Muscles from the same muscle group do not necessarily share common drive: evidence from the human triceps surae
François Hug, Alessandro del Vecchio, Simon Avrillon, Dario Farina, Kylie Tucker

To cite this version:

HAL Id: hal-03298614
https://nantes-universite.hal.science/hal-03298614v2
Submitted on 4 Apr 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Muscles from the same muscle group do not necessarily share common drive: evidence from the human triceps surae

Francois Hug,1,2,3 Alessandro Del Vecchio,4,5 Simon Avrillon,2,6,7 © Dario Farina,4 and Kylie Tucker2

1Laboratory “Movement, Interactions, Performance” (EA 4334), Nantes University, Nantes, France; 2School of Biomedical Sciences, The University of Queensland, Brisbane, Australia; 3Institut Universitaire de France (IUF), Paris, France; 4Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom; 5Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nürnberg, Erlangen, Germany; 6Legs + Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, Illinois; and 7Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois

Abstract

It has been proposed that movements are produced through groups of muscles, or motor modules, activated by common neural commands. However, the neural origin of motor modules is still debated. Here, we used complementary approaches to determine: 1) whether three muscles of the same muscle group [soleus, gastrocnemius medialis (GM), and gastrocnemius lateralis (GL)] are activated by a common neural drive, and 2) whether the neural drive to GM and GL could be differentially modified by altering the mechanical requirements of the task. Eighteen human participants performed an isometric standing heel raise and submaximal isometric plantarflexions with the feet in a neutral position. The estimates of neural drive to muscles during the torque plateau were computed from high-density surface electromyography recordings decomposed into motor unit action potentials and coherence analysis was applied on the motor unit spike trains. We identified strong common drive to each muscle but minimal common drive between the muscles. Further, large between-muscle differences were observed during the isometric plantarflexions, such as a delayed recruitment time of GL compared with GM and soleus motor units and opposite time-dependent changes in the estimates of neural drive to muscles during the torque plateau. Finally, the feet position adopted during the heel-raise task (neutral vs. internally rotated) affected only the GL neural drive with no change for GM. These results provide conclusive evidence that not all anatomically defined synergist muscles are controlled by strong common neural drive. Independent drive to some muscles from the same muscle group may allow for more flexible control to comply with secondary goals such as joint stabilization.

NEW & NOTEWORTHY

In this study, we demonstrated that the three muscles composing the human triceps surae share minimal common drive during isometric contractions. Our results suggest that reducing the number of effectively controlled degrees of freedom may not always be the strategy used by the central nervous system to control movements. Independent control of some, but not all, synergist muscles may allow for more flexible control to comply with secondary goals (e.g., joint stabilization).

cohereance; common drive; electromyography; gastrocnemius; motor units

INTRODUCTION

How the central nervous system controls the large number of degrees of freedom of the musculoskeletal system to produce movements remains unclear. It has been proposed that muscles are controlled through motor modules, which represent groups of muscles, activated by a single neural command (1–3). Evidence for the existence of motor modules, which reduce the dimensionality in the control of movement, comes from animal models where cortical (4) or spinal microstimulation (5) led to complex multijoint forces. However, the neural origin of motor modules is still debated (6, 7).

In support of the modular control of movements, there is evidence that some muscles are controlled primarily by a shared neural drive (8–11) and that the intensity of this shared drive is stronger between muscles that are anatomically and functionally closely related (9, 10). Considering the behavior of a population of motor units identified from high-density surface electromyography (HDsEMG), Laine et al. (11) demonstrated that the lateral (vastus lateralis [VL]) and medial (vastus medialis [VM]) head of the quadriceps share most of their synaptic input during isometric knee extension. Given the important role of VL and VM in the control of the patellofemoral joint (12), this shared common input might achieve two important goals: 1) simplify the control of the task and 2) regulate internal joint stresses. Although a shared drive may be an optimal control strategy for the VL and VM muscles, it might not be optimal for muscles that require more flexible control.

The triceps surae consists of the soleus (SOL), gastrocnemius medialis (GM), and gastrocnemius lateralis (GL). As GM and GL
share the same two main functions (plantarflexion and knee flexion), and both insert into the Achilles tendon, they are very often regarded as the same muscle (13). In addition, using factorization of multiple bipolar EMG signals, these muscles are consistently reported as part of the same module [e.g., gait (14), pedaling (15)]. However, there is some indirect evidence that GM and GL may produce different ankle torques in the frontal plane (16, 17). As such, flexibility in their control with minimal common drive, i.e., the ability to activate the muscles independently, might be crucial for maintaining balance or producing force in different directions. For example, Héroux et al. (18) observed a difference in GM and GL motor unit discharge behavior during standing balance, with a relative absence of GL motor unit activity. Taken together, these results suggest that the activation of the GM and GL muscles may be partly independent, with a small amount of common drive, to allow for flexible control of the ankle joint.

In this study, we used multiple and complementary approaches to characterize the behavior of populations of motor neurons innervating the three heads of the triceps surae, with specific consideration of GM and GL. Our primary aim was to determine whether GL and GM share a common neural drive during plantarflexion. We first estimated the within- and between-muscle common neural drive using correlation techniques in the frequency domain [i.e., coherence (19, 20)] applied to motor unit spike trains identified from an isometric heel-raise task. Then, we assessed motor unit discharge characteristics during isometric plantarflexions performed on an ergometer. Our secondary aim was to determine whether the neural drive to GM and GL could be differentially modified by altering the mechanical requirements of the task. For this purpose, we compared the motor unit discharge rate between two heel-raise tasks performed with different feet positions. We hypothesized that the GM and GL muscles share minimal common drive and, therefore, that the neural drive to the GM and GL can be independently altered. If supported, this would provide strong evidence that some anatomically derived synergist muscles can be controlled by independent neural drive and would force a reconsideration of our understanding of the modular control of movement.

