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ABSTRACT
Outlier analysis and spammer detection recently gained mo-
mentum in order to reduce uncertainty of subjective ratings in
image & video quality assessment tasks. The large proportion
of unreliable ratings from online crowdsourcing experiments
and the need for qualitative and quantitative large-scale stud-
ies in the deep-learning ecosystem played a role in this event.
We study the effect that data cleaning has on trainable mod-
els predicting the visual quality for videos, and present results
demonstrating when cleaning is necessary to reach higher ef-
ficiency. To this end, we present and analyze a benchmark on
clean and noisy User Generated Content (UGC) large-scale
datasets on which we re-trained models, followed by an em-
pirical exploration of the constraint of data removal. Our re-
sults show that a dataset presenting between 7 and 30% of
outliers benefits from cleaning before training.

Index Terms— Outlier, Cleaning, Video Quality Metrics,
User Generated Content, Training metrics

1. INTRODUCTION

This last decade, Video Quality Metrics (VQMs) based on
deep neural networks [1, 2, 3] reached higher efficiencies
than previous hand-crafted features solutions. However,
these models often require large datasets for training and val-
idation. This requirement led to the curation of large-scale
representative image and video datasets with corresponding
human subjective ratings, which are well beyond what was
possible to acquire using in-lab study designs. Crowdsourced
data collection was the solution to scale-up the datasets [4, 5],
but the approach came with additional challenges in terms of
outlier and spammer removal. Traditional subjective screen-
ing protocols (e.g., ITU BT500 [6]) are not applicable, as
not all subjects see all video stimuli in crowdsourced exper-
iments, implying fewer overlapping stimuli between raters,
limiting inter-rater consistency checks.

Advanced data-cleaning methods have been developed
(e.g., [7, 8]), but their efficacy has not been evaluated on
such large scale crowdsourced datasets. Furthermore, despite

outlier removal and subject screening being standard practice,
the impact of outliers on Mean Opinion Score (MOS) and the
resulting effect on learned video quality metrics is largely
unstudied. For instance, it is unclear how beneficial screen-
ing and removing unreliable data will be for learning-based
models, and at what proportion of outliers are the models
affected.

In this paper, we will first explore and analyze several
state-of-the-art probabilistic data-cleaning methods [7, 8] on
a large-scale subjective video quality datasets: the YouTube
UGC Dataset [4] H.264. We evaluate these methods with re-
spect to their ability to improve confidence in our estimates,
and test repeated applications of these methods to understand
their convergence (Section 2.2). We then perform extensive
analysis of several state-of-the-art learned blind VQMs and
evaluate their performance with several criteria (Section 3),
including typical correlation figures of merit and pairwise-
paradigm evaluations that take into account uncertainty of the
subjective scores [9]. When varying the proportion of outliers
in the training dataset, we confirm that the more outliers, the
stronger the need is to screen out unreliable behaviors (Sec-
tion 4). One of the main contributions is the analysis method-
ology used to evaluate the sensitivity of VQM training to out-
liers in the training set.

2. APPLYING OUTLIER AND SPAMMER
DETECTION

Our analysis focuses on UGC video, which has gained expo-
nential growth with the daily use of social media. Such con-
tent, created by casual users, represents a large share of the
internet traffic. The quality of UGC videos may be affected
by multiple distortions (e.g., compression, blur, noise) and
aesthetic issues–causing differing opinions on overall quality.
For this reason, UGC content is challenging to get accurate
ratings, and, together with online tests, it serves as a practical
testbed to evaluate the impact of outliers on VQM efficacy.

We focus on YouTube UGC H.264 dataset (YT-UGC
MOS) [4], collected on 9544 online observers, each assigned



Table 1. Results of outlier detections: number of detected outliers (#o) over the N = 9544 raters, DMOS , and DCI when
compared to the previous iteration. Same information for the combination of metrics. Underlined results indicate a positive
gain in confidence (reduction of CIs).

iteration models
algorithm 1 2 3 4 5 combination (1 + 2) overall

MLE CO
#o 872 +34 +34 +35 +36

MLE CO + GPM
#o (872 + 191) 1063

DMOS 0.0603 0.0037 0.0041 0.0042 0.0039 DMOS 0.072
DCI 14.44 0.433 0.403 0.431 0.421 DCI 15.42

GPM
#o 664 +11 +1

GPM + MLE CO
#o (664 + 387) 1051

DMOS 0.0654 0.0031 0.001 DMOS 0.066
DCI 14.51 0.195 0.025 DCI 12.51

with a playlist of 30 video stimuli over 1385 sequences over-
all. Participants rated continuously on an Absolute Category
Rating (ACR) scale from 1 to 5. Some outlier detection
algorithms only support discrete ACR scores; therefore, we
performed quantization by rounding. This assumption is valid
in that if only a discrete ACR scale was used, the rater would
have picked the nearest integer score.

