
HAL Id: hal-01395510
https://nantes-universite.hal.science/hal-01395510

Submitted on 10 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applicability of Existing Objective Metrics of
Perceptual Quality for Adaptive Video Streaming

Jacob Søgaard, Lukáš Krasula, Muhammad Shahid, Dogancan Temel, Kjell
Brunnström, Manzoor Razaak

To cite this version:
Jacob Søgaard, Lukáš Krasula, Muhammad Shahid, Dogancan Temel, Kjell Brunnström, et al.. Appli-
cability of Existing Objective Metrics of Perceptual Quality for Adaptive Video Streaming. Electronic
Imaging, Image Quality and System Performance XIII, Feb 2016, San Francisco, CA, United States.
�hal-01395510�

https://nantes-universite.hal.science/hal-01395510
https://hal.archives-ouvertes.fr


Applicability of Existing Objective Metrics of Perceptual Quality
for Adaptive Video Streaming
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Abstract
Objective video quality metrics are designed to estimate the

quality of experience of the end user. However, these objective
metrics are usually validated with video streams degraded un-
der common distortion types. In the presented work, we analyze
the performance of published and known full-reference and no-
reference quality metrics in estimating the perceived quality of
adaptive bit-rate video streams knowingly out of scope. Experi-
mental results indicate not surprisingly that state of the art ob-
jective quality metrics overlook the perceived degradations in the
adaptive video streams and perform poorly in estimating the sub-
jective quality results.

Introduction
The legitimate judges of visual quality are humans as end

users, the opinions of whom can to some extent be obtained by
subjective experiments. However, automatic methods of visual
quality estimation are required due to infeasibility of conducting
the subjective experiments in many scenarios. Automatic evalua-
tion of perceptual quality through objective assessment has con-
siderably progressed in the recent years. The purpose of such
objective quality methods is to automatically predict with high
accuracy the users’ perceived quality, which in most cases are
represented by a subjective assessment score. For instance, a
set of quality-related parameters of an image or video are pooled
together to establish an objective quality method which can be
mapped to predict subjective opinion.

Depending on the degree of information that is available e.g.
from the original video in the quality assessment, the objective
methods are further divided into Full Reference (FR), Reduced
Reference (RR), and No-Reference (NR) as follows [1]:

• FR methods: Following this approach, the entire original
image/video or a high quality version of it is made available
as a reference. Accordingly, FR methods are based on com-
paring distorted image/video with the original image/video.

• RR methods: In this case, it is not required to provide direct
access to the reference, but only to provide representative
features about texture or other suitable characteristics of the
reference. The comparison of the reduced information from

the original image/video with the corresponding information
from the distorted image/video provides the input for RR
methods.

• NR methods: This class of objective quality methods does
not require access to the reference, but searches for percep-
tual artifacts solely in the distorted image/video. NR meth-
ods are either based on analysis of the decoded pixels, uti-
lize information embedded in the bitstream of the related
image/video format, or performs quality assessment as a hy-
brid of pixel-based and bitstream-based approaches.

A major drawback with most of the existing metrics is their
generalizability from their scope of applicability. One of the un-
derlying reasons of the limitation of the scope of a metric is re-
lated to design-requirements taken into consideration at the time
of development [2], [3]. This limitation is very often not clear
or not known for subsequent users of the metrics. Continued ad-
vancements in the development of objective metrics are required
with the advent of new technologies in video services.

HTTP adaptive streaming (HAS) of videos has become quite
popular recently and a reasonable number of studies have been
conducted to study its characteristic of perceptual quality. A com-
prehensive review of the state-of-the art of this topic can be found
in Chapter 4 of [4]. The authors in [5, 6, 7] analyze the quality of
experience of the HAS-based video broadcast model where HAS
can adapt to bandwidth and display requirements with a trade-off
in video quality. In [8], visual impairments are introduced in HAS
videos to asses the subjective quality.

