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Abstract—There are several standard methods for evaluating
the performance of models for objective quality assessment with
respect to results of subjective tests. However, all of them suffer
from one or more of the following drawbacks: They do not
consider the uncertainty in the subjective scores, requiring the
models to make certain decision where the correct behavior is
not known. They are vulnerable to the quality range of the
stimuli in the experiments. In order to compare the models, they
require a mapping of predicted values to the subjective scores,
thus not comparing the models exactly as they are used in the real
scenarios. In this paper, new methodology for objective models
performance evaluation is proposed. The method is based on
determining the classification abilities of the models considering
two scenarios inspired by the real applications. It does not suffer
from the previously stated drawbacks and enables to easily
evaluate the performance on the data from multiple subjective
experiments. Moreover, techniques to determine statistical signifi-
cance of the performance differences are suggested. The proposed
framework is tested on several selected metrics and datasets,
showing the ability to provide a complementary information
about the models’ behavior while being in parallel with other
state-of-the-art methods.

I. INTRODUCTION

The purpose of objective quality models is to substitute time
consuming, expensive, and, in certain applications, impractical
subjective quality tests. In order to determine the reliability of
these models, their performances have to be evaluated with
respect to the ground-truth data. The standard performance
evaluation metrics considering experiments results in the form
of Mean Opinion Scores (MOS) are described in ITU-T Rec.
P.1401 [1].

The recommended methodology includes measuring linear-
ity using Pearson Linear Correlation Coefficient (PLCC), pre-
diction accuracy using Root Mean Squared Error (RMSE) and
epsilon-insensitive RMSE (RMSE∗), and Outlier Ratio (OR).
Most of the studies also add Kendall Rank Order Correlation
Coefficient (KROCC) and Spearman Rank Order Correlation
Coefficient (SROCC) to determine the monotonicity of the
predictions.

The main issue of the above stated methods (with the
exception of RMSE∗) is that they ignore the uncertainty of
the subjective scores. Therefore they sometimes require the
models to behave in a certain way, even though the subjective
data are not statistically significant and we do not know what
the correct behavior is. The methods are also designed for

Table I
RP MEASURE FOR CSIQ DATABASE WITH 3RD ORDER POLYNOMIAL

MAPPING USING TWO DIFFERENT COEFFICIENTS OPTIMIZATIONS.

RP SSIM IW-SSIM
Coefficients optimized with RMSE 0.4164 0.3604
Coefficients optimized with PLCC 0.3804 0.3963

the cases where the range of quality levels considered within
the subjective test is broad. If the quality range is narrow, the
reliability can be significantly reduced due to the range effect,
as described in [2].

To overcome this, the measures of Resolving Power (RP)
have been proposed in ITU-T Rec. J.149 [3]. The first measure
finds the difference in predicted scores for stimuli A and
B necessary to have 95% probability that the stimulus B is
qualitatively better than the stimulus A. The model with lowest
threshold is considered to be the most accurate. However,
no information about the actual reliability of classification is
provided. For that, classification plots are needed. They enable
to graphically compare the behavior of correct classification
with growing difference in predicted scores. Nevertheless, such
comparison is not very practical for higher number of models
being compared. Also, no method to determine a statistical
significance of the results is defined.

Another significant drawback of performance evaluation
measures (except for SROCC and KROCC) is the requirement
for the predictions to be mapped to the subjective scores.
Even though the same monotonic regression is used for all
the models, the mapping strongly influences the models’ be-
havior. To demonstrated the impact of mapping, we calculated
RP measure for two popular objective indexes – structural
similarity index (SSIM) [4] and its information weighted
version (IW-SSIM) [5] on CSIQ database [6]. We used the
3rd order polynomial mapping with two different coefficients
optimization methods – according to RMSE (as provided with
the implementation of RP [3]) and according to PLCC (which
is recommended by VQEG [7]). The results are stated in the
Table I. The order of the scores changed. If another type of
mapping (e.g. logistic) would be used, the influence can be
even larger.

The initial purpose of mapping is the compression of the
subjective scores at the ends of the scale but since different
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Figure 1. The framework of the proposed performance evaluation methodology.

functions can introduce such confusions, it appears to be more
fair to find a method able to compare the models without
mapping. Moreover, in real applications, the non-mapped
scores are always used.

Considering the described issues, we propose a novel per-
formance evaluation methodology that:

1) considers the statistical significance of the subjective
scores;

2) is less dependent on the range effect;
3) compares the models as they are used in real applications

without the necessity of mapping;
4) enables easy combination of data from different experi-

ments;
5) provides the means to determine a statistical significance

of differences in performance.
Section II of this paper describes the proposed method in

detail, section III shows the analysis of the data from real
experiments, and section IV concludes the paper.