METHODS

Participants

Eighteen physically active males participated in this study (means ± SD; age, 29.4 ± 7.9 yr; height, 180 ± 7 cm; body mass, 76 ± 8 kg; body mass index, 23.6 ± 2.7 kg/m²). Of note, we were not avoiding recruiting females; but for unknown reasons, we failed to identify enough motor units on females during our pilot testing, especially on GL. Participants had no history of lower leg pain that had limited function that required time off work or sport or a consultation with a health practitioner in the previous 6 months. The institutional research ethics committee of the University of Queensland approved this study (n’ 2013001448), and all procedures adhered to the Declaration of Helsinki. Participants provided informed written consent.

Experimental Design

The experimental session consisted of a series of isometric and postural tasks. The myoelectrical activity of the three heads of the triceps surae of the dominant leg (right/left; 16/2) was measured using HDsEMG.

First, participants laid prone on a custom-made dynamometer equipped with a torque sensor (TRE-50K, Dacell, Korea; Fig. 1). Their knee was fully extended, and their ankle angle was set to 10° of plantarflexion (0° being the foot perpendicular to the shank). The experiment began with a warm-up, which included a series of submaximal contractions. Then, participants performed three maximal isometric contractions for 3–5 s with 120 s rest in between. The maximal value obtained from a moving average window of 250 ms was considered as the peak torque (MVC). Then, participants performed three contractions at each of the following intensities: 10%, 30%, and 50% of their MVC. The order of the intensities was randomized. These contractions involved a 5-s ramp-up, a 15-s (50% of MVC) or 20-s plateau (10% and 30% of MVC), and a 5-s ramp-down phase. The contractions were separated by either 60 s (10% of MVC) or 120 s (30% and 50% of MVC) of rest. Feedback of the target and torque output was displayed on a monitor.

Second, participants stood barefoot on a force plate (Model 4060, Bertec, UK) and performed a series of six tasks in a randomized order, including balance and heel-raise tasks. The balance tasks were performed for another purpose. For the purpose of this study, only the two isometric heel-raise tasks were analyzed. These tasks consisted of holding the heel at a standard height of 6 cm, with both feet in a neutral position (toes neutral) or internally rotated (toes in) (Fig. 1). To provide feedback of the height, a 6-cm-thick piece of high-density foam was placed under the heels of the participants. The participants were instructed to lightly touch the top of the foam with their heels and once the correct height was achieved (in typically less than 5 s), the piece of foam was removed, and data collection began. For the toes neutral condition, the participants adopted a comfortable stance width with their feet pointing anteriorly. For the toes in condition, the participants pointed their toes inward by internally rotating their lower limbs, such that their feet formed an angle of 90°. About 1/4 of the participants could not reach this angle, in which case they were instructed to rotate their lower limbs as far as possible. Each of these conditions was repeated two times for 30–35 s with 15–20 s of rest in between.

For both the plantarflexion tasks performed on the ergometer and the heel-raise tasks, the mechanical signals (torque and force) were digitized at 2048 Hz using the same acquisition system as that used for HDsEMG (EMG-Quattrocento; 400-channel EMG amplifier, OT Bioelelettronica, Italy).

Note that additional measurements were performed on the VL and VM muscles for two participants (participant 5 and participant 10). These participants performed an isometric body-weight squat (knee angle = 30°; 0° = knee fully extended) for 3 × 30 s.

High-Density Surface EMG Recordings

HDsEMG signals were recorded from the GL, GM, and SOL muscles. Two-dimensional adhesive grids of 64 electrodes (13 × 5 electrodes with one electrode absent on a corner, gold-coated, interelectrode distance, 8 mm; [ELSCH064NM2, SpeSMedica, Battipaglia, Italy]) were placed over both the GM
and the GL muscle (Fig. 1). The grids were aligned with the main fascicle direction as determined using B-mode ultrasound (Aixplorer, Supersonic Imagine, France). A two-dimensional adhesive grid of 32 electrodes (8 × 4 electrodes, gold-coated, interelectrode distance, 10 mm; GR10MM0804, SpesMedica, Battipaglia, Italy) was placed on the medial part of the soleus (SOL), below the myotendinous junction of the GM muscle. A two-dimensional adhesive grid of 64 electrodes was placed over both the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastrocnemius lateralis (GL) muscle. A two-dimensional adhesive grid of 32 electrodes was placed on the medial part of the gastrocnemius medialis (GM) and the gastroc

Data Analysis

In this study, we considered the neural drive as the ensemble of motor neuron discharges, and this drive was estimated using the cumulative spike train (CST, sum of the motor unit discharge times) of a subset of motor neurons identified by decomposition. Common drive was considered as the component of the neural drive that is shared between motor neurons, i.e., the common (correlated) fluctuations of motor unit discharge timings.

Global EMG.

