.e. the

development team or the operations team. A

developer can become a scrum master for a

week or a sprint, then he goes back to his

position. In our cases, DRR is cross-

functional and for instance, Production

Engineers (Ops) performed code reviews.

All members from both sides, Dev and Ops,

were able to meet and work together

alternatively. Cross-functional DRR also

ensured that the ‘heavy-lifting’ workload

did not fall on the same individuals

repeatedly. It also fulfilled the role of

‘succession planning’ in that team

composition became more flexible as

individuals could be ‘swapped out’ without

causing major perturbation to the extent that

the teams could not function.

3.2 Technical Thursdays (TT)

Another practice which emerged in the

context of technical knowledge-sharing was

labelled “Technical Thursdays”. These

‘tech-talk’ events took place over a half-day

every two weeks. The goal was to

disseminate and share technical knowledge,

particularly in relation to technologies,

tools, skills, or other topics. These would

typically be championed and led by an

individual team member. They could take

the form of workshops on new technology

topics (e.g., containerization, automated

configuration management, infrastructure

as code), and related tooling (e.g., Puppet,

Docker), discussions of new initiatives

(e.g., A/B experimentation) challenges (e.g.

hackathons), games (e.g. Code Wars). A

playful spirit and gamification were often a

strong component of this practice, which

had the extra benefit of boosting morale and

team spirit.

The difficulty with these tech-talks lies

in the fact that KS could be limited to a

group a person or to communities of

practice (CoP). Therefore, inter-team KS at

large scale could be an issue for agile

software development organizations19. The

originality of these TT events is that they go

beyond CoP and the risk of developing

knowledge on a tribal basis. TT are fully

cross-functional, both vertically and

horizontally across silos where they existed.

One could have supposed the Code War

game was only intended for Developers.

However, POs, Architects, Designers,

Developers, Testers, Ops Engineers have

been invited to this game. Participants

participated in teams other than their usual

one. Teams had to be mixed and represent

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2958900, IEEE
Software

as many trades as possible at the

organization level. While hackathons are

mostly frequented by developers, this game

fostered large-scale KS across the Dev and

Ops areas and significantly helped the

realization of projects, i.e. the

implementation of Docker containers for

deployment system proposed by Ops and

accepted by Dev beyond project teams.

3.3 Heads-Up Grooming and Planning

(HUGP)

Backlog Grooming, or backlog refinement,

can be understood in different ways. In the

18 projects we studied, backlog grooming

consisted of short-term User Story costing.

However, in a large project where the team

uses DevOps, one PO had instantiated a

new practice to support backlog grooming

and Sprint Planning, which is labelled as

Heads-Up Grooming and Planning

(HUGP). This practice is similar to Rolling

Lookahead Planning (RLP) in the sense that

there is a high-level release plan and sprints

are then gradually refined as they start. In

this HUGP ceremony, the PO no longer

performs any immediate user story

estimation with the team. Instead, the PO

just provides the team with broad

information on the subject. The idea is to

give the team a visualization of the work to

come. This meeting is short - somewhere

between 10 minutes and a maximum of 30

minutes. Subsequently, the Sprint Planning

meeting takes place and lasts two hours

where user stories are presented, estimated

and broken down into tasks. However, the

effect of the previously held HUGP practice

is very noticeable. The PO describes it well:

The team is more confident and self-assured

when it comes to story point estimation. There is

less error or difference. The team members have

had time to go through the code and figure out if

they had any doubts. They discuss it among

themselves, around a foosball game.

We consider HUGP as an extension of

RLP. Both adopt a just-in-time approach to

up-front planning; both foster discussion

within teams for identification and

estimation of product backlog components.

However, we suggest that HUGP differs

because it is more than a discussion about

user story estimation. HUGP strongly

promotes KS, pushing team members to go

into the code, to learn, to test something

new, to enrich each other and even to

consult Ops engineers on specific topic (i.e.

production environment, deployment

package). Before the discussion, there is a

transfer of knowledge between members

and this helps them to surface their

arguments for better estimates. The benefits

of such KS practices are multiple: time-

saving when estimating user stories, clearer

and more accurate estimations, engendering

a greater sense of Dev team empowerment,

at the DevOps team level, then across the

project.

3.4 The Circle

One issue with Sprint Retrospectives is that,

if they are done at all, they are often

combined with the Sprint Review

ceremony. Also, they are confined to a

single team, hence limiting KS19, thereby

minimizing the opportunity for KS in

achieving continuous improvement and

consequently not fostering Agile and

DevOps at large-scale.

