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Abstract—Owning sets of models is crucial in many fields, so as to
validate concepts or to test algorithms that handle models, model
transformations. Since such models are not always available,
generators can be used to automatically generate sets of models.
Unfortunately, the generated models are very close to each others
in term of graph structure and element naming is poorly diverse.
Usually, they cover very badly the solutions’ space. In this paper,
we propose novel measures to estimate differences between two
models and we provide solutions to handle a whole set of models
and perform several operations on its models: comparing them,
selecting the most diverse and representative and graphically
view the diversity. Implementations presented in this paper are
gathered in a tool named COMODI. We applied these model
comparison measures in order to improve diversity in MDE using
a genetic algorithm.

Keywords–Model Driven Engineering; Comparing sets of mod-
els; Diversity of Models.

I. INTRODUCTION & MOTIVATIONS

The increasing use of programs handling models, such as
model transformations makes the need for model benchmarks
more and more important. Elements of the benchmarks are
models which need to be, at the same time, as representative
as possible of their domain-specific modelling language, and
as diverse as possible in order to chase the potentially rare
but annoying cases where programs show a bad behaviour.
The difficulty of finding real test data that fulfil both re-
quirements, and in sufficient quantity to ensure statistical
representativeness, leads to consider automated generation of
sets of diverse models. Many approaches and tools can be used
in this purpose: ferdjoukh et al. [1], Sen et al. [2], Cabot et
al. [3], Gogolla et al. [4].

One of the main issues when attempting to produce dif-
ferent and diverse models, is to state in what extent, and
according to which criteria, the models are actually ”different”
and ”diverse”. The most natural way to formalize this notion
is to define and use metrics comparing models and measuring
their differences.

Determining model differences is an important task in
Model Driven Engineering. It is used for instance in repos-
itories for model versioning. Identifying differences between
models is also crucial for software evolution and maintain-
ability. However, comparing models is a difficult task since

it relies on model matching. This latter can be reduced to
graph isomorphism that is an NP-hard problem [5]. Kolovos
et al. [5] draw up an overview of this issue and give some
well-known algorithms and tools for model comparison. Most
of these approaches compare only two models between them
and find their common elements. This is insufficient for the
problem of diversity improving because differences have to be
measured and a whole set of models has to be considered.

In this work, we propose a distance-based approach to
measure model differences and we provide solutions to handle
sets of models in order to compare them and to extract the most
representative models. A human readable-graphical viewing is
also given to estimate the diversity of a set of models.

In this paper, we consider models which are conform to
meta-models, according to the Ecore/EMF formalization [6].
Model generation is performed using G RIMM [1] [7], which is
based on the Constraint Programming paradigm [8]. Basically,
G RIMM reads a meta-model and translates all elements of
the meta-model into a Constraint Satisfaction Problem (CSP).
A CSP solver is then used to solve the obtained constraint
network, leading to one or more models which are conform
to this meta-model, and meeting a given set of additional
parameters describing the characteristic of desired models. The
relevancy of the produced models is managed through the use
of domain-specific probability distributions, given by the user,
and extend the G RIMM tool to G RRIMM tool [9]. Schema on
Figure 1 shows the steps for model generation using G RRIMM
tool. Constraint Programming provides a deterministic behav-
ior for the generation, it is then difficult to encode diversity
directly in the heart of the tool. Other model generation tools
can be coupled with our approach. For example, during our
experiment we also used models that have been generated
using PRAMANA tool (Sen et al. [2]).

Our contributions are: (1) novel metrics measuring model
differences using distances coming from different fields (data
mining, code correction algorithms and graph) and adapted to
Model Driven Engineering (MDE) (2) solutions to handle a
whole set of models in order to compare them, to extract the
most representative models inside it and to give a graphical
viewing for the concept of diversity in MDE (3) A tool imple-
menting these two previous contributions (4) an application of
these distance metrics in improving diversity in MDE using a



Meta-model

OCL

Distribution
of links

Distribution
of attributes

Probability
sampler

CSP
generator

Model
builder

CSP
solver

G RRIMM
G RIMM

Conforming
models

E

T

S

: input

: treatment

: output

Figure 1. Steps for model generation using G RIMM/G RRIMM tool.

genetic algorithm.

