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Abstract

Aims. Coronavirus disease of 2019 (COVID-19) has rapidly become a worldwide pandemic.
Many clinical trials have been initiated to fight the disease. Among those,
hydroxychloroquine and azithromycin had initially been suggested to improve clinical
outcomes. Despite any demonstrated beneficial effects, they are still in use in some
countries but have been reported to prolong the QT interval and induce life-threatening
arrhythmia. Since a significant proportion of the world population may be treated with such
COVID-19 therapies, evaluation of the arrhythmogenic risk of any candidate drug is needed.
Methods Using the O'Hara-Rudy computer model of human ventricular wedge, we evaluate
the arrhythmogenic potential of clinical factors that can further alter repolarization in COVID-
19 patients in addition to HCQ and AZM such as tachycardia, hypokalemia, and subclinical
to mild long QT syndrome.

Results. HCQ and AZM drugs have little impact on QT duration and do not induce any
substrate prone to arrhythmia in COVID-19 patients with normal cardiac repolarization
reserve. Nevertheless, in every tested condition in which this reserve is reduced, the model
predicts larger ECG impairments, as with dofetilide. In subclinical conditions, the model
suggests that mexiletine limits the deleterious effects of AZM and HCQ.

Conclusion. By studying the HCQ and AZM co-administration case, we show that the easy-
to-use ORd model can be applied to assess the QT-prolongation potential of off-label drugs,
beyond HCQ and AZM, in different conditions representative of COVID-19 patients and to
evaluate the potential impact of additional drug used to limit the arrhythmogenic risk.

Keywords: COVID-19; QT duration; arrhythmia; predictive model; asymptomatic.

What’s new?

o O'Hara-Rudy (ORd) computer model can be used to assess, at the ECG level,
COVID-19 off-label drug pro-arrhythmic potential in conditions when the
repolarization is impaired.

e Patients with impaired repolarization reserve are at high risk of arrhythmias with such
treatments.



e ORd model may help select anti-arrhythmic therapy in addition to COVID-19
treatments.
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Introduction

The coronavirus disease of 2019 (COVID-19) caused by the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), and first identified in Wuhan, China, in December
2019, has rapidly become a global pandemic, with more than 69.5 million confirmed cases
and over 1,580,000 deaths on December 12, 2020 (WHO COVID-19 Dashboard). The high
transmission rate of the virus and the lack of collective immunization and therapy have made
it a threat to public health, despite its low morbidity in a large part of the population (1). Pre-
existing cardiovascular disease, including cardiac arrhythmias, is associated with a
prognosis worsening (2-5). Arrhythmias were reported in 17% of patients affected by
COVID-19 and this percentage reaches 44% for patients in intensive care unit (ICU) (2-4). In
absence of approved drugs to prevent or treat COVID-19, many clinical trials have been
initiated to test the efficiency of drugs already approved for other diseases on this new
pathology. Among those, more than 260 focused on hydroxychloroquine (HCQ)
(clinicaltrials.gov), a chloroquine (CQ) derivative historically used to treat malaria and
autoimmune diseases (6). HCQ has shown potent in vitro activity against both SARS-CoV-1
and SARS-CoV-2 (7-9). Two small, non-randomized, open-label clinical trials in France,
suggested that the combination of HCQ and azithromycin (AZM) drugs may reduce the viral
load of infected patients and improve clinical outcomes (10, 11). Despite accumulation of
studies questioning the clinical efficacy of HCQ, the topic remains highly debated (12-17).
HCQ has been occasionally reported to prolong the QT interval on surface ECG and
provoke torsades de pointes (TdP), a life-threatening arrhythmia (18-22). AZM has been
developed for the treatment of respiratory tract infections (23-25) because the related
macrolide, erythromycin, induced prolonged QT intervals and TdP. Nevertheless, AZM has
been occasionally reported as a triggering factor of QT prolongation (26, 27), arrhythmias
(25, 28, 29) and increased risk for sudden death (25, 30, 31). Both HCQ and AZM are
categorized as being at ‘torsades de pointes’ risk (crediblemeds.org) and their administration
is not recommended to patients presenting with congenital long QT syndrome (LQTS) (32).

On the other hand, large population studies indicate that AZM use was not associated with
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an increased risk of death from cardiovascular causes in a general population of young and
middle-aged adults (33), and 85 out-patients treated with HCQ for connective tissue
diseases for a minimum of 1 year did not show QTc interval and heart rate different from
those in a population of healthy young adults (34). Last, in two recent studies investigating
HCQ and AZM treatment of COVID-19 patients, subsets of 9.2% (11/119 patients) and 16%
(40/251) of the treated patients presented severely prolonged QTc to values >500 ms, a
known marker of high risk of malignant arrhythmia and sudden cardiac death (35, 36). A
more recent meta-analysis reported major QTc prolongation above 60 ms in about 13% of
the COVID-19 patients treated with both drugs, with an overall considerable heterogeneity,
though (37).

