## **Supplementary Materials**

## Astatine facing Janus: halogen bonding vs. charge-shift bonding

Serigne Sarr, Julien Pilmé, Gilles Montavon, Jean-Yves Le Questel and Nicolas Galland

## **Index**

- Page 2 **Figure S1.** 2c-PW6B95D3/TZVPPD calculated electrostatic potential (in kJ.mol<sup>-1</sup>) and local electrophilicity (in a.u) at the C<sub>6</sub>At<sub>6</sub> and C<sub>6</sub>I<sub>6</sub> molecular surfaces.
- Page 3 Figure S2. 2c-PW6B95D3/TZVPPD calculated electrostatic potential at the C<sub>2</sub>BI<sub>3</sub> and C<sub>2</sub>BAt<sub>3</sub> molecular surfaces.
- Page 4 **Figure S3.** Local electrophilicity (in u.a), at the C<sub>2</sub>BI<sub>3</sub> and C<sub>2</sub>BAt<sub>3</sub> molecular surfaces calculated at the 2c-PW6B95D3/TZVPPD level of theory.
- Page 5 **Table S1.** Selected QTAIM descriptors (in a.u.) obtained at the 2c-PW6B95-D3/TZVPPD level of theory for C–C bonds in  $C_6X_6$  species (X = At, I).
  - **Table S2.** Interaction distances, lengthening of C–X bonds upon complexation, interaction angles and directionality angles for the  $C_6X_6$ ··· $C_6Y_6$  complexes (X, Y = I, At) at the counterpoise-corrected sr-MP2/TZVPPD level of theory.
- Page 6 **Table S3.** Scalar relativistic PW6B95-D3/TZVPPD and MP2/TZVPPD counterpoise corrected interaction energies and related parameters: interaction distances, lengthening of R–X bonds upon complexation (R = B, C), and interaction angles, for the C<sub>2</sub>BX<sub>3</sub>···C<sub>2</sub>BY<sub>3</sub> complexes (X, Y = I, At).



**Figure S1.** 2c-PW6B95D3/TZVPPD calculated electrostatic potential (a, b) and local electrophilicity (c, d) at the C<sub>6</sub>At<sub>6</sub> and C<sub>6</sub>I<sub>6</sub> molecular surfaces (defined by 0.001 a.u. density isosurfaces). The maximum values,  $V_{S,max}$  and  $\omega^+_{S,max}$ , at the astatine and iodine σ-holes are in kJ.mol<sup>-1</sup> and a.u., respectively. Values in parenthesis represent the SOC effects. Color code: from red (lowest values) to blue (highest values).



**Figure S2.** 2c-PW6B95D3/TZVPPD calculated electrostatic potential at the  $C_2BI_3$  and  $C_2BAt_3$  molecular surfaces (defined by 0.001 a.u. density isosurfaces). The maximum values,  $V_{S,max}$ , at the astatine and iodine σ-holes are in kJ.mol<sup>-1</sup> (SOC effects are given in parenthesis). Color code: from red (most negative values) to blue (most positive values).



**Figure S3.** Local electrophilicity, at the  $C_2BI_3$  and  $C_2BAt_3$  molecular surfaces (defined by the 0.001 a.u. density isosurface) calculated at the 2c-PW6B95D3/TZVPPD level of theory. The most positive electrophilicity values,  $ω^+_{S,max}$ , at the astatine and iodine σ-holes are in a.u. Values in parenthesis represent SOC effects are given in parenthesis. Color code: from red (lowest values) to blue (highest values).

**Table S1.** Selected QTAIM descriptors (in a.u.) obtained at the 2c-PW6B95-D3/TZVPPD level of theory for C–C bonds in  $C_6X_6$  species (X = I, At).

|                        | $ ho_{ m b}{}^{ m b}$ | $ abla^2  ho_{ m b}{}^{ m c}$ | $ V_b /G_b{}^d$ | $\delta(C,C)^e$ | $FLU^f$ |
|------------------------|-----------------------|-------------------------------|-----------------|-----------------|---------|
| X = I                  | 0.31                  | -0.90                         | 4.05            | 1.35            | 0.0057  |
| $\Delta \mathrm{SO^a}$ | +0.00                 | -0.02                         | +0.02           | +0.00           | -0.0005 |
| X = At                 | 0.32                  | -0.92                         | 3.96            | 1.38            | 0.0004  |
| $\Delta \mathrm{SO^a}$ | +0.01                 | -0.05                         | -0.03           | +0.02           | -0.0033 |