The rest of the paper is structured as follows. Section II
details the considered model comparison metrics. Section III
details the solutions for handling a set of models (comparison,
selection of representative model and graphical viewing). The
tool implementing these contributions is described in section
IV. An application of our method to the problem of improving
diversity in MDE is shown in Section V. Section VI relates
about previous work. Section VII concludes the paper.

II. MEASURING MODEL DIFFERENCES

Brun and Pierantonio state in [10] that the complex
problem of determining model differences can be separated
into three steps: calculation (finding an algorithm to compare
two models), representation (result of the computation being
represented in manipulable form) and visualization (result of
the computation being human-viewable).

Our comparison method aims to provide solutions to com-
pare not only two models between them but a whole set of
models or sets of models. The rest of this section describes
in details the calculation algorithms we choose to measure
model differences. Since our method aims to compare sets of
models, we took care to find the quickest algorithms. Because
chosen comparison algorithms are called hundreds of time to
manipulate one set containing dozens of models.

As a proof of concept, we consider here four different
distances to express the pairwise dissimilarity between models.
As stated in [11], there is intrinsically a difficulty for model
metrics to capture the semantics of models. However, formaliz-
ing metrics over the graph structure of models is easy, and they
propose ten metrics using a multidimensional graph, where the
multidimensionality intends to partially take care of semantics
on references. They explore the ability of those metrics to
characterize different domains using models. In our work, we
focus on the ability of distances to seclude models inside a
set of models. Thus, we have selected very various distances,
essentially of 2 different area: distances on words (from data
mining and natural language processing) and distances on
graphs (from semantic web and graph theory). Word distances
have the very advantage of a quick computation, whereas
graph distances are closer to the graph structure of models.
As already said, an interesting feature is the fact that all those
distances are, in purpose, not domain-specific, not especially
coming from MDE, but adapted to the latter.

A. Words distances for models

We define two distances for models based on distances on
words: the hamming distance and the cosine distance. The first
one is really close to syntax and count the number of difference
between two vectors. The second one is normalized and
intends to capture the multidimensional divergence between
two vectors representing geometrical positions.

1) From models to words: We define the vectorial represen-
tation of a model as the vector collecting links and attributes’
values of each class instance, as illustrated on the model of Fig-
ure 2. At the left-hand-side of the figure is an example of meta-
model. At the right-hand-side of the figure are two models
conform to this meta-model, and their vectorial representation.
The obtained vector from a model m is composed of successive
sections of data on each instance of m, when data is available.
Each section of data is organized as follows: first data on links,
then data on attributes. When there is no such data for a given
instance, it is not represented. In the example of Figure 2,
instances of B, which have no references and no attributes,
as imposed by the meta-model, are not directly represented in
the vectors. However, they appear through the links attached to
instances of A. An attribute is represented by its value. A link
from an instance i to an instance j is represented by the number
of the referenced instance j. Each instance of a given meta-
class mc, are represented by sections of identical size. Indeed,
all the instances of mc have the same number of attributes.
The number of links may vary from an instance to another, but
a size corresponding to maximal cardinality is systematically
attributed. This cardinality is either found in the meta-model
or given in the generation parameters. When the actual number
of links is smaller than the maximal number of links, 0 values
are inserted.

2) Hamming distance for models: Hamming distance com-
pares two vectors. It was introduced by Richard Hamming in
1952 [12] and was originally used for fault detection and code
correction. Hamming distance counts the number of differing
coefficients between two vectors.

The models to compare are transformed into vectors, then
we compare the coefficients of vectors to find the distance
between both models:

a = (5, 4, 0, 2, 4, 3, 6, 1)

b = (6, 5, 3, 3, 4, 7, 0, 1)

d(a,b) = 1+ 1+ 1+ 1+ 0+ 1+ 1+ 0

= 6
8

Richard Hamming’s original distance formula is not able
to detect permutations of links, which leads to artificially
higher values than expected. In our version, we sort the vectors
such as to check if each link exists in the other vector. In
the previous example, the final distance then equals to 5

8 .
The complexity is linear in the size of models, due to the
vectorization step. Notice also that this distance implies that
vectors have equal sizes. This is guaranteed by the way we
build those vectors.
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Figure 2. Two small models and their vectorial representation.