II. DESCRIPTION OF THE PROPOSED METHOD

The basic assumptions of the presented method are similar
to the RP measures [3]. The requirement for the objective
models is to be able to reliably compare two stimuli and
decide:
(a) whether the stimuli are qualitatively different and
(b) if they are, which of them is of higher quality.
We propose to evaluate the models’ abilities considering the
two above stated points separately, since some models could
prove useful for one of the points but not the other. Certain
scenarios then enable to use different models for individual
tasks. For example, optimizing the bitrate while maintaining
the perceived quality only requires the model to be reliable in
the case (a). In enhancement, we want the final stimulus to be

noticeably different (case (a)) and simultaneously of higher
quality (case (b)) than the original. If we consider separate
models for each case, conditional optimization can be used.

The whole framework of the proposed method is shown
in Figure 1. The individual steps are described in the fol-
lowing subsections. Note that the method can also be used
to benchmark the metrics from experiments not providing
MOS-like results and the outcomes are not limited to the
ones provided in Figure 1 [8]. In this paper, we report the
most discriminative outcomes only. The implementation can
be found on the author’s webpage:
http://mmtg.fel.cvut.cz/personal/krasula/

A. Preprocessing of the Subjective Scores

The goal of the preprocessing stage is to determine what
pairs in the dataset are statistically significantly different in
the perceived quality. The ideal way to do this is to run
ANOVA on the subjective scores and then use a post-hoc test,
such as Tukey’s honest significance difference (HSD) [9], to
determine the statistically significant pairs. The advantage of
this approach is that the post-hoc tests consider the problem
of multiple comparisons.

However, most of the datasets only provide mean opinion
scores (MOS) with respective standard deviations (SD) instead
of the raw scores. In that case, similarly to [3], z-scores can
be employed. We calculate a z-score for each pair of stimuli
(i, j)

z(i, j) =
|MOS(i)−MOS(j)|√

var(i)
N(i) + var(j)

N(j)

, (1)

where var is a variance of the votes and N is the number of
observers who evaluated the given stimulus. The probability

http://mmtg.fel.cvut.cz/personal/krasula/


that the stimuli are different is then calculated from the cu-
mulative distribution function (cdf) of the normal distribution

p = cdf(z) =
1√
2π

∫ z

−∞
exp

(
z2

2

)
dz. (2)

We then consider the pairs with p(i, j) higher than the selected
significance level α to be significantly different. We will
consider α = 0.95 throughout this paper. The pairs are
therefore divided into two groups – significantly different and
similar.

The significantly different pairs are further divided into
groups with positive and negative MOS difference. Since this
is dependent on the order of stimuli in the pair, we recommend
to consider each significantly different pair in both groups
(reversed order) making the two groups symmetrical.

It can be seen, that we are taking only binary information
about the stimuli pairs (different/similar and better/worse)
from the subjective scores. This enables us to easily put data
from different experiments together, regardless the method
used for their obtaining, range, or format.

B. Preprocessing of the Predicted Scores

The objective models provide a predicted score for each
stimulus in the dataset. We then obtain the differences of
scores predicted by each model for stimuli pair i and j as

∆model(i, j) = scoremodel(i)− scoremodel(j), (3)

where scoremodel are the predicted values for the stimuli for
particular model. Once the data has been preprocessed into
the appropriate form, the performance evaluation according to
the two cases described at the beginning of the section II can
be executed.

C. Different vs. Similar Analysis

The first analysis is supposed to determine how well can the
model distinguish between significantly different and similar
pairs. The identification of these two groups of pairs has been
described in section II-A.

The assumption is that the absolute difference of the pre-
dicted scores (i.e. their distance or L2 norm) should be larger
for the significantly different image pairs. The behavior of
the well-performing model can look approximately like the
example in the top of the Figure 1.

Typical method to determine the abilities of binary clas-
sifiers is Receiver Operating Characteristic (ROC) Analysis
[10]. It creates a curve reflecting the correct classification
when the threshold is shifted. The performance of the classifier
can then be expressed as the Area Under the ROC Curve
(AUC). Moreover, the threshold THR for the |∆model| leading
to defined False Positive Rate (FPR), i.e. the probability that
the pair is classified as different while being similar, can be
determined. Note that these values depend on the range of
values for the given model and therefore cannot be used for
models’ performance comparison. Nevertheless, they provide
a valuable insight for the practical applications.