The team met difficulties with

retrospectives, primarily because they were

quite complex to organize with a team of 85

people. They decided to set up joint

reflection ceremonies, which were known

as the Circle. This practice is based on

discussion among a group of people who

represent all the jobs and roles across

multiple project teams, i.e. managers, PO,

architects, developers, testers, Ops

engineers. Participation is voluntary. The

circle is a forum for real exchange of

knowledge across all team functions. This

Circle was composed of about 20 people

who met twice a month. The Circle practice

fulfilled the role of the Sprint Retrospective

at large-scale by stimulating and animating

reflection on the daily functioning of teams

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2958900, IEEE
Software

and the organization but had the added

advantage of comprising multiple teams.

This reflection was particularly useful for

implementing the other innovative practices

mentioned here, as the use of new practices

does not always get the support of all, and

therefore their implementation must be the

subject of open discussion.

When the shared knowledge appeared

valuable, e.g. Code Wars, it is adopted and

disseminated across teams. In this way, they

limit the problem of missing valuable

knowledge or not capitalizing on this

knowledge. The Circle allowed such

discussion to take place and ensured that all

these innovative practices could evolve and

develop, much in the spirit of the quote by

DeMarco above. This practice typically

responded to KS challenge when large-

scale DevOps was applied (see Table 1) and

went beyond DevOps boundaries

integrating the Biz domain also.

3.4 KS Major Challenges Resolution

Different innovative practices have met the

challenges of KS in the context of large-

scale DevOps. We summarize the main KS

challenges and impacts generated by each

of them (see Table 2).

Table 2. Major Challenges and Impacts of Innovative Practices

Innovative
practices

Major challenges
addressed

Impact

Cross-
Functional
DRR

- Intense cross-
functional
collaborations
- Team self-
organization
challenges.

• Enables the breaking of knowledge dependencies [15] because
knowledge is not anymore hold by an individual. However, this
obliges team members to communicate amongst themselves to
carry out their role effectively.

• When team members rotate, they can punctually take on
responsibilities, develop skills and acquire knowledge. This fosters
autonomy of the team.

Technical
Thursdays

- More intense
cross-functional
collaboration
-Complex
environments and
specialized teams.

• All team participants (representing almost every area, i.e. business,
development, quality...) can discover and learn new approaches
without any consideration regarding the belonging to a specific
functional silo or the position held.
This is how Ops teams by passed organizational culture related to
training and Ops made Dev teams discover Rancher, an open
source tool to deploy and manage containers in production
environments.

• Helps to prevent from an over specialization of teams by fostering
KS and by increasing the knowledge base or individuals
understanding of these multiple environmental complexities and
incompatibilities.

Heads-Up
Grooming
and
Planning

-Confinement of KS
due to hierarchical
and organizational
structure and
process red tape.

• Facilitates KS at scale avoiding the repetition of red tapes and
reduces the burden of agile processes and organizational rules and
procedures.

• By practicing HUGP, the manager gives the team members the
possibility to obtain central information that they would not have had
while respecting the processes of the agile method and the
organization. Team members can therefore use information in
advance which allows them to enrich and transform the information
into knowledge. This new knowledge is shared and allows them to
make more realistic and accurate decisions in their mission.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2958900, IEEE
Software

The Circle

-Capability to self-
organize
-Multiple
environment
incompatibilities
leading teams’
specialization.

• Facilitates the circulation of knowledge because the Circle is fully
cross-functional with representants from all jobs linked to the
project and, in the same time, because the circle is only 20
individuals representing larger teams (85 people).

• This fosters KS at large-scale, decision-making and consequently
teams’ autonomy.

4. Large-Scale DevOps Enabler
of Innovative KS Practices

While the Scrum method is the backdrop for

the projects we surveyed, reality is much

more complex in terms of overlapping and

complementary practices20. Thus, we were

able to identify the development of

innovative KS practices only in the most

advanced project (see Table 1). This raises

the question of how large-scale DevOps

enables innovation. Our hypothesis is that

these innovation practices are the result of

further continuous improvement, facilitated

by stronger levels of self-organization in

DevOps teams acting on a broader mandate.

