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Abstract
Prediction of protein structures using computational approaches has been explored for over
two decades, paving a way for more focused research and development of algorithms in com-
parative modelling, ab intio modelling and structure refinement protocols. A tremendous suc-
cess has been witnessed in template-based modelling protocols, whereas strategies that involve
template-free modelling still lag behind, specifically for larger proteins (> 150 a.a.). Various
improvements have been observed in ab initio protein structure prediction methodologies over-
time, with recent ones attributed to the usage of deep learning approaches to construct protein
backbone structure from its amino acid sequence. This review highlights the major strategies
undertaken for template-free modelling of protein structures while discussing few tools devel-
oped under each strategy. It will also briefly comment on the progress observed in the field of
ab initio modelling of proteins over the course of time as seen through the evolution of CASP
platform.
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Abbreviations: Critical Assessment of protein Structure Prediction (CASP), Template-based
modelling (TBM), Template-free modelling (TBM), Fragment-based approaches (FBA), Arti-
ficical Intelligence (AI).

1 Introduction
Proteins are complex biomolecules that play a crucial role in building, strengthening, maintain-
ing, protecting and repairing a living entity. Each protein folds into a specific three-dimensional
structure owing to its amino acid composition. This in turn corresponds to a specific function,
collectively termed as sequence-structure-function paradigm [1]. The relationship between pro-
tein sequence and its corresponding secondary and tertiary structure is termed as second genetic
code [2]. A major gap exists in our knowledge of the science behind protein folding based on
its sequence. Research focused in deciphering the second genetic code has been budding for
past few decades by means of various schemes.

Advent of genomics has led to the availability of large deposit of sequence data online. This
helps in easy classification of proteins and in approximating their functional annotation. A
considerable amount of this classification is based on shared sequence similarity (and conserved
domain search) between two or more sequences. Currently, UniProtKB/TrEMBL database is
enriched with around 170 million sequence data [3]. Yet protein functionality remains unclear
primarily due to the lack of structural description at the atomic levels. The equivalent struc-
tural database, RCSB [4] (https://www.rcsb.org) documents around 160,000 structures to date
belonging to well defined protein families. There is also an ever increasing gap between protein
sequence and structure data availability due to considerable growth observed in sequencing
techniques.

Scientific community has always relied on experimental approaches to deliver high resolution
protein structures. Structural data deposited in data banks are only accountable when verified
through experiments like X-Ray [5], NMR [6] etc. Time and again these techniques have been
proven to be most efficient in getting relevant spatial characterisation of a protein. On the other
hand, they also have remained stagnant in terms of improvements due to being heavily restricted
by time and manpower requirements [7]. A recent introduction of Cryo-EM has fostered an
acceleration of protein structure determination process [8]. The core of this technique lies in
photographing frozen molecules to determine their structure. Nonetheless, the approach is
relatively new and usually generates lower resolution structures than those benchmarked by
other experimental techniques.

Twentieth century has witnessed a blooming era for scientific community indulging in com-
putational approaches for approximation of protein structures. Anfinsen in 1972 laid the foun-
dation for protein structure prediction by correctly refolding ribonuclease molecule from its
sequence [9]. As stated in the paper, “the native conformation is determined by the totality of
inter-atomic interactions and hence by the amino acid sequence in a given environment” [10]. In
other words, a protein attains its conformational nativity when its environment is at its lowest
Gibbs free energy levels. Another statement put forward in their work was that a protein struc-
ture is only stable and functional in the environment it was chosen during natural selection.
Despite knowing the physical environment requirement for folding a protein sequence, it remains
a challenge to fold them into their functional form. Therefore, limiting the understanding of
the sequence-structure-function paradigm [11,12].