In face of this variability, we exploited a computer model of human ventricular wedge to test
the arrhythmogenic potential of a combination of several factors: (i) HCQ and/or AZM
treatments, (ii) events occurring in COVID-19 patients that can contribute to alter
repolarization: hypokalemia, tachycardia, and (iii) subclinical LQTS phenotypes. We chose
the O’Hara and Rudy pseudo-ECG computer model, based on non-diseased human
ventricular data (38). This model has been previously used and thoroughly validated by
many laboratories, including ours, to study cardiac pathophysiological mechanisms in
multiple diseases such as inherited and acquired long QT, short QT and Brugada syndrome
(39-46). The model was adapted to incorporate off-target effects of HCQ and AZM on

cardiac ion currents (27, 47).

Methods

Transmural wedge simulations

We computed the pseudo-ECG using a 1-dimensional model of a transmural wedge
consisting in 165 human ventricular myocytes (ORd model) (38). Cells 1-60 were sub-
endocardium type, 61-105 were mid-myocardium type, and 106—165 were sub-epicardium
type (Supplemental figure 1). The spatially weighted sum of the voltage gradient was

determined at a point 2 cm from the sub-epicardium end of a heterogeneous multicellular
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fiber, along the fiber axis. The number of computed beats needed to reach convergence in
ECG and action potential (AP) mathematical parameters, was determined by following at
each beat, computed single cardiomyocyte AP and Ca*" transient evolution at 1000-ms
cycle length, starting from the model initial default conditions. Of note, the number of
iterations needed to reach steady-state cannot be used to predict the number of action
potentials necessary to reach biological steady-state. At first, AP duration decreased and

Ca®* transient amplitude increased to reach a constant value at the 250" beat

(Supplemental figure 2; https://models.cellml.org/e/71). A value of 300 beats was chosen for
all the tested conditions as it reflected stability of the modelling conditions. The healthy
condition was modeled at 1000-ms cycle length, and tachycardia was modeled at 700-ms
cycle length, that is commonly observed in COVID-19 patients (3) and at 500-ms cycle
length.

To model cardiac response of COVID-19 patients with moderate hypokalemia, external K*
concentration has been decreased from 5.4 to 3.4 mM.

We reasoned that LQTS patients with major alterations in repolarization would not be
prescribed QT lengthening compounds. Thus, we operated moderate modifications of the
implicated currents to model long QT syndromes. For type 1 LQTS, we reduced the
conductance of the slow component of the delayed rectifier K* current (Ixs) to 50% of the
wild-type condition to mimic moderate loss-of-function of mutated KCNQ1-encoded
channels, without any dominant negative effect usually associated with severe LQT (48, 49).
Similarly, for type 2 LQTS (LQT2), we reduced the conductance of the rapid component of
the delayed rectifier K* current (lk,) to 50% of the wild-type condition to mimic moderate loss-
of-function (50). For type 3 LQTS (LQT3), we reproduced the consequences of the
AQKP1507-1509 mutant on SCN5A-encoded channel, Na,1.5, with 4-fold increase in the
conductance of the late component of the Na* current (51, 52).

Effects of 3 yM HCQ have been chosen based on the serum concentration measured in
COVID-19 patients treated with 600 mg/day (10). HCQ effects on ion channels have been

modeled as follows: 35% decrease of lx, conductance and 12% decrease of the
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conductance of the L-type Ca®" current, lcaL (47). For AZM, data on serum concentrations
from SARS-Cov2 patients are not available so far. Peak plasma AZM concentrations during
oral dosing range from =0.4 to 1.1 ymol/L. However, plasma concentrations are misleading,
as the drug accumulates within cells, achieving concentrations approaching 900 pmol/L in
leukocytes and pulmonary tissue (27). A previous study by the pharmaceutical sponsor,
Pfizer Inc., reported similar accumulation of the drug in cardiac cells for mice receiving oral
AZM (200 mg-kg™-d™" for 10 days), with =200-fold increase in concentration compared with
plasma at day 10 (53). Based on that, Yang et al. used an in vitro concentration of 50 uM,
which seems reasonable to estimate the effect on cardiac currents (27). Of Note, AZM has
different effects with regard to acute (instantaneous) or “chronic” 24-hour exposure,
regarding the Na* current. Acute exposure to AZM was shown to decrease both the peak
sodium current and peak L-type calcium current. It also decreases the inward rectifier
potassium current x4, and the delayed potassium currents Ik, and ls. In contrast, 24-hour
exposure increases the peak and late sodium currents. Unfortunately, the effects of 24-hour
exposure AZM on Ik4, Ik, lks and the L-type calcium current were not tested in this earlier
report (27). Interestingly, even in the case of acute exposure, Yang et al. showed an
enlargement of QTc duration in mice (see figure 2 of their publication), suggesting that the
decrease in L-type calcium current is counterbalanced or even exceeded by the decrease in
Ik1 (Ikr and lgs being absent in adult mice). Because AZM is administered for several days in
the COVID-19 context, we considered only reported 24-hour effects of this compound on ion
channels, as follows: 1.8-fold increase in sodium peak current conductance and 2.5-fold
increase in late sodium current conductance. Of note, adding the other current alterations,
based on their studied acute effects (65% reduction in L-type calcium current, 30% reduction
in lx, and lks, 66% reduction in lx4) further increased QT duration (supplemental figure 3).
Since the equivalence between acute and 24-hour effects is hypothetical, we chose to keep
the condition with the minimal effect (only clearly established 24-hour effect of AZM on
sodium channel). This point stresses out the importance of the characterization of longer