3) Cosine distance: Cosine similarity is a geometric mea-
sure of similarity between two vectors, ranging from -1 to
1: two similar vectors have a similarity that equals 1 and
two diametrically opposite vectors have a cosine similarity of
−1. Cosine similarity of two vectors a and b is given by the
following formula:

CS(a,b) =
a.b

||a||.||b||
=

n
∑

i=1
ai.bi√

n
∑

i=1
a2

i .

√
n
∑

i=1
b2

i

After a vectorization of models, cosine similarity is then
used to compute a normalized cosine distance over two vec-
tors [13]:

CD(a,b) =
1−CS(a,b)

2

Again, the time complexity of the computation is linear in
the size of models.

4) Levenshtein distance for models: Levenshtein distance
[14] (named after Vladimir Levenshtein) is a string metric
used to compare two sequences of characters. To summarise
the original idea, a comparison algorithm counts the minimal
number of single-character edits needed to jump from a
first string to a second one. There exist three character edit
operations: addition, deletion and substitution.

Our customized Levenshtein distance is based on the
vectorial representation of a model. Each character in original
distance is replaced by a class instance of the model. So,
we count the minimal cost of class instance edit operations
(addition, deletion or substitution) to jump from the first model
to the second one.

First, a vectorial representation of a model is created
according to the class diagram given in Figure 3. Then, we
determine the cost of each one of the three edit operations
over instanceOfClass objects. instanceCost method gives
the cost to add or to delete an instanceOfClass. It counts
the number of edges and the number of attributes of this
instance. substituCost method gives the cost to substitute
an instance by another one. To determine the substitution cost,
we count the number of common links and attributes. Thus,
two instanceOfClass are exactly equal if they have the same

Figure 3. Class diagram for instanceOfClass and Link to build a vectorial
representation of a model.

type, their links have the same type and all their attributes have
the same values.

Finally, Levenshtein algorithm [14] is applied and a metric
of comparison is computed. Our comparison metric gives the
percentage of common elements between two models.

B. Centrality distance for models

Centrality is a real function that associates a value to each
node of a graph [15]. This value indicates how much a node
is central in this graph, according to a chosen criterion. For
example, in a tree, the highest value of centrality is given to
the root of the tree, whereas the smallest values are associated
to the leaves. A centrality function C is defined by:

C : E→ R+

v 7→C(v)

Many usual centrality functions exist. The simplest one, the
degree centrality, associates to each node its degree. Among
the well-known centrality functions, we can cite: betweenness
centrality, closeness centrality, harmonic centrality, etc.

In this paper, we propose a novel centrality function
adapted for MDE and based on eigenvector centrality. This
centrality was also used in the first published version of
PageRank algorithm of the Google search engine [16]. In
PageRank, eigenvector centrality is used to rank the web pages
taken as nodes of the same graph.

1) From models to graphs: Centrality functions are defined
on graphs, and models could be considered as labelled and
typed graphs. Our graph representation of models is obtained
as follows:



TABLE I. NODES TRANSFORMATION RULES.

Model element Graph element

TABLE II. EDGES TRANSFORMATION RULES.

Model element Graph element

• Create a node for each class instance (central nodes).

• Create a node for each attribute (leaf nodes).

• Create an edge from each class instance to its at-
tributes.

• Create an edge for each simple reference between two
class instances.

• Create two edges if two class instances are related by
two opposite references.

• Create an edge for each composition link.

Tables I and II summarize and illustrate these transforma-
tions rules. Real numbers c, r and t represent the weights
assigned to composition links, reference links and attributes.

2) Centrality measure: Our centrality is inspired from
pagerank centrality and adapted to models, taking into ac-
count class instances and their attributes, links between classes
(input and output) and types of link between two classes
(simple references, two opposite references or compositions).
For a given node v of the graph, we denote by N(v) the set
of its neighbors. The following function gives the centrality of
each node v:

C(v) = ∑
u∈N+(v)

C(u)
deg(u)

×w(v,u).

w(v,u) gives the weight of the link between node v and
u, determined by the kind of link between them (attribute,
reference or composition). The weight of a link can be given
by the user or deduced from domain-based quality metrics.
For instance, Kollmann and Gogolla [17] described a method
for creating weighted graphs for UML diagrams using object-
oriented metrics.