Computational approaches for protein structure prediction can broadly be categorized into
two groups: Template-Based Modelling (TBM) [13, 14] and Template Free Modelling/Free-
Modelling (FM) [15]. A representative flowchart of the categorization is illustrated in Figure 1.
This classification has been adopted by well-known biennial competition of protein structure
prediction, Critical Assessment of protein Structure Prediction (CASP) [16] [17–20]. Results
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from this competition benchmark the improvement in the field of computational protein struc-
ture prediction [19,21]. Majority of progress witnessed in this field is in construction of protein
models using templates sharing high sequence similarities with unknown protein. The basis
behind the approach is that similar sequence tend to fold in a similar manner. This tendency
of proteins to envelop into similar folds reduces with shared sequence similarity, though there
exist cases of proteins having same folds even when their shared sequence similarity is low.

TBM, as the name suggests, makes use of template to predict 3D models. Single or mul-
tiple homologous protein sharing high sequence similarity are aligned to the unknown protein
sequence predicting likely models [13]. Structures predicted through TBM usually have a good
resolution and might fall into same functional classes. But there is little progress made when
it comes to predicting new protein folds or structures. TBM is an effective approach as long
as the query shares at-least 30% sequence identity with the template [22]. On the basis of
shared sequence identity, it can be classified into Homology Modelling (HM) [23–25], Com-
parative Modelling (CM) [26, 27] and Threading approaches (fold-recognition) [28–31]. Each
sub-class follows similar methodology into prediction of protein three-dimensional organisation
from its primary one-dimensional sequence. One might argue that HM and CM are two terms
for one and the same approach. It is true to a great extent except that homology modelling
is defined when template shares an ancestry with the query being modelled whereas in case of
CM, the query sequence has no identified evolutionary relationship with the template but only
shared sequence similarity. So far, comparative modelling has been the most successful com-
putational protein structure prediction approach available [22]. The third category of TBM is
fold-recognition/threading which follows the idea of picking template structures based on their
fit with the protein sequence in question. It is basically a comparison of 1D protein sequence
to 3D template structure.

2 Ab initio Protein Structure Prediction
A significant amount of sequence data does not share homology with well-studied protein fam-
ilies. This called for development of approaches which could help predicting protein structures
with minimal or no known information. Such approaches fall into the second major class of
computational protein structure prediction called “Template-Free modelling/Free-modelling”
(TFM/FM). The word “free” used in the name indicates the initial take on such algorithms
to rely on physical laws to determine protein structures. Though, most of the algorithms de-
veloped around it are guided by structural information. In this review we will touch into the
evolution of Free-modelling and the approaches that have been used to predict 3D models.
Throughout this review Free-modelling, ab initio modelling and de novo modelling will be used
interchangeably to discuss template-free modelling approaches.

Template-free modelling comprises of algorithms/pipeline/methods for generating protein
models with no known structural homologs available. Mainly these approaches focused on us-
ing physics based principles and energy terms to model proteins. The nomenclature remains
debatable as in several cases, information from known structures is used in one way or another.
This review is considering the following definition as best suited to describe our understanding
of TFM: “Ab initio protein structure prediction or Free modelling (FM) can most appropriately
be defined as an effort to construct 3D structure without using homologous proteins as tem-
plate” [14, 22, 32–34]. FM approaches majorly depend on designing algorithms with ability to
rapidly locate global energy minimum and a scoring function capable of selecting best available
conformation from the several generated models [35–37].

The aim of free-modelling protocols is to predict the most stable protein spatial arrangement
with lowest free energy. The major challenge faced while developing ab initio approaches
is searching conformational space which is usually huge considering the dynamic nature of
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Figure 1: Computation Protein Structure Prediction Approaches.

This figure provides a broad classification of few computational protein structure prediction
strategies developed and used to determine protein structure. The two major classifications of these
methodologies lie under the domain of Template-Based Modelling and Template-free modelling. Each
of these categories can further be split into a set of strategies based on the basic principle followed by

the parent approaches for structure prediction.

proteins. Since, these approaches involve building the protein structure from scratch, focus is
laid on building effective energy functions to minimise conformational search space and facilitate
accurate folding [22, 34]. Ab initio algorithms can also be influenced from experimental data
available in the form of abstract NMR restraints, predicted residue-residue contact maps, Cryo-
EM density maps etc. [38–40].