As already mentioned, these KS practices

were in fact observed in large-scale projects

which commenced eight years ago, one of

them operating in DevOps mode from the

beginning, and the other maturing to

eventually operate in DevOps mode since

2016. The other four DevOps projects were

clearly sharing knowledge (e.g. common

project management, common processes,

common tools e.g. shared continuous

integration and automated deployment

tools, co-construction of deliverables) and

used basic practices. However, KS was less

developed than the other two. This may be

because they had had less time to develop

those, but also because three of these four

were smaller projects.

Interestingly, in this large company,

these innovative KS practices were not

shared across all projects, even at the same

level of software process maturity. These

innovative KS practices addressed specific

challenges faced by projects and helped the

organization resolving initial problems

partially or fully. Large-scale DevOps may

require more KS practices since additional

constraints have to be integrated between

the business, development and operations

functions. Such KS practices respond to

projects operating in both large-scale and

DevOps because such joint conditions

multiply coordination issues and risks

related to lack of competencies15.

Moreover, we believe that project

autonomy or self-organization and

continuous improvement over a long period

of time are also critical influencing factors.

Thus, in the teams who developed KS

practices:

• Projects were more advanced in

agile and tended towards large-scale

DevOps

• The larger they were, the more they

were self-organized and used their

relative autonomy to continuously

improve over a long period of time,

• Also more they were more likely to

develop innovative KS practices

within their teams and across

functional boundaries.

Clearly the emergence and

implementation of these innovative KS

practices is an outcome of multiple

idiosyncratic conditions and we would need

more data beyond the 18 projects studied

here to reach any firm conclusion.

However, observations in our ongoing

research on this topic in other firms tend to

support a large-scale DevOps effect and a

continuous improvement effect related to

self-organization in the generation of

innovative KS practices. Using DevOps at

large-scale amplifies the KS challenge as

well as related solutions through the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2958900, IEEE
Software

development of innovative practices. Such

effects are not fixed, as the implementation

of these practices is not fixed, and is subject

to continuous adjustment to avoid

deterioration and rigidity, or indeed being

poured into concrete!

References
[1] P. Debois, “Devops: A software revolution in the

making,” Journal of Information Technology

Management, vol. 24, no. 8, pp. 3–39, 2011.

[2] M. Virmani, “Understanding DevOps & bridging

the gap from continuous integration to continuous

delivery,” in Innovative Computing Technology

(INTECH), 2015 Fifth International Conference

on, 2015, pp. 78–82.

[3] T. Dingsøyr, T. E. Fægri, and J. Itkonen, “What is

large in large-scale? A taxonomy of scale for agile

software development,” in International

Conference on Product-Focused Software Process

Improvement, 2014, pp. 273–276.

[4] T. Dingsøyr and N. B. Moe, “Research challenges

in large-scale agile software development,” ACM

SIGSOFT Software Engineering Notes, vol. 38,

no. 5, pp. 38–39, 2013.

[5] D. Smite, N. B. Moe, G. Levinta, and M. Floryan,

“Spotify Guilds: How to Succeed With

Knowledge Sharing in Large-Scale Agile

Organizations,” IEEE Software, vol. 36, no. 2, pp.

51–57, 2019.

[6] S. Ghobadi and L. Mathiassen, “Perceived barriers

to effective knowledge sharing in agile software

teams,” Information Systems Journal, vol. 26, no.

2, pp. 95–125, 2016.

[7] A. Hemon, L. Monnier-Senicourt, and F. Rowe,

“Job Satisfaction Factors and Risks Perception:

An embedded case study of DevOps and Agile

Teams,” in Proceedings of the 39th International

Conference on Information Systems (ICIS), San

Francisco, CA, USA, 2018.

[8] V. Stray, N. B. Moe, and A. Aasheim,

“Dependency management in large-scale agile: a

case study of DevOps teams,” in Proceedings of

the 52nd Hawaii International Conference on

System Sciences (HICSS), Grand Wailea, Maui,

HA, USA, 2019.

[9] P. A. Nielsen, T. J. Winkler, and J. Nørbjerg,

“Closing the IT Development-Operations Gap:

The DevOps Knowledge Sharing Framework,” in

16th International Conference on Perspectives in

Business Informatics Research. BIR 2017,

Copenhagen, Denmark, 2017, pp. 1–15.

[10] W. Gottesheim, “Challenges, benefits and best

practices of performance focused DevOps,” in

Proceedings of the 4th International Workshop on

Large-Scale Testing, 2015, pp. 3–3.