These subjective test results can be used to design objective
quality metrics. The authors in [9] assess the video quality at the
transmission receivers and on the network using packet loss ratio
and bit-rate. In [10], the authors propose a two stage model us-
ing network level packet characteristics and impact of streaming
events where subjective tests are needed to train the model. The
authors in [11] propose a full-reference video quality assessment
for multi-bit rate video encoding in adaptive streaming applica-
tions. In this paper we investigate the following existing objec-
tive quality models for their out-of-scope applicability to adap-
tive video streaming: PSNR, SSIM [12], MS-SSIM [13], VQM
[14], VQM-VFD [15], PEVQ [16], and V-BLIINDS [17]. Most



of these methods are of the FR category.
The rest of this paper is organized as follows. First, the ob-

jective quality models are introduced. This is followed by the de-
tails on the test stimuli used to validate the aforementioned meth-
ods and details on the benchmark metrics used to compare the
performance of various quality assessment methods. Thereafter,
a description of the obtained results is provided followed by a dis-
cussion on the results and conclusion remarks.

Objective Quality Models
The objective quality models that are tested for their out-of-

scope applicability to adaptive video streaming is outlined in this
Section. The methods are of FR category except when mentioned
otherwise in their description.

PSNR
The classic and well-known Peak Signal to Noise Ratio

(PSNR) is defined as:

PSNR = 10 · log
(

MAX2

MSE

)
(1)

MSE =
1
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N

∑
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)2 (2)

where MAX is the maximum value a pixel can take (e.g. 255 for
8-bit images) and the MSE is the average of the squared differ-
ences between the Luma values of corresponding pixels X and Y ,
indexed by {i, j}, in the original frame and the test frame, respec-
tively.

SSIM and MS-SSIM
The Structural SIMilarity index (SSIM) and the Multi-Scale

variant (MS-SSIM) are based on the comparison of luminance1,
contrast and structure similarity [12, 13]. In our experiment, we
used the default parameters for both SSIM and MS-SSIM.

The SSIM index is defined as:

SSIM =
(2µX µY + c1)(2σXY + c2)

(µX +µY + c1)
(
σ2

X +σ2
Y + c2

) (3)

where µ and σ denote the average and the standard deviation of
the original image X and the test image Y . σXY is the covariance
of X and Y . The two variables c1 and c2 are constants that pre-
vent numerical instabilities. The SSIM index is usually calculated
in local Gaussian filtered windows of the images and the overall
SSIM index for the test image is then the mean over these win-
dows.

In MS-SSIM the images are low-pass filtered and down-
scaled by a factor of two iteratively up to a highest scale s. The
contrast and structure components that are part of the basis for
(3) are calculated on each of these scales, while the luminance
component, which is the last part of the basis for (3) is calculated
only on scale s. The final MS-SSIM value is then calculated as an
weighted multiplication of these components.

1Strictly speaking the luminance are seldom directly represented in an
image or video. More commonly used are the Luma values as found in
the YUV format.

VQM and VQM-VFD
The general Video Quality Model (VQM) is a standardized

method of objectively measuring video quality [14]. VQM be-
longs to the RR category of quality assessment. VQM is based
on the following seven parameters. The parameters are presented
along with a brief description of the kind of distortion they mea-
sure:

• si loss: Blurring.
• hv loss: A shift of edges from horizontal/vertical orientation

to diagonal orientation.
• hv gain: Tiling or blocking.
• chroma spread: Changes in the distribution of color sam-

ples.
• si gain: Edge sharpening.
• ct ati gain: Moving edge noise.
• chroma extreme: Severe local color impairments.

The VQM output for a video is a linear combination of these pa-
rameters defined as:

V QM = −0.21 · si loss

+0.60 ·hv loss

+0.25 ·hv gain

+0.02 · chroma spread (4)

−2.34 · si gain

+0.04 · ct ati gain

+0.01 · chroma extreme

After the calculation in (4), the VQM value is clipped at a lower
threshold of 0, which represents perfect quality. Finally, a crush-
ing function that allows a maximum 50% overshoot is applied to
VQM values over 1 that represents very bad quality. For videos
with extreme distortion the VQM output can be higher than 1.

The improved version of VQM also accounts for Variable
Frame Delays (VQM-VFD) [15], but unlike VQM it does not in-
clude color parameters and it belongs to the FR category of quality
assessment. The VQM-VFD model is otherwise partly based on
parameters similar to those of VQM, including si loss, hv loss,
hv gain, and si gain, and partly based on new parameters. The
parameters are again presented along with a brief description of
the kind of distortion they measure:

• ti gain: Transient distortions.
• RMSE gain: Root MSE (RMSE) in space-time blocks.
• V FD Par1: Frame freezing.
• V FD Par1 ·PSNR V FD: The product of temporal and spa-

tial distortions.