<sup>&</sup>lt;sup>a</sup> Defined as the difference between the results of 2c-PW6B95-D3/TZVPPD and sr-PW6B95-D3/TZVPPD calculations. <sup>b</sup> Electron density at the BCP. <sup>c</sup> Laplacian of the electron density at the BCP. <sup>d</sup> Ratio between the potential energy density and the (positive definite) kinetic energy density at the BCP. <sup>e</sup> Delocalization index. <sup>f</sup> Aromaticity index FLU=  $\sum_{l}^{n} \left( \frac{\delta(C,C) - \delta_{ref}(C,C)}{\delta_{ref}(C,C)} \right)^{2}$  with *n* equal to the number of members in the ring, and δ<sub>ref</sub>(C,C) = 1.388 according to PW6B95-D3/TZVPPD calculations on the benzene molecule. Low values indicate a strong aromaticity character.

**Table S2.** Interaction distances, lengthening of C–X bonds upon complexation, interaction angles and directionality angles for the  $C_6X_6$ ··· $C_6Y_6$  complexes (X, Y = I, At) at the counterpoise-corrected sr-MP2/TZVPPD level of theory.

|                               | X = I, Y = At |        | X = At, Y = I |                  |
|-------------------------------|---------------|--------|---------------|------------------|
|                               | I···C         | I···At | At···C        | At <sup></sup> I |
| <i>d</i> <sub>XC</sub> (Å)    | 3.373         | -      | 3.400         | -                |
| $d_{XY}$ (Å)                  | -             | 3.903  | -             | 3.784            |
| $\Delta d_{\mathrm{C-X}}$ (Å) | 0.005         | 0.005  | 0.007         | 0.007            |
| αcxc (°)                      | 164.8         | 160.0  | 162.5         | 159.4            |
| $\alpha_{\mathrm{XYC}}$ (°)   | 109.4         | 68.2   | 103.4         | 72.7             |

**Table S3.** Scalar relativistic PW6B95-D3/TZVPPD and MP2/TZVPPD counterpoise corrected interaction energies and related parameters: interaction distances, lengthening of R-X bonds upon complexation (R = B, C), and interaction angles, for the  $C_2BX_3\cdots C_2BY_3$  complexes (X, Y = I, At).

|            |                     | $\Delta E^{\rm CP}$ (kJ/mol) | $d_{X}{N}$ (Å)     | $\Delta d_{\mathrm{C-X}}$ (Å) | α <sub>CXN</sub> (°) |
|------------|---------------------|------------------------------|--------------------|-------------------------------|----------------------|
|            | I <sub>B</sub> –XB  | -13.3                        | 3.711              | 0.000                         | 172.3                |
|            | Ic-XB               | -14.9                        | 3.597              | 0.000                         | 178.1                |
| sr-PW6B95- | D3                  |                              |                    |                               |                      |
|            | $At_B - XB$         | -13.8                        | 3.712              | 0.001                         | 173.1                |
|            | $At_{C}\!\!-\!\!XB$ | -15.4                        | 3.587              | 0.001                         | 175.5                |
|            | I <sub>B</sub> –XB  | -14.3                        | 3.610 <sup>a</sup> | 0.001 <sup>a</sup>            | 173.0 <sup>a</sup>   |
|            | Ic-XB               | -16.5                        | $3.481^{a}$        | $0.002^{a}$                   | 177.5 <sup>a</sup>   |
| sr-MP2     |                     |                              |                    |                               |                      |
|            | $At_B - XB$         | -14.4                        | $3.622^{a}$        | $0.003^{a}$                   | 173.1 <sup>a</sup>   |
|            | Atc-XB              | -16.5                        | $3.485^{a}$        | $0.003^{a}$                   | 177.2ª               |

<sup>&</sup>lt;sup>a</sup> Counterpoise-corrected values.