application (at least 24-hour) of a given molecule on the currents.
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State-dependent effects of mexiletine (MEX) were modeled at therapeutic concentration
(0.8-2 ug/mL) (54) by a 40% decrease in only the late sodium current conductance (55).

Two antiarrhythmic drugs, that prolong QT interval and have been reported to induce
torsades de pointes, were also tested as positive controls. Dofetilide is mostly active on Ik,
and Iy, at about 2 nM corresponding to the free plasma C.,.x concentration (factors applied:
0.45, 0.98, 0.98, 0.85, 0.98, and 0.95 to Ik, lcaL, Ina fast, ltos Iks @nd gy conductances,
respectively) (55). Quinidine has a larger spectrum and was tested at its free plasma Cax
concentration of about 850 nM (factors applied: 0.3, 0.9, 0.98, 0.85, 0.9, and 0.95 to Ix;, lcay,
Inafasts o, ks @Nd lgq conductances, respectively) (55).

Combined effects (such as LQT mutation+tAZM+HCQ+MEX) were obtained by applying
each factor respective of each drug or condition to the appropriate conductance(s). Models
were processed with C++ code.

Electrophysiological determinations

Pseudo-ECG time parameters were determined as previously described (56). As expected,
this model adapts to frequency by decreasing QT duration when frequency increases (38).
As presented above, pseudo-ECG models are obtained from 1-dimensional strand of 165
cells reporting left ventricle transmural activity. For example, apex-to-base and right
ventricle-to-left ventricle gradients are absent in this model. Therefore, generated pseudo-
ECG time parameters are lower than human ECG values. QRS and QT durations are 46
and 312 ms, respectively, in this model compared to 90-100 and 370-440 ms in patients (i.e.
-60 ms), suggesting that difference in QT between the model and patients is mainly due to
the difference in QRS, not ST duration. For the sake of comparison, we arbitrarily added the
empirical value of 60 ms to the model QT duration to obtain ‘clinical-like’ QT values (in figure
7). QRS widening induced by HCQ may occur in COVID-19 patients. It is a slight median
increase of 4 ms of borderline significance (57). However, we kept this 60-ms value constant
in every tested condition.

Arrhythmogenic risks were assessed by the repolarization time from APD3y to APDgy (APDgy.

30) measured from the beginning of AP upstroke until 30% and 90% of repolarization as

8
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previously described (58) and by QT duration (59). The breaks in the repolarization slope in
early phase 3 of the computed APs were considered as early afterdepolarizations (EADs) by
analogy with the EAD originally defined as a depolarizing afterpotential that begins prior to
the completion of repolarization and causes (or constitutes) an interruption or retardation of
normal repolarization, in the princeps publication by Cranefield (60). Data were analyzed

using R3.6.2 and GraphPad8.

Results

We started with the most general case of COVID-19 patients, presenting no arrhythmia risk
factor that reduces the repolarization reserve. Thus, we first investigated the effects of HCQ
or AZM alone and their combined effects on the ventricular repolarization on simulated
‘normal’ ECG. At a cycle length of 1,000 ms, we observed that AZM alone induced a
shortening of the QRS complex (-24%) and an increase in QT duration (+7%) due to the
increased contribution of the peak and late sodium currents, respectively (Figure 1A-B and
Table 1). HCQ alone induced a larger increase in QT duration (+21% vs. baseline) without
affecting the QRS duration (Figure 1A-B). The combined AZM and HCQ synergistically
prolonged the QT interval (30%; figure 1A-B). These drugs target two different types of ion
channels. HCQ reduces a repolarizing current (lx;), while AZM increases a depolarizing
current (late Ina). Their effects are thus more than additive on the action potential duration as
described by previous studies (61). Looking at specific cell levels, modeled action potentials
from sub-endocardium (cell #19), mid-myocardium (cell #84) and sub-epicardium (cell #144)
underwent major modifications when the effects of HCQ alone or combined with AZM were

simulated (Figure 1C).