In VQM-VFD a neural network is used to map the values of the
eight parameters to an overall measure of distortion.

PEVQ and PEVQ-S
The Perceptual Evaluation of Video Quality (PEVQ) which

is part of the ITU-T. J.247 [16]. It is a FR metric and provides
an estimation of Mean Opinion Score (MOS) for the quality of a
video. The underlying processing can be broken down into four
steps that start with preprocessing to properly align the reference
and text videos in spatial and temporal dimensions. Afterwards,



the difference between the reference and test video is perceptu-
ally weighted in order to mimic the behavior of a human observer.
Subsequently, based on the indicators computed as a result of the
previous steps are employed to estimate various degradations. Fi-
nally, all the related indicators according to the detected degrada-
tions are aggregated to compute the MOS.

PEVQ-S, which is part of ITU-T J.343 [18], is a hy-
brid/bitstream model but can be run without the bitstream and that
is what has been done here. The performance is most likely re-
duced in this case compared to using the full model.

V-BLIINDS
Video BLIINDS (V-BLIINDS) is based on a NR and non-

distortion specific spatio-temporal model of natural video scenes
using natural scene statistics and motion coherency [17]. It is
based on the following features, where each entry might cover
more than a single value:

• Motion coherency measure.
• Global motion measure.
• Spatio-Temporal Statistical DCT spectral ratios.
• Absolute temporal derivative of mean DC coefficients.
• Naturalness Image Quality Evaluator (NIQE) features [19].

The mapping from the feature space to a quality score is per-
formed by using the machine learning method known as support
vector regression.

Performance Validation
In the proposed work, we use the adaptive bit-rate streaming

database introduced in [4, 5, 20]. There are seven source videos
in different content types that include smooth to sudden motions,
smooth to fast scene changes and various camera configurations.
Chunk size is set to both 2 and 10 seconds to analyze the effect of
chunk size selection on perception of adaptation scenarios. Three
main degradation strategies in the database are increasing, de-
creasing and constant quality. In total, there are 132 processed
video sequences (PVS).

After the presentation of each PVS, subjects were asked to
select overall quality levels as excellent, good, fair, poor and bad.
The PVSs have been extensively tested with different subjective
experimental methods, for more details see [4, 5, 20]. The subjec-
tive opinions for each PVS are reported as Mean Opinion Scores
(MOS) on an integer scale from 5 (excellent) to 1 (bad).

Performance Metrics
We follow the reporting guidelines of quality measurements

recommended by ITU-T Rec. P.1401 [21] to measure the per-
formance of the metrics. Before the performance evaluation, the
scores from all the metrics are mapped to the subjective scores
using monotonic regression with 3rd order polynomial function.
The used performance measures are briefly described below. Note
that the procedures for statistical significance verification, as de-
scribed in the above mentioned recommendation, were also em-
ployed.

Person Linear Correlation Coefficient
Pearson Linear Correlation Coefficient (PLCC) is used to

measure the linearity of the predicted scores. It is defined as

PLCC =
∑

N
i=1(MOSi−MOS)× (MOSpi−MOSp)√

∑i(MOSi−MOS)2×
√

∑i(MOSpi−MOSp)2
, (5)

where MOS are the Mean Opinion Scores obtained from the ob-
servers, MOSp represent the scores predicted by the particular
metric (after the monotonic regression), N is the number of stim-
uli in the dataset, and {.} stands for the averaging operator.

Spearman Rank Order Coefficient
A good way to check the monotonicity of the metrics’ be-

havior is Spearman Rank Order Correlation Coefficient (SROCC)
which can be computed as

SROCC = 1−
6∑

N
i=1 d2

i
N(N2−1)

, (6)

where di represents the difference between the rank of the i-th
stimulus in MOS and MOSp, respectively.

Outlier Ratio
The consistency of the predictions was verified using Outlier

Ratio (OR). The outlier is defined as an estimate where the dif-
ference between real and predicted value is higher than its 95%
confidence interval, i.e. it has to be true that

|MOSi−MOSpi|>
z×σi√
Nsubj

, (7)

with σi being the standard deviation corresponding to the i-th
stimulus, Nsubj is the number of subjects who evaluated this stim-
ulus, and z is 1.96 for Nsubj > 30, otherwise its value is equal to
the 95th percentile of the student distribution with Nsubj− 1 de-
grees of freedom.