3) Centrality vector: The centrality vector C contains the
values of centrality for each node. The previous centrality func-
tion induces the creation of a system of n variables equations:
C(vi) = c1C(v1)+ c2C(v2)+ . . .+ ciC(vi)+ . . .+ cnC(vn).

To compute the centrality vector C we must find the
eigenvector of a matrix A whose values are the coefficients of
the previous equations: C = AC, where A is built as follows:

Ai j =


0 if (vi,v j) /∈ Graph,
w(vi,v j)

N(vi)
otherwise.

After building matrix A, we use the classical algorithm of
power iteration (also known as Richard Von Mises method
[18]) to compute the centrality vector C.

The result centrality vector has a high dimension (see
example on Figure 4). To reduce this dimension therefore
improve the computation’s efficiency, we group its coefficients
according to the classes of the meta-model. Then the dimen-
sion equals to the number of classes in the meta-model.

4) Centrality distance: Roy et al. proved in [19] that a
centrality measure can be used to create a graph distance. Here,
the centrality vectors CA and CB of two models A and B are
compared using any mathematical norm: d(A,B) = ||CA−CB||.

C. Discussion

We use in previous paragraphs representations of models
which could be discussed. Indeed, there are potentially many
ways to vectorize models, and we choose one highly com-
patible with our tool. Since CSP generation already provides
a list of classes attributes and links, we simply used this
representation as entry for the metrics. Again, transforming
models into graphs and trees may be done through several
ways. We arbitrarily choose one way that seemed to capture
the graph structure. Our goal here, was to test different and
diversified manners to represent a model and proposed some
distance between them, not to make an exhaustive comparison
study between quality of representation versus metrics. This
study will be done in future works.

III. HANDLING SETS OF MODELS

In this section, we propose an automated process for
handling model sets. The purpose is to provide solutions
for comparing models belonging to a set, selecting the most
representative models in a set and bringing a graphical view
of the concept of diversity in a model set.

This process helps a user in choosing a reasonable amount
of models to perform his experiments (e.g., testing a model
transformation). Moreover, using our approach, the chosen
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Figure 4. Centrality vector computed for an example model and its equivalent graph.

model set aims to achieve a good coverage of the meta-model’s
solutions space.

If there are no available models, a first set of models is
generated using G RRIMM tool [9]. These generated models
are conform to an input meta-model and respect its OCL
constraints. When probability distributions related to domain-
specific metrics are added to the process, intra-model diversity
is improved. Our goal is to check the coverage of the meta-
model’s solutions space. In other words, we want to help a user
to answer these questions: (1) how to quantify the inter-model
diversity ? (2) Are all these models useful and representative
? (3) Which one of my model sets is the most diverse ?

A. Comparison of model sets

Distance metrics proposed in Section II compare two
models. To compare a set of models, we have to compute pair-
wise distances between models inside the set. A symmetrical
distance matrix is then created and used to quantify the inter-
model diversity. It is noticeable that, thanks to the modularity
of the approach, this step can be replaced by any kind of
dataset production. For instance, if the user already has a set
of models, it is possible to use it instead of the generated one.
Moreover, another distance metric can be used instead of the
metrics we propose.

B. Selecting most representative models

Our idea is that when a user owns a certain number of
models (real ones or generated ones), there are some of them
which are representative. Only these models should be used in
some kind of tests (e.g., robustness or performance). Most of
other models are close to these representative models.

We use Hierarchical Matrix clustering techniques to select
the most representative models among a set of models. The
distance matrix is clustered and our tool chooses a certain num-
ber of models. In our tool, we use the hierarchical clustering
algorithm [20], implemented in the R software (hclust, stats
package, version 3.4.0) [21]. This algorithm starts by finding
a tree of clusters for the selected distance matrix as shown
in Figure 5. Then, the user has to give a threshold value in
order to find the appropriate value. This value depends on
the diversity the user wants. For example, if the user wants
models sharing only 10% of common elements, then 90% is
the appropriate threshold value. This value depends also on the
used metric. Thus, Levenshtein distance compares the names
of elements and the values of attributes, leading to choose
a smaller threshold value (for the same model set) than for

centrality distance which compares only the graph structure of
the models.