2.1 Strategies for Ab initio Prediction of Protein Structure

Free modelling has witnessed a major bloom in the past era owing to several strategies de-
veloped for structure prediction, few of them have been stated in the Table 1. Initially the
scientific community resorted to use pure physics based laws, MD simulations etc. to explore
the atomic dynamics of protein molecules. The prediction horizon expanded with time into
utilizing restraints like Cα-Cα distance, dihedral angles, solvent interactions, side-chain atoms,
contact map information and more from available structures. The newer fundamentals involved
building saturated library of structural information in the form of small fragments, secondary
structural elements, motifs, foldons etc. Below we have broadly classified the ab initio protein
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structure prediction approaches based on the core methodologies used to develop them.

2.2 Physics Based Approaches

These formed the basis of initial algorithms built under the emerging field. The main idea
behind developing these physics-based approaches is to rely on MD simulations to trace the
folding path of the proteins. The philosophy backing their design is to obtain lowest energy
conformation model by folding the protein sequence using quantum mechanism and coulomb
potential [63,64]. But due to high computational requirements, the field majorly relies on inter
atomic interactions and force fields to solve the protein folding problem.

Free energy calculations have been explored from the very beginning of computational pro-
tein structure prediction evolution. It is believed that these approaches can go beyond doc-
umented structures and capture novel folds and patterns by exploring the inherent dynamic
motion of proteins [65,66]. Despite the availability of better computing, physics based approach
continues to lag behind due to the amount of time required to reach the native state along-with
the meddling of erroneous force-field that restrict the model to attain it [12,67–69].

MELD (Modelling Employing Limited Data) [65] is a recently developed physics-based
protein structure prediction approach which uses Bayesian law to tap into atomic molecular
dynamics of proteins for structural modelling. It has proven to be effective in determining
high resolution structures of proteins up to 260 residues long [65]. Similar effort was made by
David Shaw’s group where they utilised different sets of restraints to reduce the MD simulation
runs and prevent the model from getting trapped in non-native energy state [70]. H. Nguyen
et al demonstrated that the combination of an implicit solvent and a force field can result
in near-native models in-case of small proteins (less than 100 amino acids) [71]. Another
group showed that simulation time can be reduced and energy landscapes can be managed
using residue-specific force field (RSFF1) in explicit solvent and Replica exchange molecular
dynamics (REMD) [72].

2.3 Fragment Based Approaches (FBA)

It is by far the most successful strategy used for template-free prediction of protein structure.
This approach revolves around the construction of fragment libraries of varied lengths, where
each fragment represents a pseudo-structure. The idea is to map information from protein
fragments instead of using entire templates for constructing protein model. Segments of query
sequences are replaced by the fragment coordinates recorded in the fragment library or by its
predicted fold. Since, it is computationally exhaustive to go through all possible protein fold
conformations for a structure built from scratch, fragmenting the sequence limits the number
of folding patterns thus reducing the computational expense. Bowie and Eisenberg introduced
Fragment-Based assembly approach to predict protein structures [41]. They used fragments
of length 9 to 25 from a database of known proteins and an energy function (composed of 6
terms) that can guide building of energetically stable models [41]. This attempt set path for
the evolution of computational 3D-modelling of protein structures using fragments.