The final OR value is then

OR =
noutlier

N
, (8)

where noutlier is the number of outliers in the dataset.

Absolute Prediction Error
To measure the accuracy of the objective quality estimates

with respect to subjective results, Root Mean-Squared Error
(RMSE) is used. It is calculated as

RMSE =

√√√√ 1
N−1

N

∑
i=1

MOSi−MOSpi. (9)

Resolving Power
The last employed measure was Resolving Power (RP), de-

scribed in [22]. It analyses the significance of the metric differ-
ences providing the threshold value above which the conditional
subjective-score distributions have mean values that are statisti-
cally different from each other at a given confidence level. So
when two video sequences’ scores differ by more than the resolv-
ing power, we have 95% confidence that quality of the video se-
quences are significantly different.



Table 1: Measures of performance.

PLCC SROCC OR RMSE RP

PSNR 0.46 0.39 0.49 0.53 0.31
SSIM 0.55 0.54 0.44 0.49 0.25
MS-SSIM 0.64 0.64 0.39 0.45 0.28
VQM 0.56 0.54 0.39 0.49 0.26
VQM-VFD 0.69 0.67 0.30 0.43 0.23
PEVQ 0.33 0.19 0.51 0.56 0.23
PEVQ-S 0.70 0.72 0.30 0.42 0.24
videoBLIINDS 0.02 0.02 0.53 0.59 1.00
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Figure 1. Scatter plot of VQM-VFD outputs after monotonic regression

versus subjective MOS.

Results
The results of the performance metrics are shown in Table

1. The performance of most the quality assessment methods are
very poor. With regards to most performance metrics, the best
performing method is PEVQ-S and VQM-VFD. It is surprising
to see that some of the image-based methods perform better than
several of the Video Quality Assessment (VQA) methods. The
only NR method in test, V-BLIINDS, seems to perform worst of
all. A scatter plot for the best performing method, VQM-VFD,
after monotonic regression is shown in Fig. 1 and scatter plots of
the predicted quality for all methods before monotonic regression
is shown in Fig. 2.

It is worth noting the scale of both the subjective study and
the objective models. In the subjective study the minimum MOS
obtained was around 2, probably partly due to the relatively high
minimum bitrate in the experiment. This is reflected in most of
the model scores as well, since for most models mostly the portion
of the scale corresponding to good quality is used. The trend is
somewhat extreme for MS-SSIM, which theoretically can output
values between 0 and 1, but for this dataset has no value below
0.9. The exception to this is V-BLIINDS, which even has model
outputs outside the original integer range of [0,100].

Statistical tests to investigate whether the difference in per-
formance is significant or not has been carried out for every per-
formance metric. To safeguard against Type-I errors i.e. false

Table 2: Test of significant differences for SROCC.

(1) (2) (3) (4) (5) (6) (7) (8)

PSNR (1) - -
SSIM (2) + +

MS-SSIM (3) + +
VQM (4) + +

VQM-VFD (5) + + +
PEVQ (6) - - - - -

PEVQ-S (7) + + +
V-BLIINDS (8) - - - - -

Table 3: Test of significant differences for RMSE.

(1) (2) (3) (4) (5) (6) (7) (8)

PSNR (1)
SSIM (2)

MS-SSIM (3) +
VQM (4)

VQM-VFD (5) + +
PEVQ (6) - -

PEVQ-S (7) + +
V-BLIINDS (8) - - -

positives and have an overall 95% significance level, we use the
Bonferroni correction method. That is the overall significance
level is divided with the number of comparisons performed. In
our case we have (72−7)/2 = 21 comparisons.

The results for the SROCC metric is shown in Table 2 where
the + symbol indicates that the row method is significantly better
than the column method, while the - symbol indicates the reverse.
If no symbol is indicated, there is no statistical significant dif-
ference between the column and row method. All other methods
except PSNR have significantly better SROCC performance than
V-BLIINDS and PEVQ. PSNR is only significantly better than
V-BLIINDS. Furthermore, PEVQ-S and VQM-VFD have signif-
icantly better SROCC performance than PSNR.