D. Better vs. Worse Analysis

The second analysis is performed on the significantly dif-
ferent pairs only. Here the goal is to determine whether the
model is able to correctly recognize the stimulus of higher
quality in the pair. The division of the significant image pairs
into groups has been discussed in section II-A. An example
of ∆model values distributions for the two groups is shown in
the bottom part of the Figure 1.

The most straightforward and determining factor is the
percentage of correct classification in zero, showing how
many times does the model correctly recognize the stimulus
of higher quality. However, as will be shown in section
III, the ROC analysis reflecting the overall behavior of the
classification can provide some interesting insights as well.

E. Statistical Significance

When comparing multiple objective quality models, it is
advisable to determine if the differences in performance are
statistically significant. Literature provides several ways how
to statistically compare AUC values from ROC analyses with
different assumptions and power. In this paper, we use the
method proposed by Hanley and McNeil [11].

The procedure is based on calculating a critical ratio cab
between the AUC for models a and b. It is defined as

cab =
AUCa −AUCb√

SE2
a + SE2

b − 2rSEaSEb

, (4)

where SEa and SEb are the standard errors for AUCa and
AUCb, respectively, and r is an estimated correlation between
the two areas given by the table in [11].

Standard error for each AUC can be computed according to
[12] as

SE =

√√√√√ AUC(1−AUC) + (ng1 − 1)(Q1 −AUC2)
+(ng2 − 1)(Q2 −AUC2)

ng1ng2
,

(5)
where ng1 and ng2 are the numbers of elements in each group
in the ROC analysis, and Q1 and Q2 are

Q1 = AUC/(2−AUC),
Q2 = 2AUC2/(1 +AUC).

(6)

The probability that the difference of the AUCa and AUCb

is statistically significant can then be determined as cdf(cab)
(see equation 2).

To statistically compare the percentage of correct recog-
nition of the stimulus of higher quality (see section II-D),
number of test can be used. Some possibilities are discussed
in [8]. In our analyses, we employed Fisher’s exact test [13].

If more than two models are being compared, the issue of
multiple comparisons (i.e. Type I error propagation) should
be considered. In this paper, we use a Benjamini-Hochberg
procedure [14] to compensate for the error.

In the next Section, the analysis will be demonstrated on a
real use case including several selected metrics and datasets.
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(a) Different vs. Similar (AUC) (b) Better vs. Worse (C0) (c) Better vs. Worse (AUC)

Figure 2. The results and statistical analysis for the IVC dataset. Significance plots show that the performance of the method in the row is either significantly
better (white), lower (black), or none of the previous (gray).

Table II
NUMBERING OF THE OBJECTIVE METRICS.

1 2 3 4 5
PSNR SSIM IW-PSNR MS-SSIM IW-SSIM
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Figure 3. The distributions for the two groups in Better vs. Worse Analysis.

III. USE CASE STUDY

To demonstrate the use of the proposed methodology prac-
tically, we decided to work with the data available from the
performance evaluation of Information Weighted SSIM (IW-
SSIM) metric [5]. This way, no additional bias in data obtain-
ing can be introduced and the outcomes of other performance
evaluation methods are available for comparison. All the data
were obtained from the supporting website1.

Predicted scores for five objective algorithms are provided
– PSNR, SSIM [4], Information Weighted PSNR (IW-PSNR)
[5], Multiscale SSIM (MS-SSIM) [15], and IW-SSIM [5].
In the following figures, the algorithms will be numbered
according to the table II. The datasets used to evaluate their
performance in [5] are LIVE [16], A57 [17], IVC [18], Toyama

1https://ece.uwaterloo.ca/∼z70wang/research/iwssim/
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Figure 4. Classification Plots as defined in [3].

[19], TID2008 [20], and CSIQ [6].
For the detailed demonstration of the proposed approach,

IVC dataset has been selected, since it exhibits an interesting
behavior of the tested algorithms.

A. Performance on IVC dataset

The results of the particular analyses (sections II-C and
II-D), namely AUCs and percentage of correct classification
(C0) with statistical significance of differences, are depicted in
Figure 2. The error bars represent 95% confidence intervals.
The white boxes in the significance plots correspond to the
cases when model in the row significantly outperforms the
model in the column. If its performance is significantly lower,
the corresponding box is black. The gray box symbolizes the
case where we are not able to determine the better performing
method.

https://ece.uwaterloo.ca/~z70wang/research/iwssim/
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Figure 5. The results and statistical analysis for the four datasets. Significance plots show that the performance of the method in the row is either significantly
better (white), lower (black), or none of the previous (gray).