EMG signals were band-pass filtered (20–500 Hz), differentiated, and full-wave rectified. For the MVC trials, the EMG amplitude was calculated over a moving time window of 500 ms. The resulting highest value over the three contractions and over all the channels of the grid was considered as the maximal EMG amplitude value. For the submaximal tasks, the EMG amplitude was calculated over the whole contraction, averaged across all channels, and normalized to that determined during the maximal isometric contractions.

HDsEMG decomposition.

First, the monopolar EMG signals were bandpass filtered between 20 and 750 Hz with a second-order Butterworth filter. The HDsEMG signals were decomposed with the convolutive blind source separation method (21) implemented in the DEMUSE tool software (v. 4.9; The University of Maribor, Slovenia). This decomposition procedure can identify motor unit discharge times over a wide range of contraction intensities and has been extensively validated using experimental and simulated signals (22, 23). After the automatic identification of the motor units, all the motor unit spike trains were visually inspected (24, 25). As classically done, only the motor units that exhibited a pulse-to-noise ratio >30 dB were retained for further analysis (11, 26). This threshold ensured a sensitivity higher than 90% and a false-alarm rate lower than 2% (23).
Assessment of cross talk.
Before assessing the neural connectivity between the different populations of motor neurons of the *triceps surae*, we used the discharge timings extracted by decomposition to assess the uniqueness of the motor unit action potentials. This was done to guarantee that each motor unit that was used for subsequent analysis originated from the target muscles on which the high-density EMG grid was placed and was not a result of cross talk from a neighboring muscle. For this purpose, the discharge timings of each motor unit extracted by decomposition were used to trigger all of the HDsEMG signals (64 [GM] + 64 [GL] + 32 [SOL] channels). The motor unit action potentials extracted by spike trigger averaging were then compared between muscles. Specifically, we calculated the average amplitude of the motor unit action potential, for each HDsEMG grid, by averaging the peak-to-peak amplitude across all channels of each HDsEMG grid. We then compared this average peak-to-peak amplitude between grids to identify motor units that originated from cross talk. This analysis assumes that the action potential representation of a motor unit will be largest when recorded from the electrodes placed on the muscle of origin. Conversely, motor units that are identified from a neighboring muscle will have a smaller peak-to-peak amplitude due to a greater distance between the electrodes and the muscle unit (25). As such, if the average peak-to-peak amplitude of a motor unit was higher in one of the muscles from where this unit was not originally identified, this unit was visually inspected and then omitted from the analysis.

Within- and between-muscle coherence.
We used a coherence analysis to assess the neural connectivity between motor units from the same (within-muscle coherence) or from different muscles (between-muscle coherence) (27). Note that coherence calculated at a given frequency represents the correlation between the two signals at that frequency, with 0 indicating noncorrelation and 1 indicating perfect correlation. Coherence within the δ band (0–5 Hz) reflects the presence of common drive (11, 25, 28).

Because the GL motor units were recruited late during the plateau of the isometric plantarflexion tasks performed on the ergometer (see RESULTS), the number of discharges was too low to conduct coherence analysis on these tasks. In other words, too few motor units were recruited during enough time to run a meaningful coherence analysis. Thus, the coherence analysis was only performed on the isometric heel-raise task, with toes neutral, as this was the condition during which the greatest number of motor units was identified for both GM and GL.

Prior to this coherence analysis, the discharge times of each motor unit were visually inspected. Even if it was not frequently observed, pauses in the recruitment of some motor units occasionally occurred. Such pauses can affect the calculation of the coherence. Therefore, if one motor unit exhibited a pause in discharges for > 2 s, this portion of the signal was discarded for all motor units. If for a given unit these pauses occurred too often, that motor unit was not considered such that the analysis could still be performed on all other units. On average, the coherence analysis was performed on 54 ± 16 s and 47 ± 13 s, for within-muscle and between-muscle coherence, respectively.

For the within-muscle coherence, we calculated the magnitude-squared coherence using the Welch periodogram with nonoverlapping windows of 1 s (Fig. 2). This analysis was performed on two equal-sized groups of CST. The number of motor units in each of the two groups varied from 1 to the maximum number (half of the total number of identified units), and 100 random permutations of the identified units were performed for each iteration. Then, we estimated the proportion of common synaptic input to motor neurons using the method described by Negro et al. (29). For this analysis, we focused on the low-frequency bandwidth (0–5 Hz), as it has been shown to be the main determinant of the force output (19). The relationship between the average values of coherence in the bandwidth 0–5 Hz and the number of motor units was fitted by least-squares using a nonlinear equation described by Negro et al. (29). The rate of change (the slope) was considered as the proportion of common input (PCI) with respect to the total input received by the motor neuron pool (Fig. 2) (29). This method was validated in numerical simulations, which were based on a model of populations of motor neurons that received common and independent inputs (29). The advantage of this method is to provide a quantitative estimate of the relative strength of the common synaptic input, independent of the number of identified units, allowing us to make direct comparisons between muscles.

The between-muscle coherence was assessed in a similar way as the within-muscle coherence. Specifically, the total number of identified motor units was used to generate the CST. Then, we applied the coherence function between the CST for each muscle pair (GM-GL, GM-SOL, GL-SOL). Coherence was considered significant when it was higher than the maximum value of coherence for frequencies > 100 Hz, where no coherence is expected (30). In addition, we considered the presence of substantial common neural drive if the coherence values reached this significance threshold over the entire bandwidth 0–5 Hz.