Using the clusters tree and the threshold value, it is easy
to derive the clusters, by cutting the tree at the appropriate
height (Figure 5). The most representative models are chosen
by arbitrarily picking up one model per cluster. For instance,
3 different clusters are found using the tree of clusters in
Figure 5. Clone detection can also be performed using our
approach by choosing the appropriate threshold value. Indeed,
if threshold equals to 0, clusters will contain only clones.

TABLE III. AN EXAMPLE OF DISTANCE MATRIX (HAMMING) FOR
10 MODELS.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

m1 0 12 27 27 27 26 46 44 45 39

m2 12 0 27 26 27 27 45 45 43 40

m3 27 27 0 18 17 16 46 45 46 39

m4 27 26 18 0 18 18 45 44 45 40

m5 27 27 17 18 0 18 45 43 44 38

m6 26 27 16 18 18 0 45 44 46 40

m7 46 45 46 45 45 45 0 36 36 41

m8 44 45 45 44 43 44 36 0 34 37

m9 45 43 46 45 44 46 36 34 0 39

m10 39 40 39 40 38 40 41 37 39 0
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Figure 5. Clustering tree computed form matrix in Table III.

C. Graphical view of diversity

Estimating diversity of model sets is interesting for model
users. It may give an estimation on the number of models



needed for their tests or experiments and they can use this
diversity measure to compare between two sets of models.

When the number of models in a set is small, diversity can
be done manually by checking the distance matrix. Unfortu-
nately, it becomes infeasible when the set contains more than
an handful of models. We propose a human-readable graphical
representation of diversity and solutions’ space coverage for a
set of models.

m1m2

m3

m4
m5

m6

m7

m8

m9

m10

Figure 6. Voronoi diagram for 10 models compared using Hamming distance.

Our tool creates Voronoi tessellations [22] of the distance
matrix in order to assist users in estimating the diversity or
in comparing two model sets. A Voronoi diagram is a 2D
representation of elements according to a comparison criterion,
here distances metrics between models. It faithfully reproduces
the coverage of meta-model’s solutions space by the set of
models. Figure 6 shows the Voronoi diagram created for the
matrix in Table III. The three clusters found in the previous
step are highlighted by red lines. We use the Voronoi functions
of R software (available in package tripack, v1.3-8).

IV. TOOLING

This section details the tooling implementing our con-
tributions. All the algorithms and tools are in free
access and available on our web pages: http://adel-
ferdjoukh.ovh/index.php/research/.

Our tool for comparing models and handling model sets
is called COunting MOdel DIfferences (COMODI). It consists
in two different parts. The first one, written in java, is used
to measure differences between two models using the above
4 metrics. The second part, written in bash and R, provides
algorithms for handling model sets (comparison, diversity
estimation and clustering).

A. Comparing two models

It is possible to measure the differences between two
models using COMODI. For that you just need to give as input
two models and their ecore meta-model. Out tool supports two
different formats: dot model files produced by G RIMM and xmi
model files. COMODI supports all xmi files produced by EMF
of generated by G RIMM, EMF2CSP or PRAMANA tools.

The first step is to parse the input models into the ap-
propriate representation (graph or vector). Then, the above
distance algorithms are applied. COMODI outputs different
model comparison metrics in command line mode. Process
of COMODI is described in figure 7.

Meta-model

Model 1

Model 2

Xmi or dot parsers

Levenshtein distance

Hamming distance

Cosine distance

Centrality distance

Figure 7. Comparing two models using COMODI tool.

B. Handling a set of models

Our tool is also able to handle sets of models and produce
distance matrices, perform clustering and plot diagrams and
give some statistics. The input of the tool is a folder containing
the models to compare and their ecore meta-model. The
supported formats for models are the same as described above
(xmi and dot).