Through the years several fragment-based approaches have been developed; few of which
have done exceedingly well and remain the best options for ab initio protein structure prediction
to date. The basic idea behind these algorithms remains the same and typically varies with
fragment type, length and scoring functions used to generate energetically minimised stable
structure. Rosetta [43, 44], one of the most renowned fragment based approach, uses fragment
libraries of length 3 and 9. It follows a Monte Carlo simulation based strategy to predict globally
minimised protein models. The scoring function used in Rosetta is based on Bayesian separation
of total energy into individual components. Its highest achievement has been noted during
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CASP11, where it correctly predicted the structure of a 256 amino acid long sequence [73].
SmotifsTF [54] produces library of supersecondary structure fragments known as Smotifs

to built probable models. The fragment library construction and utilisation is based on frag-
ment assembly protocols. The fragment collection is governed by weak sequence similarities
generating fragments on average of 25 residues in length. QUARK [49] has more dynamic
fragment length range of up to 20 residues which are assembled using replica-exchange Monte
Carlo simulations guided by knowledge-based force-field. It has also been ranked as the best
predictor in FM category for both CASP9 [18] and CASP10 [19] competition and was among
the two dominant tools in CASP11 [73].

The energy functions or scoring functions used in FBA are directed by micro-state interac-
tions existing within known protein structures. These energy terms or functions are also termed
as “Knowledge Based Potentials” [74]. FBA algorithms sought out to optimize these energy
functions. Though and on one hand, FBA based algorithms have witnessed the most success
in the biannual CASP competition by designing algorithms around the principle that certain
local structures are favoured by local amino acid sequence. On the other hand, this limits their
ability to search for alternate conformation of the proteins within a single run which reduces
their probability of discovering a novel fold.

2.4 Secondary Structural Elements Based Approaches

Algorithms employing the use of SSEs for building protein models usually focus on assembling
the core backbone of the protein with an exception of loop regions leading to model refinement
protocols. BCL::FOLD [15] is one of such algorithms built with the objective to overcome the
size and complexity limits faced by most approaches. In the later edition, restraints recovered
from sparse NMR data were also incorporated in the pipeline aiding in rapid identification of
protein topology [40]. This was benchmarked on protein data set upto a length of 565 containing
both soluble and membrane proteins. The algorithm was tested on 20 CASP11 targets, out of
which it was able to produce a GDT_TS score of 30% on average for twelve [52]. The average
GDT_TS score was accounted for 36%. The study was conducted by using targets belonging to
different categories offered by CASP, for example T0 (regular targets), TP (predicted residue-
residue contacts) and TS (NMR-NOE restraints) etc. This study also pointed out that better
structures were predicted for proteins dominated by α-helix than β-strands. The prediction
accuracy also decreased with the size of the protein.

Another algorithm based on the similar principle is SSThread [53]. It predicts contacting
pairs of α-helices and β-strands from experimental structures, secondary structure prediction
and contact map predictions. The overlapping pairs are then assembled into a core structure
leading to the prediction of loop regions. The contact pairing strategy employed by SSThread
has been shown to be better in predicting β-strand pairs then all α pairs.

2.5 Deep Learning Based Approaches

Quite recently neural network based deep learning approaches have seen a boom in the field of
protein structure prediction.

So far, deep learning approaches for PSP have vastly been used as one of the component
in the entire pipeline rather than implicitly being implemented as the driving force. Majority
of its use revolve around prediction of residue-residue contacts, which are primarily derived
through co-evolutionary approaches and/or by building sequence alignment profiles [75–77].

Recent work done by Al Quraishi [78] focused on building a pure deep learning based
prediction approach. It was designed as a one step algorithm for prediction of protein structure
relying on end-to-end deferential deep learning strategy. The emphasis was laid on not using
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any co-evolutionary data or information from existing templates for protein model construction.
Instead, the algorithm relied on data derived solely from protein sequence in question and
evolutionary profile of individual residues within the sequence. This method achieved state-of-
the-art results as observed in case of ab initio modelling protocols.

Another tool that has shown prominence in CASP13 is DeepMind’s AlphaFold [79]. It
uses a two step process for protein structure determination, which also involves the use of co-
evolutionary profiles to guide model building. Through this methodology high-accuracy models
were constructed for 24 out of 43 test proteins achieving a TM-score of 0.7 and above in the
template-free modelling domain.