Because COVID-19 patients admitted in ICU are frequently tachycardic, we investigated the
effects of the treatment at a faster rate (cycle length, CL = 700 ms). The resulting effects of

the three treatments on pseudo-ECG and APs parameters were in the same range as at
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1,000-ms CL (Figure 2A-B and Table 1). When higher heart rate was tested (CL = 500 ms),

similar results were observed (Supplemental figure 4).

Because hypokalemia can precipitate acquired LQTS (62), we investigated AZM and HCQ
effects when a moderate hypokalemia (3.4 mM of extracellular K*) commonly observed in
COVID-19 patients (63) was implemented in the model in addition to tachycardia. As shown
in Figure 2C, hypokalemia induced a QT prolongation (+5% compared to baseline at 700-ms
CL) and exacerbated the effects of the AZM+HCQ combination (+33% of increase in QT
compared to +25% of increase in normokalemia at 700-ms CL; figure 2C). Hypokalemia also
hyperpolarized the diastolic membrane potential of each cardiomyocyte layer (-99.2 mV in
hypokalemia vs. -86.9 mV in normokalemia) leading to increased sodium channel
availability. This increased availability caused QRS shortening. The combination of both
drugs induced a ftriangulation of the AP shape as assessed by the prolongation of the
repolarization time from APD3q to APDgg (APDgo.30; 195 ms vs. 110 ms with no treatment, in
the sub-endocardium; figure 2D), which is known to favor early afterdepolarizations (64, 65).
In summary, the model suggests that COVID-19 patients with tachycardia and hypokalemia,
even ‘sub-clinical’, have to be closely monitored due to the potentiation of HCQ and AZM

arrhythmogenic effects.

QT and AP duration lengthening were also observed when the reference drugs dofetilide
and quinidine were applied (Supplemental figures 5 and 6). The deleterious effects of well-
known arrhythmogenic drugs can be clearly identified. It appears that AZM+HCQ have
similar effects as dofetilide, a high risk torsadogenic drug. In summary, our results confirm
the AZM+HCQ-induced QT prolongation observed in patients and validate the use of the

model to investigate the arrhythmogenic consequences of drugs to treat COVID-19.

In order to validate the use of this model to predict arrhythmogenic susceptibility of patients

with moderate long QT syndrome, we first tested AZM and HCQ effects in a LQT2 model
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replicating hERG haplo-insufficiency in normokalemia. As expected, a 33% prolongation of
the QT was obtained. AZM+HCQ combined effects further prolonged it by 21% vs.
‘untreated’ LQT2 condition (Figure 3A). In LQT2 conditions, AP repolarization relies mostly
on lgs. As expected, the AZM-HCQ combined effects were major in the mid-myocardium
where Igs is of small amplitude. Mid-myocardium APDgg 39, already prolonged by Ik,
decrease, was severely prolonged from 145 to 203 ms by AZM+HCQ treatment and
associated with the occurrence of a subthreshold early afterdepolarization (Figure 3B).
Again, AZM+HCQ treatment had effects in the same range as those observed with dofetilide
(Supplemental figures 5 and 6). In the same conditions, quinidine application led to more
pronounced QT prolongation and EADs particularly at the mid-myocardium level. These sets
of data show that the ORd model replicated the impact of proarrhythmic drugs on LQT2 AP
and ECG. These results confirm the absolute proscription of the use of such proarrhythmic

drugs in COVID-19 patients with baseline long QT (66-68).

Then, we used the model to predict the effects of AZM and HCQ in the context of a sub-
clinical QT prolongation as seen in parents of patients with autosomal recessive Jervell and
Lange-Nielsen LQTS, for instance (69). Despite a 50% reduction in Ixs amplitude, a minimal
3% prolongation of the QT duration was observed (Figure 4A). However, the combination of
AZM and HCQ induced a 26% increase in QT duration (vs. ‘untreated’ LQT1 condition) as
well as APDg, prolongation (Figure 4). This approach suggests that COVID-19 patients with
primary moderate hypokalemia or asymptomatic LQT1 have a slightly higher risk to develop
drug-induced arrhythmias when treated with AZM and HCQ than patients without these co-
morbidities (+11% and +4% QT prolongation in hypokalemia and LQT1, respectively,
compared to QT values of ‘treated’ ‘normal’ ECG at the same heart rhythm). These patients
have to be followed closely and additional preventive anti-arrhythmic therapy might be

proposed in this case.
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As AZM increases the late component of the sodium current, we also investigated the
effects of the combined therapy in a model in which the late component of the Na* current
was already increased i.e. in the model replicating LQT3. A 13% QT prolongation was
obtained, to a lesser extent than in the LQT2 condition, though. However, a dramatic QT
prolongation of 44% was induced by AZM+HCQ treatment (Figure 5A). At the ‘cellular level’,
combining both drugs effects favored AP triangulation (APDg 39 duration increased from 102
to 195 ms) and occurrence of early afterdepolarizations in mid-myocardium, close to what

was obtained with the LQT2 model (Figure 5B).