For ecological validity, it is good practise to perform the
analysis on several datasets. However, it is very difficult to
find datasets suitable to our needs: some do not share raw
scores but only report MOS and CIs (e.g. LIVE-VQC [10])
; some already removed screened outliers (e.g; KoNViD-
1K [5]); some are not large enough for metric fine-tuning
(e.g. LIVE Netflix VQoE [11]); some are unreliable or do
not provide enough information about the dataset production
(e.g. ICME grand challenge QAC UGC [12]).

As our analysis in subsequent sections depends on the out-
lier detection, and since there is no ground truth for outlier
detection, we pay special attention to review (§2.1) and to
evaluate the most relevant options (§2.2) below.

2.1. Outlier Detection methods

For in-lab studies, the International Telecomunication Union
(ITU) standardised a method based on box-plot outlier detec-
tion [6]. Numerous other techniques tackle the issue such as
density-based algorithms, with Majority Voting (MV) [13] -
naively assuming the most answered label is the ground truth
- or the Probability Modeling (PM) [13] - using Expectation-
Minimization (EM) to derive workers’ quality. Recently,
elegant solutions rely on Maximum Likelihood Estima-
tion (MLE) like the MLE CO [14] inferring a subject’s bias
and inconsistency. Other models use graphical models [8]
and EM to infer reliability and answers regularity (GPM) [7]
or annotator expertise, content ambiguity and most probable
label (GLAD) [15]. These techniques apply on non-binary
linear-scale scores, i.e. for ACR or Double Stimulus Impair-
ment Scale (DSIS) scores. In case of binary answers, such as
the expression of preference during a Pair Comparison (PC)
test, recent works [16, 17] favored the use of dissimilarity
metrics (Rogers-Tanimoto (RT) dissimilarity [18], Cohen’s
Kappa Coefficient [19]) to estimate inter-observer agreement.

All outlier techniques are not applicable on large-scale
datasets. For instance, crowdsourcing collections rarely
present raters’ playlists with sufficient intersection to con-
duct dissimilarity analysis. Thus, PM and binary outlier
detections have been dropped from the study. GLAD is com-
putationally costly. As it is conceptually close to GPM, we do
not include it in the study. MV suffers from the simplicity of
its model and its prior assumption that all raters are reliable,
and thus penalises too much good raters. Finally, Youtube
UGC already rejected outliers detected with algorithms form
the ITU. For these reasons, we consider the GPM and MLE
CO techniques in the following analysis.

2.2. Outlier Detection Evaluation

We defined two figures of merit to verify the outlier removal
efficiency. We want to verify that MOS are relatively stable
and that 95% Confidence Intervals (CIs) have been reduced.
To study the amount of variation introduced by the detection,
we consider the Root Mean Square Error (RMSE) between
MOS before and after the screening, and the sum of the abso-
lute difference between ”clean” (without scores from outliers)
and ”noisy” CIs:

DMOS = RMSE(MOSnoisy,MOSclean)

DCI =
∑Nstim

i=0 |CInoisyi − CIcleani |
with Nstim the number of stimuli.

The MLE CO algorithm rejects raters with a bias and in-
consistency over a specific threshold. We empirically set the
threshold to 1, which corresponds to 5% of raters showing
disruptive behaviors. Interquartile range (IQR) [16] or other
techniques could have been used interchangeably. Also, note
that the GPM method assumes that most raters are reliable.

We first observe that both methods do not necessarily de-
tect the same raters as outliers. For instance, there is an inter-
section of 477 outliers between GPM and MLE CO. We thus
decided to explore repeating or cascading the outlier detec-
tions, as such a process may end up screening outliers more
efficiently. Table 1 introduces the number of outliers and the
figures of merit results for repeating and cascading models.
Repeating GPM always reduces CIs, i.e., increases our con-
fidence in scores, and stops finding outliers after three iter-
ations. Note that the first iteration removed most of the ob-



Table 2. Efficiencies of 5-fold 60/20/20 trained metrics on clean and noisy data. Numbers in brackets are the std over the folds.
We highlighted the best results per figure of merit, per VQM. Underlined figures means a significant difference has been found
by a statistical test.