Motor unit discharge characteristics.
To compare the neural drive received by the three muscles during the isometric plantarflexions performed on the ergometer, we calculated three indexes (Fig. 3). First, the time of recruitment of each motor unit was determined for each contraction as the time when the first action potential was observed (Fig. 3). As these tasks involved a 5-s ramp-up phase before the torque plateau, a value higher than 5 s indicated that the motor unit was recruited during the plateau. As expected, most of GM and SOL motor units were recruited during the ramp-up phase, but surprisingly, most of the GL motor units were recruited during the plateau (Fig. 3). Therefore, we were unable to consider the joint torque associated with recruitment (i.e., the recruitment threshold), as classically done. Second, we determined the δ discharge rate (expressed in ppS · S⁻¹) to provide an estimate of the synaptic inputs received by the motor neuron pools (31). This was calculated as the rate of change in discharge rate within the first 2 s of recruitment (Fig. 3). Because variability in instantaneous discharge rate may occur at recruitment, we considered
the discharge rate at recruitment as the mean of the first three discharges (32). Finally, we estimated the discharge rate of each motor unit during the plateau. However, as shown in Fig. 3, time-dependent changes in discharge rate were observed during the plateau, with most of the GM motor units exhibiting a decrease in their discharge rate. Consequently, we used a sixth-order polynomial to smooth the instantaneous discharge rates (33) and then we considered the peak discharge rate from this polynomial fit.

We further assessed the difference in neural drive received by the three muscles by comparing their time-dependent changes in neural drive during the torque plateau. To this end, we estimated the neural drive through the calculation of the cumulative spike train (CST) of the identified motor units (26, 34). To generate the CST of each muscle, the individual motor unit discharge timings were summed and then smoothed with a Hanning window of 400-ms duration (35). After down-sampling the data by 100, we calculated the slope of the linear regression between CST and time to determine whether the CST decreased (negative slope different to 0), increased (positive slope different to 0), or remained stable during the torque plateau.
To determine whether the feet configuration (toes neutral and toes in) adopted during the heel-raise tasks could differentially affect GM and GL recruitment, we calculated the mean motor unit discharge rate. Values of discharge rate < 4 pps were removed from this calculation, as such discharge rates likely indicate inconsistent firings of the motor units (31). Note that SOL motor units were not considered in this part of the experiment, as it is already well known that the SOL and gastrocnemius muscles can be differentially activated by modifying the knee angle (36, 37), as is expected given their different function around the knee.

Statistical Analysis

A Shapiro–Wilk test was used to test for a normal distribution. The discharge rate data measured during the heel-raise task (toes in and toes neutral conditions) did not pass the normality test. Therefore, these data were transformed [1/square root(x)]. The distributions of the time at recruitment and δ discharge rate values did not pass the normality test either. However, because no transformation was able to provide a normal distribution, we performed nonparametric tests on these data. All data are reported as means ± SD, and the level of significance was set at P < 0.05.

Statistical analyses were performed in Statistica v. 7.0 (StatSoft, Tulsa, OK). The within-muscle coherence analysis was only performed when four or more motor units were identified. Consequently, the number of participants considered for this analysis differed between muscles. For this reason, we used a one-way ANOVA for independent samples to compare the PCI between muscles [between-subject factor: muscle (GM, GL, SOL)].

It is likely that different populations of motor units, with different intrinsic properties, were identified during the plantarflexion tasks performed at the different intensities (10%, 20%, and 50%). For this reason, we did not directly compare the time at recruitment and the δ discharge rate between intensities, and these values were only compared between muscles using a Kruskal–Wallis test for main effect [between-subject factor: muscle (GM, GL, SOL)]. When appropriate, post hoc analyses were performed using multiple comparisons of mean ranks.

The peak motor unit discharge rate estimated from the polynomial fit during the isometric plantarflexions was compared between muscles and contraction intensities using a two-way ANOVA [between-subject factor: muscle (GM, GL, SOL) and intensity (10%, 20%, and 50%)]. A similar two-way ANOVA was performed to test the effect of the feet position on the discharge rate of GL and GM [between-subject factor: muscle (GM, GL, SOL) and condition (toes neutral and toes in)]. When appropriate, post hoc analyses were performed using the Bonferroni test.

RESULTS

The entire data set (raw and processed data) is available at https://doi.org/10.6084/m9.gshare.12126627.

Motor Unit Decomposition

First, the spike-triggered averaging technique was used to identify decomposed motor units, which might originate from cross talk of one of the two other muscles. To achieve this aim, we compared the amplitude of the ensemble-averaged motor unit action potentials. At this stage, 17 motor units that were identified from the array placed above the GL (≈4% of the total number of GL motor units) were suspected to originate from GM. After exclusion of these motor units, the number of decomposed units over each of the five motor tasks ranged from 173 to 335 for GM, 10 to 120 for GL, and 65 to 94 for SOL (Table 1). Note that only 10 motor units were decomposed for GL from the isometric plantarflexion performed at 10% of MVC, which is consistent with the low global EMG amplitude measured at this contraction intensity, i.e., 7.1 ± 2.4% of the maximal EMG amplitude measured during MVC. The pulse-to-noise ratio averaged over the three muscles and the five tasks (i.e., a total of 2096 motor units) was 36.2 ± 4.5 (range, 30.0–53.6).