Since it appears that the ORd model confirmed the observed and expected results regarding
HCQ and AZM effects on ECG, we used the model to predict the effect of mexiletine
treatment. Mexiletine, a well-known anti-arrhythmic drug used in LQTS patients was
proposed to be associated with HCQ and AZM treatment of COVID-19 patients to limit
excessive QT prolongation (70, 71). As shown in Figure 6, mexiletine reversed AZM+HCQ-
induced QT prolongation in all tested conditions (+19% vs. +25% in tachycardia, +22%
vs.+33% in hypokalemia, +16% vs.+21% in LQT2, +20% vs.+26% in LQT1, and +28%
vs.+45% in LQT3 model). In hypokalemia, LQT2 and LQT3 models, mexiletine reduced the
AZM+HCQ-induced early afterdepolarization susceptibility in mid-myocardium (APDgg.30 of
131 ms vs.148 ms, 186 ms vs. 203 ms and 159 vs.195 ms for in hypokalemia, LQT2, and
LQT3 models, respectively). Of note, the model predicts that mexiletine supplementation to
shorten the prolonged QT has a mild but not negligible effect. Moreover, the model may be
robust enough to evaluate the combined effects of new additional drugs (with known effects

on ion channels) to limit AZM+HCQ arrhythmogenic consequences.

Figure 7 summarizes the QT duration values obtained at 700-ms cycle length. The ORd
transmural wedge model values are arbitrarily transposed to clinical-like values by adding 60

milliseconds (right Y-axis). A QTc cut-off of 500 ms is clinically considered as pathological
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(66-68). At 700 ms of cycle length, the corresponding absolute QT duration according to

Bazett's formula is 418 ms.

Discussion

Our study confirms that treating COVID-19 patients with HCQ and AZM drugs has, in most
patients, little impact on QT duration (72) and does not induce any substrate prone to
arrhythmia. However, in clinical conditions in which the repolarization reserve is reduced, the
model predicts larger ECG impairments including QT > 418 ms at 700 ms of cycle length,
corresponding to QTc > 500 ms (figure 7). Such dramatic QT prolongations are potentially
enabling the occurrence of life-threatening events, such as ventricular fibrillation. In addition,
the model allows the dissection of the relative contribution of each drug to the establishment
of pro-arrhythmic conditions, as well as their synergic effects to the mechanisms involved.
We also show that, mexiletine can limit only partly the dramatic increase in QT duration for
patients with tachycardia, hypokalemia or reduced conduction reserve, but can bring it back
to manageable duration for the mildest phenotypes. These results are in agreement with
observations reported by Badri et al. after mexiletine treatment on acquired-LQT syndrome
patients (73). The use of lidocaine, another class | antiarrhythmic drug has shown some
benefits in a COVID-19 patient treated with AZM and HCQ (74). Therefore, the ORd model
may be used to evaluate the potential impact of additional drug, with known effects on ion

channels, to limit the arrhythmogenic risks.

There is currently an explosion of proposed therapies for treating the virus but none of them
have clearly demonstrated their efficacy (75). Among these therapies, hydroxychloroquine
combined with azithromycin is still being used based on in vitro studies indicating their ability
to inhibit virus-cell fusion (7-9) and despite accumulation of studies questioning their clinical
efficacy, the topic is still debated (12-16). A major concern of this therapy has been the risk

of QT prolongation and TdP. The proarrhythmic mechanism of HCQ is thought to be due to
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its ability to inhibit hERG potassium channel and L-type calcium channel, which can result in
early afterdepolarization triggered activity (47). Association of well-timed early
afterdepolarization and QT prolongation results in TdP. The proarrhythmic mechanism of
AZM is thought to be due to its ability to increase cardiac sodium current and promote
intracellular sodium loading (27). Obviously, clinical decision cannot rely on the results
obtained with this ECG model, but, by comparing the effects obtained with AZM+HCQ, and
two proarrhythmic drugs, it can be suspected that the treatment has deleterious effects in
vivo. Indeed, based on the proposed mechanisms we confirmed, using this in silico model,
recent reports indicating QT prolongation (72, 76) and high risk of TdP (77) in COVID-19
patients treated with HCQ and/or AZM. The discrepancy between occasional reports of QT
prolongation and life-threatening arrhythmias triggered by HCQ and AZM and the absence
of QT prolongation effects in large population studies (especially with AZM (33)), is probably
due to the necessity, for triggering arrhythmia, of the combination of factors such as

tachycardia, hypokalemia, and subclinical LQTS as substrate.