A similar table for the RMSE metric is shown in Table 3
and it is evident from the table that there is less statistical differ-
ences between the methods with respect to RMSE performance.
In this case, PEVQ-S, MS-SSIM, and VQM-VFD significantly
outperforms V-BLIINDS, but only PEVQ-S and VQM-VFD sig-
nificantly outperforms PEVQ.

Discussion
Our results show that one cannot directly apply existing

quality assessment methods to new problems (in this case ABR
videos) and expect good performance. The pitfall here is to apply
methods on scenarios outside their original scope.

PSNR is inhenerntly designed for pixel-wise fidelity and
commonly used in video coding applications because of its sim-
plicity rather then its superiority. SSIM and MSSSIM are origi-
naly introduced for structural similarity in the spatial domain and
commonly prefered because of the observation that human visual
system is more sensitive to structures rather than pixels. There-
fore, it is expected for structural metrics to perform better than
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Figure 2. Scatter plots of predictions versus MOS. Solid red line indicates the monotonous regression function. The black dotted line is a straight line from the
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values of the respective objective metric and the mean hereof (rounded to significant digits).

the pixel-wise fidelity metrics which is the case according to the
result in Table 1. However, even the structural simialrity met-
rics increase the Spearman correaltion by 0.18, the performance
enahcement is not statistically significant as given in Table 2.

The performance of piexel-wise fidelity and structural met-
rics are still better than some of the video quality metrics since
they are originally trained for different type of distortions. There-
fore, we can claim that generalazabilty and domain adaptation is
an imporant issue in training-based methods that has to be consid-
ered carefully. Some methods, which are more general, are more
robust to this (such as PSNR, SSIM, MS-SSIM, VQM, PEVQ-S,
and VQM-VFD), while other methods are much more tailored to
specific problems. Especially, the NR VQA method V-BLIINDS
has very low performance, which might be due to the hard prob-
lem of NR VQA and the fact that it has been trained with ma-
chine learning on a dataset where the duration of all videos are
10 seconds, without any ABR videos, and subjective opinions
reported with Difference Mean Opinion Scores (DMOS). Even

though VQM-VFD also use machine learning, it has been trained
on a much larger dataset and might therefore be more robust.

The videos in our dataset is of varying length (up to 40 sec-
onds) which is also somewhat unusual, making the quality estima-
tion even more challenging for most of the methods. VQM-VFD
achieves the most promising results and it might be worth taking
this model as the starting point for a VQA method that is also
robust in the context of ABR streaming.

We have also reached out to the creators of PEVQ and V-
BLIINDS to ask for their comments. The creators of PEVQ stated
that the dataset used is definitely out of scope for PEVQ that has
been trained to predict databases with much more severe trans-
mission errors. In PEVQ-S, although used in a sub-optimal way
shows a significant improvement over its predecessor (PEVQ). It
is quite likely that method using also the bitstream would show
even better performance. The first author of V-BLIINDS has
confirmed some of the reasons for low performance as observed
above and noted that better performance might be achieved using



a 10s sliding window or retraining the model on this dataset. Both
are considered to be out of the scope of this paper.

The ranking of the quality metrics in terms of linearity,
monotonic behavior, accuracy and outlier behavior are similar to
each other wheras the ranking of metrics in terms of resolving
power differ significantly. The best performing metrics in all per-
formance measures are PEVQ-S and VQM-VFD but other met-
rics do not follow a similar order. In this work, we only inves-
tigate the applicability of existing objective quality metrics for
adaptive video streaming. However, while desinging a metric, we
should consider the tradeoff between different performance crite-
rias because it may not be possible to enahnce the performance in
all categories and we may need to focus on the criterias that are
critical for the target application.

Conclusion
Adaptive video streaming has gained profound popularity re-

cently but we lack in possessing suitable objective methods of its
perceptual quality assessment. Upon experimenting with exist-
ing objective methods for their applicability on such videos, we
observed that these methods, which are known to perform well
otherwise, severally fall short in accuracy in this case. This neces-
sitates further explorations into the development of new objective
approaches specialized for quality assessment of adaptive video
streaming.

This work can be extended in several directions. Based on
the reported finding of our work, more experiments can be per-
formed to learn on how to optimize the functionality of existing
objective quality metrics. Moreover, future works should also pay
attention to consider test stimuli encoded with the new video cod-
ing standard HEVC for which different approaches of objective
quality estimation have already started to be published [23].
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