We used a coherence analysis to provide insight into the common neural drive received by the motor neurons. Because the number of GL motor unit discharges identified during the isometric plantarflexion tasks was too low (see METHODS), the coherence analysis was only performed on the isometric heel-raise task performed with toes in neutral position (toes neutral). Of note, the normalized global EMG amplitude of GM and GL (GM, 24.1 ± 6.0%; GL, 12.1 ± 6.9%; and SOL, 24.8 ± 10.7% of maximal EMG amplitude) during the toes neutral condition was close to that measured during the isometric plantarflexion at 30% of MVC (GM, 28.7 ± 6.8%; GL, 14.9 ± 4.7%; and SOL, 18.4 ± 11.5% of maximal EMG amplitude).

Within-Muscle Coherence

After discarding the motor units that were recruited intermittently and the data from participants with less than four consistently firing motor units, the within-muscle coherence analysis was performed on 243 motor units from 17 participants for GM, 83 motor units from 11 participants for GL, and 63 motor units from 10 participants for SOL.

The proportion of common synaptic input (PCI) with respect to the total input received by the motor neuron pool was estimated from the relationship between the average values of coherence in the bandwidth 0–5 Hz and the number of motor units used in the calculation (see METHODS; Fig. 2). As the number of participants differed between the three muscles, we ran a one-way ANOVA for independent samples. There was a significant main effect of muscle [F(2, 35) = 14.2, P < 0.001] on the PCI values, with the PCI being lower in SOL (0.58 ± 0.06) than in both GM (0.67 ± 0.06; P = 0.004) and GL (0.73 ± 0.07, P < 0.001) (Fig. 4). PCI was not different between GM and GL (P = 0.063). Note that we also ran a repeated-measures ANOVA on the seven participants who had enough active motor units discriminated from all the three muscles. This test confirmed the existence of a significant main effect of muscle [F(2, 12) = 26.9, P < 0.001], with the PCI being lower in SOL than in both GM (P = 0.001) and GL (P < 0.001), with no difference between GM and GL (P = 0.082).

The proportion of common input to motor neurons within the VL and VM, assessed on two participants who performed an isometric body-weight squat (additional experiments), was in the lower range of that calculated for the *triceps surae* muscles, i.e., VL, 0.50 and 0.57; VM, 0.49 and 0.54.
Whereas
muscle pair, only two of 13 participants exhibited signi-
regardless of the bandwidth, i.e.,
56 (SOL) motor units] and GL-SOL [62 (GL) and 52
per muscle. Using this criterion, the coherence analysis was
we retained all the participants with at least one motor unit
considered in the analysis did not influence the
level of coherence that is reported. Consequently, after dis-
carding the motor units that were recruited intermittently,
we retained all the participants with at least one motor unit
per muscle. Using this criterion, the coherence analysis was
performed on 13 participants for GM-GL [193 (GM) and 87
(GL) motor units] and 11 participants for both GM-SOL [168
(GM) and 56 (SOL) motor units] and GL-SOL [62 (GL) and 52
(SOL) motor units].

Overall, minimal between-muscle coherence was observed,
regardless of the bandwidth, i.e., \(\delta \) (0–5 Hz), \(\alpha \) (5–15 Hz), and \(\beta \)
(15–35 Hz) bands. For example, when considering the GM-GL
muscle pair, only two of 13 participants exhibited significant
coherence over the entire bandwidth 0–5 Hz (Figs. 5 and 6).
Whereas five of 13 participants exhibited coherence at some
(but not all) frequencies within the 0–5 Hz bandwidth, six of
13 participants exhibited no significant coherence over this
bandwidth. Note that participant 5, who exhibited the high-
est coherence over the whole population (Fig. 5), was retested
2 mo after the initial testing, and the results confirmed the
presence of significant coherence. When considering the GM-
SOL and GL-SOL muscle pairs, none of the participants exhib-
ted significant coherence over the entire bandwidth 0–5 Hz
(Figs. 5 and 6).

Note that the two participants who performed an isomet-
ric body-weight squat (additional experiments) exhibited sig-
ificant coherence between VL and VM motor units, over
the entire bandwidth 0–5 Hz (peak values, 0.34 and 0.81).
It confirms previous results showing a strong common drive
between these muscles during isometric knee extension
tasks (11).

Motor Unit Discharge Characteristics during the
Isometric Plantarflexion Tasks

As indicated earlier, only 10 motor units were decomposed
from the GL muscle during the plantarflexion at 10% of
MVC. As the comparison between GL and GM was the main
purpose of this study, no further analysis was completed on
the contractions at 10% of MVC.

At 30% of MVC, most of the identified motor units dis-
charged during the three contractions (93% for GM, 69% for
GL, and 68% for SOL). There was a significant main effect of
muscle on the time at recruitment \((H = 68.7, df = 2, P <
0.001) \), with the GL motor units being recruited much later
(11.5 ± 5.9 s) than both GM (4.4 ± 3.3 s, \(P < 0.001 \)) and SOL
motor units (5.2 ± 4.2 s, \(P < 0.001 \)). No difference of time at
recruitment was observed between GM and SOL \((P = 0.20) \).
As the time at recruitment was calculated from the start of
the 5-s ramp-up period (see METHODS), this result indicates
that most of the motor units from GL started to be recruited
during the torque plateau (Fig. 7). There was a significant
main effect of muscle on the \(\delta \) discharge rate measured
during the first 2 s after recruitment \((H = 17.2, df = 2, P =
0.002) \). The \(\delta \) discharge rate was significantly lower for SOL
(1.4 ± 0.9
pps · S \(^{-1} \)) than for both GL (1.8 ± 1.5
pps · S \(^{-1} \), \(P = 0.012 \)) and
GM (2.0 ± 1.3
pps · S \(^{-1} \), \(P < 0.001 \)). No difference between GL
and GM was observed \((P = 1) \).