VQMs SRCC↑ KRCC↑ PLCC↑ RMSE↓ AUC D-S↑ AUC B-W↑ C0↑
RAPIQUE clean 0.769 (0.014) 0.574 (0.01) 0.775 (0.01) 0.387 (0.014) 0.680 (0.002) 0.907 (0.0005) 0.826
RAPIQUE noisy 0.765 (0.013) 0.572 (0.011) 0.771 (0.011) 0.392 (0.011) 0.679 (0.002) 0.905 (0.0005) 0.825
VIDEVAL clean 0.734 (0.041) 0.537 (0.037) 0.721 (0.046) 0.427 (0.03) 0.664 (0.002) 0.8879 (0.0006) 0.807
VIDEVAL noisy 0.733 (0.041) 0.536 (0.036) 0.722 (0.044) 0.424 (0.022) 0.663 (0.002) 0.8874 (0.0006) 0.806
TLVQM clean 0.596 (0.026) 0.419 (0.023) 0.593 (0.034) 0.481 (0.013) 0.592 (0.002) 0.8207 (0.0007) 0.7422
TLVQM noisy 0.595 (0.028) 0.417 (0.024) 0.594 (0.037) 0.482 (0.014) 0.593 (0.002) 0.8208 (0.0007) 0.7419
VSFA clean 0.752 (0.02) 0.553 (0.017) 0.752 (0.021) 0.409 (0.025) 0.651 (0.002) 0.897 (0.0006) 0.812
VSFA noisy 0.737 (0.028) 0.538 (0.024) 0.737 (0.028) 0.427 (0.042) 0.641 (0.002) 0.887 (0.0006) 0.802

servers presenting disruptive behaviors. Per design, MLE CO
always finds outliers, but it does not increase the reliability of
mean scores after a first pass. We thus concluded that apply-
ing the algorithm once is sufficient.

Accordingly, we tried the combinations of methods. Rea-
sonably, the combination MLE CO + GPM gains more in reli-
ability (higher DCI ) with similar conservation of MOS. Note
that this result is in line with the GPM underlying assumption.

Overall, with the MLE CO + GPM pipeline, we detected
1063 spammers over the 9544 annotators, i.e., 11% of raters
are identified as unreliable. It confirms the high quality of the
YT-UGC MOS dataset, especially regarding the crowdsourc-
ing collection. In the following, we refer to MLE CO + GPM
when talking about the outlier detection.

3. BENCHMARK OF BLIND VIDEO QUALITY
METRICS

We then conduct a benchmark study to understand the in-
fluence of outlier removal on the training of VQMs. We
first clean the data and provide clean and noisy datasets to
train new models through a 5-fold cross-validation (using
60/20/20% splitting into training, validation, and test sets).
We train each quality model on clean and noisy data, and
evaluate the predictions of metrics on the clean test set. We
call a metric clean (resp. noisy) when it has been trained on a
dataset without (resp. with) the rejected scores of unreliable
raters.

We consider the four blind VQMs mostly used in the
UGC ecosystem [1], namely RAPIQUE [2], VIDEVAL[1],
TLVQM [20] and VSFA [3]. Briefly, VSFA implements a
Convolutional Neural Network (CNN) and Gated Recurent
Unit (GRU) scheme modeling content- and memorability-
dependant quality. VIDEVAL selects the best features from
state-of-the-art metrics through random forest and fusion
them with a Support Vector Regression (SVR). TLVQM con-
siders local temporal quality (chunks of 1 second). TLVQM
identifies the most representative frame of a chunk through
22 low complexity features (LCF) and computes 30 high
complexity features (HCF). An SVR is then trained on aver-

ages and standard deviations (std) of frames LCF and chunks
HCF. Finally, RAPIQUE combines low-complexity spatio-
temporal features along with a semantic-based CNN.

To conduct a fair comparison between video quality met-
rics, and their clean and noisy versions, we used several
indicators: the typical Pearson Linear Correlation (PLCC),
Spearman Ranking-order Correlation (SRCC), Kendall Rank
Correlation (KRCC), and RMSE, and measure statistical sig-
nificance between the distributions by a t-test. To look further
into the influence of unreliable raters into training sets on
metrics, we include Krasula’s framework [9] operating in
the pairwise paradigm. It expresses metrics’ discriminating
power (whether stimuli from a pair show a significant differ-
ence) and ranking power (assessing which stimuli is better).
It takes into account the uncertainty of subjective scores and
is independent of the quality range of stimuli. From Krasula’s
framework [9], we extract the Area Under the Curve (AUC)
D-S between the Different and Similar distributions (discrim-
inating power), the AUC B-W between the Better and Worse
distributions (ranking power), and its percentage of correct
classification (C0). In order to assess statistical difference
between metrics, the Fischer exact test is used for C0, and the
Hanley-McNeil power law for AUC.