Meta-model

xmi or
dot models

Parsing models
1
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Representative Model selection
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Figure 8. Handling a set of models using COMODI tool.

After parsing all the models into the appropriate repre-
sentation for each metric, distance matrices are produced by
pairwise comparison of models. R scripts are called to perform
hierarchical clustering on these matrices. This allows us to
select the most representative models of that folder. Voronoi
diagrams are plotted and can be used to estimate the coverage
of the folder and to compare the diversity of two folders.
COMODI prints also some simple statistics on models: closest
models, most different models, etc. These steps are shown in
figure 8.

V. APPLICATION: IMPROVING DIVERSITY

The main contributions of this paper - distances between
models, representative model selection to improve diversity -
were used in a work in bioinformatics (named scaffolding).
A genetic approach is paired with G RRIMM model generation
tool to improve the diversity of a set of automatically generated
models. Figure 9 shows how we start from a G RIMM model set
(left) with few difference between them, to G RRIMM (center)
with a better distribution due to the probability sampler, to
something very relevant by using a genetic approach (right)
based on these model distances in order to improve diversity.

We want to address the following question: do proposed
distances and process of automated models selection help to



Figure 9. Diversity improving process. Black circles are the most representative models of the set.

Figure 10. The meta-model of Scaffold graphs.

improve the diversity and the coverage of generated models.
We chose one meta-model (Figure 10) modeling a type of
graphs involved in the production of whole genomes from
new-generation sequencing data [23]. Hereinafter we give the
experimental protocol:

• Generate 100 initial models conforming to the scaffold
graph meta-model using G RRIMM tool [9].

• Model the problem of improving diversity using ge-
netic algorithms (GA). Our modeling in GA can be
found in [24].

• Run 500 times the genetic algorithm. At each step,
use model distances and automatic model selection to
choose only the best models for the next step.

• View final results in terms of model distances and
meta-model coverage using Voronoi diagrams.

The whole process induces the creation of up to 50,000
different models. Each following figures required about 3h CP
to be computed.

Curves on Figure 11 show the evolution of hamming
and cosine distance while the genetic algorithm is running
(minimum, maximum and mean distance over the population
at each generation). We can observe that both cosine distance
and hamming distance help to improve diversity of generated
models. The quick convergence of both curves (around 100
iterations of GA) is a good way to check the efficiency of both
models distances. We observe that the worst case in the final
population is better than the best case in the initial population,
thus we reached a diversity level that we did not obtained in
the initial population obtained with G RRIMM.

We introduce several improvements to describe the fitness
function used in genetic selection [24] and improve median
value for final population from 0.7 up to 0.9 for Hamming and
from 0.11 to 0.15 for maximum with Cosinus distance. Figure
12 compares the models produced by the different distances.

Red (resp. blue) dotplots represent the distribution of distances
on the final population computed using Hamming distance
(resp. Cosine distance). On the left, models are compared
using Hamming distance, on the right, they are compared using
Cosine distance. We remark that different distances do not
produce the same final models. Indeed, we can observe that the
best selected models for Hamming distance obtain lower scores
when compared using Cosine distance, and vice versa. Other
experimental results show that our four model distances can
be used in a multi-objective genetic algorithm since they treat
different constructions of the meta-model. Results are better
on the final model set in terms of diversity and coverage, than
when only one kind of distance is used.

Figure 13 shows two Voronoi diagrams of 100 models. The
first one is computed on the initial set of models, the second
on the set of models generated after the 500th iteration of
the genetic algorithm. We kept the same scale to visualize
the introduced seclusion. Here we can see the insufficient
solutions’ space coverage of the first Voronoi diagram. After
running the multi-objective genetic algorithm, we observe a
better coverage of the space. At the end of the process, we
obtain 100 very distinct models.

VI. RELATED WORK

A. Model comparison

The challenging problem of model comparison was widely
studied, many techniques and algorithms were proposed for it.
Two literature studies are proposed in [5] and [25]. Among
all the techniques, we describe here the techniques that are
close to the model distance algorithms we propose, in both
comparison and objective.