Similar results were observed for the contractions per-
formed at 50% of MVC, with a significant main effect of
muscle on the time at recruitment \((H = 80.7, df = 2, P < 0.001) \).
As observed at 30% of MVC, GL motor units were recruited

Table 1. Number of decomposed motor units

<table>
<thead>
<tr>
<th></th>
<th>GM</th>
<th>GL</th>
<th>SOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantarflexion10% MVC</td>
<td>294 (17.3 ± 8.2) (1–30)</td>
<td>10 (0.5 ± 0.9) (0–3)</td>
<td>92 (5.8 ± 4.2) (0–14)</td>
</tr>
<tr>
<td>Plantarflexion30% MVC</td>
<td>275 (16.2 ± 6.6) (3–31)</td>
<td>90 (5.3 ± 4.5) (0–13)</td>
<td>94 (5.9 ± 4.1) (0–12)</td>
</tr>
<tr>
<td>Plantarflexion50% MVC</td>
<td>173 (10.5 ± 7.6) (0–22)</td>
<td>75 (4.1 ± 5.6) (0–21)</td>
<td>65 (4.1 ± 3.4) (0–17)</td>
</tr>
<tr>
<td>Heel raise/Toes neutral</td>
<td>335 (19.7 ± 9.5) (0–36)</td>
<td>120 (7.1 ± 5.7) (0–19)</td>
<td>76 (5.1 ± 4.1) (0–15)</td>
</tr>
<tr>
<td>Heel raise/Toes in</td>
<td>312 (18.4 ± 7.6) (6–31)</td>
<td>85 (5.0 ± 3.9) (0–12)</td>
<td>—</td>
</tr>
</tbody>
</table>

Because of technical reasons, there were no data for participant 14
between these muscles during isometric knee extension
(11).

Figure 4. Proportion of common synaptic input to motor neurons within the
same muscle, estimated during the isometric heel raise (toes neutral). The
within-muscle coherence analysis was performed on 17, 11, and 10 partici-
pants for gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and sol-
eus (SOL), respectively. Each participant is represented by a different color
and the horizontal line indicates the mean value. $, indicates significant dif-
ference compared with SOL. There was no significant difference between GM
and GL.
and SOL motor units (4.4 ± 2.7 s, much later (9.5 ± 4.2 s) than both GM (3.7 ± 2.6 s, P < 0.001) and SOL motor units (4.4 ± 2.7 s, P = 0.018) (Fig. 7). At this intensity, SOL motor units were also recruited later than GM motor units (P < 0.001). There was also a main effect of muscle on the δ discharge rate (H = 26.9, df = 2, P < 0.001). The δ discharge rate was significantly lower for both SOL (1.5 ± 1.2 pps · S⁻¹, P < 0.001) and GL (1.6 ± 1.9 pps · S⁻¹, P < 0.001) when compared with GM (2.6 ± 1.6 pps · S⁻¹). There was no difference between GM and SOL (P = 0.961).

There was a significant main effect of muscle [F(2, 766) = 83.4, P < 0.001], a significant main effect of intensity [F(1, 766) = 68.9, P < 0.001], and a significant muscle × intensity interaction [F(2, 766) = 8.7, P = 0.002] on the peak motor unit discharge rate estimated from the polynomial fit (Fig. 7). Regardless of the contraction intensity, the discharge rate was lower for SOL than for both GM and GL (all P values <0.037). While there was no difference in discharge rate between GM and GL at 30% of MVC (P = 1), the discharge rate was significantly higher for GM (14.0 ± 3.0 pps) than GL (12.2 ± 2.6 pps; P < 0.001) at 50% of MVC. This result is mainly explained by the absence of an increase in discharge rate of the GL motor units between the two intensities (P = 1).

We estimated the change in neural drive of each muscle during the plateau of the force-matched contractions through the assessment of the change in their cumulative spike trains (CST). When considering all the participants and the three contractions at 30% of MVC, we observed a significant decrease in the GM CST for most of the contractions (48% decrease vs. 42% increase and 10% no change). Conversely, a significant increase in the CST was observed in 92% of the contractions for GL and 54% of the contractions for SOL. Opposite change in CST was observed in 64%, 65%, and 44% of the contractions when considering GM-GL, GM-SOL, and GL-SOL pair, which provides strong evidence for opposing changes in neural drive to these muscle pairs. When considering the contractions at 50% of MVC, we observed a significant decrease in the GM and SOL CST for most of the contractions (69% and 71% for GM and SOL, respectively). Conversely, a significant increase in the GL CST was observed in 100% of the contractions. Opposite change in CST was observed in 66%, 36%, and 67% of the contractions when considering GM-GL, GM-SOL, and GL-SOL pairs.

Effect of Toe Position on Motor Unit Discharge Rate during Isometric Heel Raise

We compared the discharge rate of all identified motor units during the heel-raise tasks between toes neutral (335 and 120 motor units for GM and GL, respectively) and toes in (312 and 85 motor units for GM and GL, respectively) (Fig. 8). There was a significant main effect of condition [F(1, 848) = 7.4, P = 0.006], a significant main effect of muscle [F(1, 848) = 12.7, P < 0.001], and a significant muscle × condition on the discharge rate [F(1, 848) = 10.5, P = 0.001]. While no change in motor units discharge rate was observed for GM between the two conditions (P = 1), there was a significant increase in the discharge rate of GL motor units, from 10.2 ± 1.2 pps for toes neutral to 10.8 ± 1.5 pps for toes in (P = 0.002).