[11] A. Wiedemann, “A New Form of Collaboration in

IT Teams-Exploring the DevOps Phenomenon,” in

Proceedings of the 21st PACIS Pacific Asia

Conference on Information Systems, Langkawi,

2017, vol. 82, pp. 1–12.

[12] L. E. Lwakatare et al., “Towards DevOps in the

embedded systems domain: Why is it so hard?,” in

System Sciences (HICSS), 2016 49th Hawaii

International Conference on, 2016, pp. 5437–

5446.

[13] J. Smeds, K. Nybom, and I. Porres, “DevOps: a

definition and perceived adoption impediments,”

in International Conference on Agile Software

Development, 2015, pp. 166–177.

[14] A. Wiedemann, “IT Governance Mechanisms for

DevOps Teams-How Incumbent Companies

Achieve Competitive Advantages,” in

Proceedings of the 51st Hawaii International

Conference on System Sciences (HICSS), 2018.

[15] A. Hemon, B. Lyonnet, F. Rowe, and B.

Fitzgerald, “Conceptualizing the Transition From

Agile to DevOps: A Maturity Model for a Smarter

IS Function,” in IFIP WG 8.6 Working

Conference, Portsmouth, UK, 2018.

[16] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and

B. Vasilescu, “The impact of continuous

integration on other software development

practices: a large-scale empirical study,” in

Proceedings of the 32nd IEEE/ACM International

Conference on Automated Software Engineering,

2017, pp. 60–71.

[17] P. Ghemawat, “Distance still matters,” Harvard

business review, vol. 79, no. 8, pp. 137–147, 2001.

[18] T. E. Fægri, T. Dybå, a, and T. Dingsøyr,

“Introducing knowledge redundancy practice in

software development: Experiences with job

rotation in support work,” Information and

Software Technology, vol. 52, no. 10, pp. 1118–

1132, 2010.

[19] V. Santos, A. Goldman, and C. R. De Souza,

“Fostering effective inter-team knowledge sharing

in agile software development,” Empirical

Software Engineering, vol. 20, no. 4, pp. 1006–

1051, 2015.

[20] B. Fitzgerald, G. Hartnett, and K. Conboy,

“Customising agile methods to software practices

at Intel Shannon,” European Journal of

Information Systems, vol. 15, no. 2, pp. 200–213,

2006.

Aymeric Hemon is an Assistant Professor in MIS at

Essca School of Management and a researcher at

the LEMNA Laboratory, University of Nantes. He

is also Senior Lecturer in Software Engineering at

the Mines Telecom Institute. His research focus

on IS-enabled organizational transformation,

particularly on agile methods and DevOps.

Contact him at Essca School of Management, 1

rue Joseph Lakanal - BP 40348, 49003 Angers

Cedex 01, France, aymeric.hemon-

hildgen@essca.fr

Brian Fitzgerald is Director of Lero ­ the Irish

Software Research Centre. He also holds an

endowed professorship, the Krehbiel Chair in

Innovation in Business & Technology, at the

University of Limerick, Ireland. His publications

include 15 books and more than 150 peer-

reviewed articles in the leading international

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2958900, IEEE
Software

journals and conferences in both the Information

Systems and Software Engineering fields. Prior

to taking up an academic position, he worked in

the software industry for about 12 years. Contact

him at University of Limerick, LERO, Castletroy,

Limerick, V94 T9PX, Ireland,

brian.fitzgerald@ul.ie

Barbara Lyonnet is an Associate Professor in

Management Sciences at University of Nantes

and a researcher at LEMNA Laboratory, France.

She has published in the field of information

system, quality management and supply chain

management. She has also written several books

including "Lean management". Contact her at

University of Nantes, LEMNA, Chemin de la

Censive du Tertre, Bâtiment Erdre, 44322 Nantes,

France, barbara.lyonnet@univ-nantes.fr

Frantz Rowe is a Professor at University of Nantes,

and a researcher at LEMNA and at KTO, SKEMA

Business School, France, former CIO of his

university and Professor at Telecom Paris; an AIS

Fellow an Honorary member of AIM and a

member of IFIP 8.2 and 8.6; He is Editor Emeritus

of EJIS. He directed the research program on

DevOps at LEMNA on which this paper is based.

Contact him at University of Nantes, LEMNA,

Chemin de la Censive du Tertre, Bâtiment Erdre,

44322 Nantes, France, frantz.rowe@univ-

nantes.fr

	Innovative practices for knowledge sharing in large-scale DevOps