Falleri et al. [26] propose a meta-model matching approach
based on similarity flooding algorithm [27]. The goal of this
approach is to detect mappings between very close meta-
models to turn compatible models which are conform to these
meta-models. The comparison algorithm detects two close
meta-models. A transformation is then generated to make the
models of the first meta-model conform to the second one.
However, in such kind of work, the similarity between models
cannot be detected without using the names of elements:
lexical similarities are propagated through the structure to
detect matchings. Our approach is more structural.

Voigt and Heinze present in [28] a meta-model matching
approach. The objective is very close to the previous approach.
However, the authors propose a comparison algorithm that is
based on graph edit distance. They claim that it is a way
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Figure 11. Minimum, average and maximum hamming and cosine distance while running the genetic algorithm.

Figure 12. Comparison of best selected models pairwise distances distributions.

Figure 13. Solutions’ space coverage of the initial set of models (left)
compared to the last iteration (500th) of the genetic algorithm (right).

to compare the structure of the models and not only their
semantics as most of techniques do.

B. Model selection

Cadavid et al. [29] present a technique for searching the
boundaries of the modeling space, using a meta-heuristic
method, simulated annealing. They try to maximize cov-
erage of the domain structure by generated models, while
maintaining diversity (dissimilarity of models). In this work,
the dissimilarity is based on the over-coverage of modeling
space, counting the number of fragments of models which
are covered more than once by the generated models in the
set. In our work, the objective is not to search the boundaries
of the search space but to select representative and diverse
elements in the whole search space. More recently, Batot
et al. [30] proposed a generic framework based on a multi-

objective genetic algorithm (NSGA-II) to select models sets.
The objectives are given in terms of coverage and minimality
of the set. The framework can be specialized adding coverage
criterion, or modifying the minimality criterion. This work of
Batot et al confirms the efficiency of genetic algorithms for
model generation purposes. Our work is in the same vein but
focuses on diversity.

Hao Wu [31] proposes an approach based on SMT (Sat-
isfiability Modulo Theory) to generate diverse sets of models.
It relies on two techniques for coverage oriented meta-model
instance generation. The first one realizes the coverage criteria
defined for UML class diagrams, while the second generates
instances satisfying graph-based criteria.

Previous approaches guarantee the diversity relying only on
the generation process. No post-process checking is performed
on generated model sets to eliminate possible redundancies or
to provide a human-readable graphical view of the set.

VII. CONCLUSION

Counting model differences is a recurrent problem in
Model Driven Engineering, mainly when sets of models have
to be compared. This paper tackles the issue of comparing two
models using several kinds of distance metrics inspired from
distances on words and distances on graphs. An approach and
a tool are proposed to handle sets of models. Distance metrics
are applied to those sets. Pair of models are compared and a
matrix is produced. We use hierarchical clustering algorithms
to gather the closest models and put them in subsets. Our tool,
COMODI, is also able to choose the most representative models
of a set and give some statistics on a set of models. Human
readable graphical views are also generated to help users in
doing that selection manually.



The first application of our contributions is improving
diversity when generating models. Sets of non-diverse models
are automatically generated. COMODI is coupled to a genetic
algorithm to improve the diversity of this first set of models.

A. application and future work

The problematic of handling sets of models and the notion
of distance is also involved in many other works related to
testing model transformations. All these issues are interesting
applications to the contributions of this paper. For example,
Mottu et al. in [32] describe a method for discovering model
transformations pre-conditions by generating test models. A
first set of test models is automatically generated and used to
execute a model transformation. Excerpts of models that make
the model transformation failing are extracted. An expert then
tries manually and iteratively to discover pre-conditions using
these excerpts. Our common work aims to help the expert by
reducing the number of models excerpts and the number of
iterations to discover most of pre-conditions. A set of models
excerpts is handled using COMODI and clusters of close models
are generated. Using our method, the expert can find many pre-
conditions in one iteration and using less model excerpts.

Future work will consist in performing large experiments
involving and comparing other kinds of distances, and to
measure to what extend the way models are encoded into other
structures (e.g., words or trees) affects the results. We remark
that metrics and distances have also very different effects on
the evolution of the models set, and intend to further investigate
and characterize this phenomenon.
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