More than 280 drugs have been reported to induce QTc prolongation (78). Among them
several are antiarrhythmic drugs, but also non-cardiovascular drugs, that are widely used in
ICU (79). Clear recommendations have been established to avoid their administration to
patients with symptomatic and well-established congenital long QT syndrome. In addition,
Ikrs lkss lcal, INnatate @nd more generally Ca? homeostasis, are differentially impaired in various
cardiopathies and cardiomyopathies frequently associated with aging, and also in hypoxia,
much more frequent conditions in hospitalized COVID-19 patients. This is of concern,
especially since Ina 1ate iNcrease, most frequently associated with these acquired diseases,

appears to lead to severe ECG changes (LQT3).

Regardless of genetic aspects or pre-existing chronic pathologies, clinical case series have
also identified risk factors for drug-induced LQTS including hypokalemia as commonly

observed in COVID-19 patients (80). Hypokalemia prolongs QT and is a risk factor for drug-
14
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induced LQTS. In addition to direct consequences on I, current (81, 82), hypokalemia may
activate CaMKIl leading to an increase in late sodium current and further prolongation of
ventricular repolarization (83). Moderate to severe hypokalemia has been reported in
COVID-19 patients (63). SARS-CoV-2 virus invades cells through binding to angiotensin |
converting enzyme 2 (ACE2) that enhances ACE2 degradation. The final effect of this
degradation is a continuous renal K* loss that makes it difficult to correct hypokalemia (63).
Noteworthy, low levels of potassium have been correlated with QTc > 500 ms occurrence in
COVID-19 patients under HCQ and AZM medication (36). Consistent with these
observations, this model emphasizes the fact that kalemia of COVID-19 patients has to be
followed very carefully, particularly in case of medication with drugs such as HCQ or AZM.
More generally, this model could be used to evaluate in a pre-clinical approach, the risk of
drug-induced QT prolongation in this context. In addition to electrolyte imbalance, there is
also a greater prevalence of risks factors among COVID-19 patients in ICU, including older
age, presence of underlying heart disease, and co-treatment with other QT prolonging

medications.

With the possibility that a significant proportion of the world population may receive SARS-
CoV-2 drugs with torsadogenic potential, the risk to treat patients with asymptomatic and
undiagnosed long QT syndrome is increasing. These patients have a QTc duration in the
limit of the general population variability and are not identified as such. Indeed, in a recent
study, patients with extreme QTc prolongation when treated with HCQ and AZM, presented
a baseline QTc around 431 ms only, within the normal QTc range (36). As modeled in the
present study, cardiomyocytes harboring mutations leading to haplo-insufficiency in KCNQ1
may present very minimal action potential prolongation because of a normal Iy, (84), but Ik,
blockers such as HCQ, can lead to marked action potential prolongation in limited
repolarization reserve. All guidelines for QT management in COVID-19 context (66-68)
recommend to avoid QT prolonging drugs in individuals with a QTc > 500 ms due to a two-

fold to three-fold increase in risk for TdP (85). Nevertheless, those asymptomatic patients
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might receive these drugs based on this criterion. As modeled in this study, despite the
absence of QT prolongation in baseline conditions because of a normal Ik (84) and
regardless of the origin of low repolarization reserve, these patients are at high risk of TdP
when Ik blockers such as HCQ are used. However, the model shows that, in a borderline
condition such as moderate LQT1, mexiletine can limit to some extent the deleterious effects
of AZM and HCQ. Therefore, we propose that the ORd model can be used to evaluate the
potential impact of other additional drugs, with known effects on ion channels, that may be

used in the future to limit arrhythmogenic risk of COVID-19 therapies.

In summary, the ORd model appears to be an easy-to-use tool to assess off-label drug
arrhythmia potential in different conditions representative of COVID-19 patients at risk for

arrhythmia and life-threatening torsades de pointes.

Limitations

We used the original ORd model based on its more realistic conductance values compared
to others. This model may underestimate lxs amplitude even if obtained from human
cardiomyocytes (86). In some rare cases (heterozygous non-dominant-negative LQT1
mutations) a minimal reduction (less than 50%) of the channel activity leads to severe QTc
prolongation (very minor cases, cf. for instance (87)). The model we use is simple, robust,
and incorporates pseudo ECGs but not inter-individual variability, to remain affordable in
time and resources. Since the model does not include the population variability (e.g., due to
genetic background), it cannot reproduce the LQTS phenotype heterogeneity. Other studies
focusing on single cell AP, adjusted Ixs amplitude to compensate for this insufficiency leading
to more severe LQT1 phenotype (88). It would be interesting to try optimizing pseudo-ECG
models using the same strategy.