DISCUSSION

We identified strong common neural drive to the motor neuron pools innervating each muscle but minimal common
drive between pools innervating different muscles. Together with differences in motor unit behaviors, our results provide evidence for minimal common drive between the muscle heads of the triceps surae, which contrasts with observations from other anatomically derived synergist muscles. This important result has implications for our current understanding of the modular control of muscle coordination.

Strong Common Synaptic Input to Motor Neurons within Each Muscle

We assessed the PCI received by the motor neuron pools of the three muscles of the triceps surae. PCI values reported here were similar to those reported in the abductor digiti minimi, tibialis anterior, and vastus medialis (29). This suggests that motor neurons of a single muscle receive most of their input from a common source. Unlike the previous observations made by Negro, Yavuz, and Farina (29), but in line with other data obtained from the first dorsal interosseous and the biceps brachii (32), we observed a significant difference between muscles, with GL (PCI = 0.73) and SOL (PCI = 0.58) having the highest and lowest PCI values, respectively. These between-muscle differences may be interpreted as differences in the effective neural drive that is converted to force, presumably underlying differences in the control of these muscles.

Minimal Level of Common Drive between the Heads of the Triceps Surae

We determined that the three heads of the triceps surae receive minimal common drive during isometric heel-raise tasks (toes neutral). To reach this conclusion, we performed a coherence analysis between the CST of each muscle (11, 25, 35). To the best of our knowledge, this is the first report minimal (or an absence of) coherence in all the frequency bands reflecting cortical and spinal inputs (20) between muscles that share the same main function(s) and that belong to the same muscle group. As such, it was important to rule out the possibility that our approach failed to identify existing coherence. First, the coherence analysis requires that the CST is calculated from several motor units such that the synaptic input is represented over a broad frequency range (38). Our analysis was performed on a relatively large number of units.
(Table 1) with, for example, 14.8 ± 7.3 (GM) and 6.7 ± 3.2 (GL) motor units when considering the coherence between GM and GL. It is important to note that some of the participants who exhibited no significant GM-GL coherence in the band-width 0–5 Hz (Fig. 5) were among the participants whose data allowed the largest number of motor units to be discriminated (e.g., 21 [GM] and 8 [GL] units for participant 12, 16 [GM] and 9 [GL] units for participant 18). Second, we tested our analysis procedure on the VL and VM muscles of two participants. In line with the strong common input shared by the participants, the motor units showed a similar discharge pattern during the isometric plantarflexion tasks performed at 30% (A) and 50% of MVC (B). Each participant is represented by a different color, and the horizontal bar indicates the mean value. The dashed horizontal line on the upper panels indicates the beginning of the torque plateau. *P < 0.05 for comparison with GM; $P < 0.05 for comparison with SOL; £P < 0.05 for comparison with GL. GM, gastrocnemius medialis; MVC, maximal voluntary contractions; SOL, soleus.

Figure 7. Motor unit discharge characteristics during the isometric plantarflexion tasks performed at 30% (A) and 50% of MVC (B). Each participant is represented by a different color, and the horizontal bar indicates the mean value. The dashed horizontal line on the upper panels indicates the beginning of the torque plateau. *P < 0.05 for comparison with GM; $P < 0.05 for comparison with SOL; £P < 0.05 for comparison with GL. GM, gastrocnemius medialis; MVC, maximal voluntary contractions; SOL, soleus.

Figure 8. Discharge rate during the isometric heel raise performed with different feet configurations. Each participant (n=14–17) is represented by a different color, and the horizontal bar indicates the mean value. *P < 0.05 for comparison with toes neutral. A: gastrocnemius medialis; B: gastrocnemius lateralis.
by these muscles (11), we observed a significant coherence in the bandwidth 0–5 Hz for both participants. Given the aforementioned considerations, we believe that our data set and analysis methods were appropriate to show coherence if it did exist between the muscles of the triceps surae.

Our conclusion that the three heads of the triceps surae share minimal common drive is further strengthened by two complementary approaches. First, the motor unit discharge characteristics observed during the isometric plantarflexion tasks performed on the ergometer revealed obvious differences among muscles. GL motor units were recruited much later than either SOL or GM motor units at both contraction intensities (Figs. 3 and 7). Even though this difference in recruitment time might be explained by different intrinsic motor neuron properties rather than different neural drive, the fact that opposite changes in CST were observed in most of the contractions provides evidence that the three muscles receive different neural drive (Fig. 3). Our proposition provides an explanation for the absence of active GL motor units observed during standing balance (18). Second, the differential change in the discharge rate of GL and GM observed between the heel-raise tasks performed with toes in and toes neutral provides definitive evidence that these muscles are not controlled primarily by shared neural drive, as it is the case for other synergist muscles.

GM and GL Are “Nonidentical Twins”

Even though SOL and gastrocnemii are consistently reported as part of the same synergy during walking (49), the observation that the SOL muscle does not share a common drive with the two gastrocnemius muscles is not surprising, given their different functions and previous observations of dissociated motor unit behavior of GM and SOL in humans (36, 37) and animals (39). However, considering that muscles that share the same function(s) are thought to share neural drive (9, 11), the minimal coherence between GM and GL, despite attaching to the same distal tendon, is somewhat surprising. Our findings do not support the long-held belief that GM and GL are the “same muscle” such that they are named the “twin” muscles in some languages, e.g., “jumeaux” in French and “gemelos” in Spanish.