The results of the benchmark are in Table 2. For all linear
figures of merit but PLCC, screening and removing outliers
before training a metric is beneficial. The RMSE for VIDE-
VAL also shows significantly better noisy version. It hints
that this metric is particularly robust to outliers. No signif-
icant differences were found in the pairwise measures (e.g.,
AUC D-S, AUC B-W, C0).

From these results, although outlier detection does not ap-
pear to be strictly beneficial, it also does not degrade the effi-
ciency of the trained metrics. Therefore, we still recommend
to always apply outlier detection.

We expected significantly lower performance of the noisy
metrics, YT-UGC MOS is of high quality with only 11% of
detected outliers. We suspect having hit the limit of the outlier
screening gain due to the variations in correlations and RMSE
and the lack of statistical significance in pair-wise figures of
merit.



Fig. 1. Evolution of clean and noisy metrics learnt on datasets of various outlier percentage (po) and N = 15 in function of
figures of merit scores.

4. IMPACT OF OUTLIER RATIO ON TRAINABLE
METRICS

We are now interested in understanding the relationship be-
tween the outlier ratio and metric efficiency. The YT-UGC
MOS dataset is currently the only dataset that enables such a
study, to the best of our knowledge. We assume that the out-
liers detected by MLE CO + GPM are the only outliers. Let
us define the number of votes per stimulus N , the number of
votes given by outliers per stimulus No, giving as percentage
of outliers po = No

N × 100.
We examine po over the range [7, 30] by dichotomy and

N with values within {15, 20, 30, 50, 70, 90, 100}. We pro-
ceed with a two-step 5-fold cross-validation pipeline: (1) to
generate a sub-dataset having the desired properties, i.e., cre-
ating 5 batches with No random scores of outliers per stimu-
lus, each concatenated with a different random set of N −No

reliable scores, and (2) to train metrics on each of the created
sub-datasets. Note that by taking randomly reliable outliers,
we lose the consistency in a subject’s expectations, which
may slightly bias the process. We quantify the low variations
between sub-datasets and the ground truth with the RMSE
between full- and sub- datasets’ MOS, and with po = 30. We
happily obtain differences under 0.08.

There may not be up to No unreliable scores for some
PVS, for which we must simulate outliers’ scores. We thus
draw ratings from the scores distribution of a random outlier.
We define as disruptive score dis(s) =

∑
i |MOS(s) −

simi(s)|/M , with simi(s) the ith simulated outlier score of
stimulus s. The original dataset with ground truth outliers
reaches a disruptive score of 1.16. For all tested configura-
tions N

po
, the average disruptive score for simulated outliers is

similar (1.34), implying the simulation was effective.
In Table 3 and Figure 1, we illustrate the evolution of met-

rics efficiency depending on po and N for all figures of merit.
As expected, we observe that outlier removal is always bene-
ficial, especially at a high percentage of outliers, particularly

Table 3. Delta RMSE between RAPIQUE clean and not clean
metric. Variations over number of raters per PVS N and per-
centage of unreliable scores po ; underlined deltas indicate a
t-test p-value < 0.05, other values are < 0.1

po

N
15 30 50 70 90 110

7 0.0079 0.004 0.0031 0.0023 0.0024 0.0015
15 0.0136 0.0112 0.0086 0.0079 0.0073 0.0075
21 0.0153 0.0184 0.0152 0.0157 0.0133 0.0154
30 0.0348 0.0265 0.0277 0.0268 0.0299 0.0311

for RMSE. We also note that exploiting subjective scores of
a high number of PVS may overcome the noise introduced
by outliers when the dataset contains just a few of them (e.g.
7% po and N > 30, with 0.05 <p-value< 0.1). RAPIQUE
seems to be the least robust to outliers as the delta between its
clean and non-clean versions is larger than the other metrics
for all outlier percentages, contrarily to VIDEVAL. This ef-
fect is mild but enables metrics comparisons. This delta could
be used as a proxy for metric robustness to outliers.

5. CONCLUSION

In this work, we define how to combine several outlier de-
tection models to detect most outliers. Cascading the MLE
CO and the GPM best reduces subjective uncertainty while
keeping MOS values stable.

In a benchmark of VQMs learned on clean and noisy
datasets, we verified that applying outlier detection is at
worst transparent, and at most beneficial. We also confirmed
that the benefits of screening increases with higher outlier
rates. The designed study allows identifying which metrics
are robust to outliers, which is a highly interesting outcome.

In the future, we aim to extend and validate the results on
other suitable datasets. Also, it would be good to extend the
analysis to binary-choices methodologies (e.g., RT dissimi-
larity [18]).
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