One-dimension strip of 165 cardiomyocytes simulates only the transmural gradient. Apex-to-

base and right-to-left gradients are absent in this model. There are 3D models but (i) they
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are highly computationally demanding thus requiring simpler alternative approaches to
model single cell action potential (89) and (ii) they are less realistically adaptive because
each current is not individually modelled. Therefore, we preferred to use a 1D-model in
which precise biophysical equations representing the biological currents can be finely tuned
to model the drug effects at the AP then ECG levels. Thus, the resulting caveat is the lower
QT duration values. In order to allow translational approach, we suggest adding an
empirically estimated value of 60 ms. The calculated QT values can then be roughly
compared to clinical ECG values. In addition, T wave shape results more from regional
heterogeneity than from transmural gradients (90). As another limit of the 1D-model, it
cannot simulate changes in T wave amplitude.

In this study, we investigated potential effects of drugs prescribed to patients with COVID-19
on AP with reduced repolarization reserve, in order to detect any arrhythmogenic substrate.
To do so, we used well-defined conditions with “pure” repolarization reserve decrease such
as LQT syndrome with various genetic origins. Cardiopathies and cardiomyopathies
frequently associated with aging, and in hypoxia, are much more frequent conditions in
hospitalized COVID-19 patients. However, instead of adding another condition, generic for
these pathologies, which is difficult to establish since conductance decreases are not the
same for all the pathologies (91), conditions with “pure” repolarization-reserve decrease as
LQT syndromes were preferred. Similarly, the complex modifications induced by systemic
inflammation and oxidative stress observed in COVID-19 patients have not been introduced
at the level of the ion currents in the modeling. Such complex alterations of expression
and/or activity of ion channels are hardly quantifiable and cannot be mimicked. In any case,
it can be suspected that the addition of pre-existing pathologic conditions and COVID-19-
related modifications would exacerbate the arrhythmia susceptibility.

The effects of adrenergic stimulation were not evaluated for the following reason. An
observational study of 138 patients affected by COVID-19 reported moderate tachycardia
with a median heart rate of 88 bpm (3) indicating that the adrenergic tone is not high in those

patients. Thus, in this study, we evaluated, during moderate tachycardia, the theoretical
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effect of the drugs on AP with reduced repolarization reserve, in order to detect any
arrhythmogenic substrate. Interestingly, a very recent work, complementary to ours, used a
modified version of the ORd model to study the B-adrenergic receptor stimulation on the
cellular proarrhythmic effects of chloroquine and azithromycin, at the single AP level (92). In
this paper, Sutanto and Heijman suggest that sympathetic stimulation limits drug-induced
APD prolongation. Therefore, at least for CQ and AZM, the unstimulated situation that we
studied may represent the most critical situation.

It has to be mentioned that the ECG ORd model is conservative. Arrhythmogenic
mechanisms such as triggered activities are hardly induced. Indeed, significant impairment
of the Ca?* current window was needed to induce repolarization failure in the recent study of
Sutanto and Heijman (92). However, the deleterious effects of arrhythmogenic drugs can be
clearly identified with the ECG model, namely EADs and QT lengthening.

Gender differences, resulting from multiple intersecting processes implying complex
regulations of ion channels, cannot be easily modeled and was not investigated in this study.

This would be indeed another improvement of the model.
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Figure 1: Hydroxychloroquine/azithromycin-induced prolongation of ventricular
repolarization in a healthy heart (wedge in silico model). A. Computed pseudo-ECG in
control (black), azithromycin (AZM, blue), hydroxychloroquine (HCQ, orange) and
AZM+HCQ (red) condition at 1000-ms of cycle length (CL). B. QT interval measured in each
condition. C. Left: Simulation of ventricular action potential from sub-endocardium (top), mid-
myocardium (middle) and sub-epicardium (bottom) in control, AZM, HCQ and AZM+HCQ
condition. Right: Quantification of action potential duration at 30% (APD3g), 50% (APDsp),

70% (APD7) and 90% (APDyo) of repolarization in each condition.
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Figure 2: Hydroxychloroquine/azithromycin combination effects in COVID-19 patient
model with tachycardia and hypokalemia. A. Tachycardia, (a) computed pseudo-ECG in
control (black), azithromycin (AZM, blue), hydroxychloroquine (HCQ, orange) and
AZM+HCQ (red) condition at 700-ms of cycle length. (b) QT interval measured in each
condition. B. (a) Simulation of ventricular action potential from sub-endocardium (left), mid-
myocardium (middle) and sub-epicardium (right) in control, AZM, HCQ and AZM+HCQ
condition. (b) Quantification of action potential duration at 30% (APDsg), 50% (APDsg), 70%
(APD70) and 90% (APDgyg) of repolarization in each condition. C. Hypokalemia, (a) computed
pseudo-ECG in control (dashed black line), hypokalemia (3.4 mM extracellular K*, solid
black line) and hypokalemia with AZM+HCQ (red) condition at 700 ms of cycle length. (b)
QT interval measured in each condition. D. (a) Simulation of ventricular action potential from
sub-endocardium (left), mid-myocardium (middle) and sub-epicardium (right) in control,
hypokalemia and hypokalemia with AZM+HCQ condition. (b) Quantification of action

potential duration as in B(b), in each condition.