The minimal common drive between GL and GM may be related to the complexity of ankle joint control. Control at the ankle is important in maintaining balance during a wide variety of tasks, such as quiet stance, walking, running, and maintaining balance when responding to perturbations. Therefore, relative independent control of these muscles may allow for flexible control of the ankle joint to comply with secondary goals (e.g., joint stabilization, distribution of tendon strain). This is supported by indirect neurophysiological and biomechanical measures of human GL and GM that suggest different actions in the frontal plane (16, 17, 40). Also, these muscles are architecturally different, with GL exhibiting a smaller volume and longer fascicles than GM (41). This means that these two muscles have different contractile dynamics (42). Therefore, an independent control of GM and GL might be an optimal way for the nervous system to tune the activation to the mechanical requirements of the task (43). Overall, the minimal common drive observed between GL and GM suggests that reducing the number of effectively controlled degrees of freedom may not always be the strategy used by the central nervous system to control movements, even when this strategy would be functionally viable. This is in agreement with recent results showing that the central nervous system compromises between restoration of task performance and optimization of joint load after VL denervation in rats (44). Of note, we cannot rule out an alternative interpretation that the lack of common drive between GM and GL is a suboptimal strategy resulting from the late, and perhaps incomplete, evolution of the Achilles tendon and plantarflexors for human locomotion (45).

Modular Organization of Muscle Coordination

It has been proposed that the central nervous system produces movements through the combination of motor modules; each module being composed of muscles activated by shared inputs to their motor neurons (3, 46, 47). However, the neural origin of motor modules is debated, with some studies suggesting that they reflect biomechanical constraints of the task rather than a neural control strategy (7, 48). Using a similar approach to that used in our study, shared neural drive was found between two thigh muscles for which control is biomechanically constrained [VL and VM; (11)] as well as between two hands muscles for which control is not biomechanically constrained [first dorsal interosseous and thenar muscles (25)]. Here, we observed little, if any, coherence in the bandwidth corresponding to both the spinal and cortical drive, suggesting that GM and GL are controlled mostly independently. Taken together, it provides evidence against a pure association between biomechanical constraints and modular muscle control. Indeed, GM and GL are both anatomically and biomechanically associated during plantarflexion, as performed in our study. However, these constraints did not determine modular control of their activation, even though control with reduced dimensionality would have been viable for these specific plantarflexion tasks. This and previous studies thus point to the possibility that neural connectivity may be partly dissociated from biomechanical connectivity.

It is important to note that classical noninvasive approaches, based on factorization of multiple bipolar EMG signals, consistently report GM and GL as part of the same module(s) (14, 15). Together with our results, this suggests that separate EMG signals can be correlated but in a way that does not reflect a common synaptic input (31). The noninvasive approach with EMG decomposition used in this study could be extended to other muscles to provide a comprehensive description of neural muscle modules that could be distinguished from “biomechanical” modules.

Limitations

This experiment requires consideration of several methodological aspects. First, the level of common synaptic input to the motor neuron pools of GM, GL, and SOL has been estimated only indirectly from the recorded motor neuron outputs. Moreover, in most cases, it was assumed that the transmission at the motor neuron population level was linear, as it has been proposed in previous work (38), although it cannot be excluded that transmission to the motor neuron output included some nonlinear components (49, 50). The coherence between the cumulative discharge times
calculated over a group of motor neurons reflects the common components of the synaptic input, although the frequency bands of these components may not be the same between input and output when accounting for nonlinear transmission. Similarly, the model we used to estimate the PCI does not specifically account for persistent inward currents, which introduce further nonlinearity in the system (49). Second, the SOL muscle is composed by four compartments with different architecture (51) and different innervation (52). Given the placement of our surface EMG electrodes (see METHODS), it is likely that we measured only one compartment, which did not represent the motor unit activity in the entire muscle. It is, therefore, possible that neural drive was shared between GM or GL and other SOL compartments. Finally, the observation of minimal common drive between the entire data set (raw and processed data) is available; F.H., A.D., D.F., and K.J.T. interpreted results of experiments; F.H., A.D., D.F., and K.J.T. conceived and designed research; F.H., D.F., and K.J.T. interpreted results of experiments; F.H., A.D., S.A., D.F., and K.J.T. edited and revised manuscript; F.H., A.D., S.A., D.F., and K.J.T. approved F.H., A.D., S.A., D.F., and K.J.T. approved.

REFERENCES

AUTHOR CONTRIBUTIONS

ENDNOTE

At the request of the authors, readers are herein alerted to the fact that the entire data set (raw and processed data) is available at https://doi.org/10.6084/m9.figshare.12126627. These materials are not a part of this manuscript and have not undergone peer review by the American Physiological Society (APS). APS and the journal editors take no responsibility for these materials, for the website address, or for any links to or from it.

GRANTS

François Hug is supported by a fellowship from the Institut Universitaire de France (IUF) and a travel grant from the Société de Biomécanique. Support was received from the French national research agency (ANR-19-CE17-002-01, COMMODE project; to F. H.) and from the European Research Council Synergy Grant NaturalBionic5 (Contract No. 810346 to D.F.).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.
INDEPENDENT CONTROL OF SYNERGIST MUSCLES