The community is still beginning to explore the benefits of deep learning approaches into
PSP. The major step back that can be encountered by these techniques would be related to lack
of availability of structural data. Since, these approaches are based on training the algorithm
based on the certain patterns followed by available data. Structure prediction field has always
been slower than the sequence equivalent which translates into lower availability of data that
can be used to train the algorithm. Hence, though deep learning based approaches can be better
implemented in sequence domain of protein biology, it will take other advances in structural
biology to push forward deep learning based approaches. Other problem that such approaches
can be prone to is over training of the algorithms.

3 Hybrid Approaches
With the advancements made in computational approaches to protein structure prediction,
the line between individual methodology is diminishing. Now the structure prediction com-
munity is moving forward towards the use of “Hybrid Approaches”, which do not strictly rely
on pure template based or template-free prediction criteria but on the amalgamation of both.
Bhageerath [80] is one such homology/ab initio hybrid protocol. It is available in the form
of a web-server called Bhageerath-H [37]. The main focus of the pipeline is on reduction of
conformational search space. Out of thousands of predicted models, top 5 are selected based
on physio-chemical metric (pcSM) scoring function (specific to this algorithm). Efficiency of
this software was put to test by using CASP10 targets with promising prediction results. After
the assessment of its shortcomings, an updated version was presented in CASP12 meeting as
BhageerathH+ [81].

In another study, Quark [49] and fragment-guided molecular dynamic (FG-MD) were added
to I-Tasser pipeline [11, 82] to improve on the existing protocol [33, 83]. The basic idea was
to introduce ab initio generated structures from QUARK into LOMETS [84] to find any hit
with existing homologous template with a good TM-score. Top hits are then passed into I-
Tasser pipeline for atomic refinement to obtain a structure with low rmsd. This combination
produced better results for FM targets in CASP10 and CASP11 experiments than QUARK
alone [33,85]. MULTICOM_NOVEL approach is one more example of a hybrid algorithm which
was constructed by combining various complementary structure prediction pipelines including
MULTICOM server, I-Tasser, RaptorX [14], Rosetta etc.

Chunk-Tasser can also be put into this category as it utilizes both chunks of folded secondary
structural fragments along with fold-recognition to assemble protein structures [50].

On similar grounds, an initiative was undertaken in 2014 to combine methods of the best
known protein structure prediction techniques and to come up with a pipeline which could gen-
erate better structures. This initiative came to be known as WeFold, where 13 labs collaborated
to merge their algorithms forming 5 major branches [86]. The outcome was promising and the
authors of this study discussed on further improvements to be made in prediction protocols as
a result of this ’coopetition’ [86].
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4 Evolution of CASP and its contribution
CASP has been a contributing factor for the work done in the field of computational protein
structure prediction. It is a biennial competition being conducted for around two decades
serving as a platform to judge the accuracy of prediction pipelines. It has grown overtime into a
protein structure prediction platform to qualify prediction strategies coming under domains like
template-based modelling, template-free modelling, refinement protocols, contact prediction
etc. [12, 17,87,88].

To keep a track of advancement in PSP techniques, CASP prepares a list of unpredicted
protein sequences in each category every two years. This provides an uniformity in assessing the
advancement perceived in each area of structure prediction. The protein sequence list provided
for blind testing of ab initio modelling approaches often constitutes of protein sequences with
“soon to be released” structures. Best models are determined on the basis of several criteria, one
of them being a local-global alignment score called GDT_TS score (Global Distance Test) [89].
It calculates the Cα distance between residues from model and template protein at defined
rmsd cut-off values. Henceforth determining both local and global similarities between two
protein molecules.

The initial achievement in protein tertiary structure prediction was observed in CASP4, but
mainly for small proteins (≤ 120 residues). In later years, the ab initio prediction field remained
stagnant for about a decade until the introduction of better contact prediction approaches in
CASP11 competing pipelines with promising improvements in prediction accuracy [90]. Sim-
ilar trend was observed in CASP12 with the inclusion of alignment-based contact prediction
methods [91].