Figure 3: Arrhythmogenic effects of AZM+HCQ combination in long QT type 2 model.
A. (a) Computed pseudo-ECG in control (dashed black line), long QT type 2 (LQT2)
modeled as a KCNH2 haploinsufficiency (solid black line) and LQT2 with AZM+HCQ (red)
condition at 700-ms of cycle length. (b) QT interval measured in each condition. B. (a)
Simulation of ventricular action potential from sub-endocardium (left), mid-myocardium
(middle) and sub-epicardium (right) in control, LQT2, and LQT2 with AZM+HCQ condition. *:
subthreshold early afterdepolarization. (b) Quantification of action potential duration at 30%

(APD30), 50% (APDsp), 70% (APD7o) and 90% (APDyg) of repolarization in each condition.

Figure 4: Hydroxychloroquine/azithromycin combination reveals arrhythmia
susceptibility in asymptomatic long QT type 1 model. A. (a) Computed pseudo-ECG in
control (dashed black line), long QT type 1 (LQT1) modeled as a KCNQ1 haploinsufficiency

(solid black line) and LQT1 with AZM+HCQ (red) condition at 700-ms of cycle length. (b) QT
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interval measured in each condition. B. (a) Simulation of ventricular action potential from
sub-endocardium (left), mid-myocardium (middle) and sub-epicardium (right) in control,
LQT1 and LQT1 with AZM+HCQ condition. (b) Quantification of action potential duration at
30% (APD3;), 50% (APDsy), 70% (APD7) and 90% (APDg) of repolarization in each

condition.

Figure 5: Arrhythmogenic effects of AZM+HCQ combination in long QT type 3 model.
A. (a) Computed pseudo-ECG in control (dashed black line), long QT type 3 (LQT3)
modeled as a 4-fold increase in persistent sodium current (solid black line) and LQT3 with
AZM+HCQ (red) condition at 700-ms of cycle length. (b) QT interval measured in each
condition. B. (a) Simulation of ventricular action potential from sub-endocardium (left), mid-
myocardium (middle) and sub-epicardium (right) in control, LQT3 and LQT3 with AZM+HCQ
condition. *: subthreshold early-afterdepolarization. (b) Quantification of action potential
duration at 30% (APD3), 50% (APDsp), 70% (APD7o) and 90% (APDg) of repolarization in

each condition.

Figure 6: Mexiletine partially limits AZM+HCQ-induced QT prolongation. Combination
of mexiletine with AZM+HCQ (purple) limits increase in QT interval in pseudo ECG (a) and
simulated ventricular action potential (b) prolongation in tachycardia (A), hypokalemia (B),
LQT1 (C), LQT2 (D) and LQT3 (E) conditions compared to the same condition without

mexiletine (red).

Figure 7: ORd model QT transposed to clinical human QT. In all conditions, converted
AZM+HCQ QT values exceed (right Y-axis) the 418 ms cut-off (dashed line) and the use of
mexiletine allows a partial reversion close to the cut-off value in tachycardia alone or

combined with hypokalemia or LQT1 condition.
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Table 1. Drugs effects on pseudo-ECG parameters

QRS (ms) QT (ms)
+AZM +AZM
Basal +AZM +HCQ M2l +HCQ +Dof. +Quinidine| Basal +AZM +HCQ [0 +HCQ +Dof. +Quinidine

+ MEX + MEX
Control 46 35 46 35 35 nd.  nd | 312 333 378 407 382 nd  nd.
Tachycardia | 47 35 47 35 35 50 a8 | 207 310 352 372 353 410 470
HypoK 40 nd.  nd 32 32 40 40 | 311  nd.  nd 414 378 395 461
LQTA 46 nd. nd 35 35 50 48 | 307 nd.  nd 388 368 433 506
LQT2 46 nd.  nd 35 35 50 48 | 394 nd. nd 478 457 512 587
LQT3 46 nd. nd 35 35 50 48 | 337 nd. nd 487 433 466 538

AZM: azithromycin ; HCQ: hydroxychloroquine ; MEX: mexiletine ; HypoK: hypokalemia; Dof. : dofetilide ; Control at 1000 ms cycle length and other

conditions at 700 ms cycle length.
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