Recently conducted CASP13 demonstrated further improvement on average GDT_TS score
due to the employment of deep learning approaches in structure prediction [78]. This served
as an encouragement to dig further into deep learning based approaches to solve the protein
folding problem.

5 Conclusion
Template-based prediction in general are quicker than experimental methods, at least in provid-
ing initial spatial arrangement of the protein. One of the major drawback of these approaches
is the redundancy of information, i.e., no new fold or family can be discovered as it relies
on building models from existing structures. In addition, these methods fail to establish the
structural integrity of a protein sequence with decreasing sequence or structure identity.

This review peeks into few methods and possibilities of free-modelling techniques developed
and available for the prediction of protein structure. Ab initio protein structure prediction
still bare influence from PDB structures for optimizing the parameters of protein folding. This
information helps them reduce the conformational space sampling requirements by maximizing
the efficiency of energy functions. Most of the algorithms are still directed by a combination of
knowledge-based potentials and physics-based approaches [92].

To date free-modelling has been been well adapted for protein sequences length of 150
residues or below [16] [92, 93]. Few instances have seen algorithms overdoing themselves and
going beyond the length restrictions to predict structure for longer proteins. CASP11 witnessed
major success in ab initio protein structure prediction for a structure of length 256 a.a. [90].

The major challenges faced by this field starts with finding an efficient way to explore the
conformational search space as a protein sequence can fold into indefinite forms. Thereby,
reducing the plausible folding possibilities to the best probable fold is a hard task to achieve.

The length limitation could indicate towards the design strategy of the algorithms, many
of which rely on defining domain boundaries prior to structure prediction. But, this would not
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be a very strong case of argument as most reliable predictions still lie under the length of 150
residue, though single domain boundary could expand upto a length 200 to 250 residues. The
only exception to this case seen over the past years of CASP competition where a protein of
length 256 a.a. was accurately predicted [90].

One could also argue that as a community, we are still at the domain-level of structure
prediction given the length limitations. Algorithms have been built that specifically target
solving the structure of single-domain proteins [57, 94] or choices of restraints that are limited
to single-domain proteins only [56]. Many of the designed algorithms tend to be validated on
a data set of single-domain proteins as well [75].

Even so, in the case of small protein structure predictions, not all of them deliver model
close to its nativity. It is just that chances of having a good structure is more if the length of
the protein is around 150 or less.

There is also the case of stagnancy in the field for the majority of years and been pointed
out a lot. One of the example is the discussion provided by the end of CASP10 [95]. The study
pointed out that the results from CASP10 lay closer to what were observed during CASP5.
It also reflected on the fact that it might be due to the gradual increase in the complexity of
CASP targets along with the inclusion of multi-domain targets provided for modelling.

Another drawback faced by few of these algorithms can be the run time which can vary a
lot depending on the size of the protein and the internal functioning of the algorithm. With the
inclusion of artificial intelligence, the time scale for modelling has been reduced to milliseconds
but generally, a single prediction can take from somewhere from few minutes to hours to days
for an algorithm to complete.

Most of the algorithms still rely on manual intervention to complete the runs and so the
human error should also be considered.

The point of PSP is not just high accuracy structure determination but also to ascertain
the basis behind this biological process (protein folding). Thereby, finally answering questions
like “why good protein become faulty and cause disease”.

De novo protein structure prediction still requires a lot of improvement, but at the same
time it promises a better prospect of structure prediction in future. It brings with it a hope of
predicting newer folds at a faster pace when compared to experimental approaches which can
remain stuck for years altogether due to numerous reasons. In general computational structure
prediction techniques though have a room for improvement are still quick when compared to tra-
ditional approaches [16]. If considering Template-Based modelling approaches, few limitations
still persist whereas ab initio approaches can move a step ahead and might help understanding
the basic principles of protein folding [93].
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