Table III
AUC VALUES FOR DIFFERENT VS. SIMILAR ANALYSIS

AUC PSNR SSIM IW-PSNR MS-SSIM IW-SSIM
IVC 0.6360 0.7615 0.7803 0.7615 0.7626

CSIQ 0.6827 0.6910 0.7064 0.7056 0.7148
LIVE 0.7250 0.7654 0.7969 0.7625 0.7744

Toyama 0.5954 0.7068 0.7182 0.7117 0.7563
ALL 0.6882 0.7251 0.7297 0.7342 0.7419

Table IV
THRESHOLDS FOR 5% FPR OF CLASSIFYING PAIR AS DIFFERENT.

THR PSNR SSIM IW-PSNR MS-SSIM IW-SSIM
IVC 8.4461 0.1285 6.4705 0.0757 0.1023

CSIQ 13.0470 0.2818 19.0379 0.2198 0.2686
LIVE 9.7317 0.2677 11.0294 0.1713 0.1710

Toyama 10.6431 0.0873 8.6840 0.0444 0.0429
ALL 12.4806 0.2677 17.9861 0.2002 0.2429

It can be seen that IW-PSNR (#3) significantly outperforms
all the other metrics in the first analysis (Figure 2(a)). On the
other hand, PSNR (#1) has the lowest performance, also with
statistical significance.

In the second analysis, we can observe an interesting phe-
nomenon. IW-PSNR (#3) provides statistically worse classifi-
cation than SSIM (#2) (Figure 2(b)) but reaches significantly
higher AUC value (Figure 2(c)). To explain this, we closely
studied the behavior of the two metrics. The histograms of
∆SSIM and ∆IW-PSNR for the two groups defined in section
II-A are depicted in Figure 3 (the number of bins is the same
for both models).

The distributions for the IW-PSNR are much broader with
modes more distant from 0. This means that if we broaden
the red area in the Figure 3, which is equivalent to not
considering the pairs with small differences as being different,
the performance of IW-PSNR will be dropping slower than in
case of SSIM. This exactly reflects the information that can
be extracted from the Classification Plots [3] (Figure 4).

The implementation of the Classification Plots was obtained
directly from the recommendation and the version with pre-
dicted scores non-mapped to the subjective ones is used, thus
not allowing for numerical comparison. Nevertheless, visual
comparison confirms that the curve for correct classification is
broader for IW-PSNR but reaching a lower maximal value. Our
approach is therefore able to quantify this effect and allows
for numerical comparison without the need for any mapping.

Moreover, the percentage of correct classification (C0)

Table V
CORRECT CLASSIFICATION IN BETTER VS. WORSE ANALYSIS

C0 PSNR SSIM IW-PSNR MS-SSIM IW-SSIM
IVC 0.8038 0.9203 0.9135 0.9181 0.9261

CSIQ 0.8279 0.8721 0.8542 0.8978 0.9049
LIVE 0.8518 0.9081 0.8998 0.9122 0.9190

Toyama 0.7630 0.9069 0.8841 0.9127 0.9386
ALL 0.8369 0.8897 0.8762 0.9049 0.9122

Table VI
AUC VALUES FOR BETTER VS. WORSE ANALYSIS

AUC PSNR SSIM IW-PSNR MS-SSIM IW-SSIM
IVC 0.8877 0.9669 0.9795 0.9649 0.9768

CSIQ 0.9140 0.9227 0.9265 0.9357 0.9444
LIVE 0.9377 0.9568 0.9657 0.9597 0.9660

Toyama 0.8570 0.9657 0.9613 0.9685 0.9843
ALL 0.9219 0.9391 0.9437 0.9470 0.9546

agrees with other performance comparison techniques, such
as SROCC, calculated in [5]. The proposed analyses therefore
reach similar results as state-of-the-art methods while simul-
taneously providing more insight into the models’ behavior.

B. Performance on Multiple Datasets Together

To evaluate the performance on data from multiple ex-
periments, weighted average of the particular performance
evaluation methods is usually taken. This is not possible for
all the methods (e.g. values of RMSE and RMSE* depend
on the range of subjective scores). Moreover, given the differ-
ent uncertainties of the particular results, the final statistical
comparison is not well defined.

In the case of the RP measures, the necessity of mapping
the data to the common scale makes the different experiments
combination impractical. Since we extract only the binary
information from the subjective data, the combination becomes
much easier because it represents simple adding more stimuli
pairs in the groups (different/similar, better/worse). All analy-
ses are therefore performed on all the data together.

In this section, we demonstrate the performance evaluation
on four databases together (IVC [18], CSIQ [6], LIVE [16],
and Toyama [19]). We do not use A57 and TID2008 datasets
here, since the subjective data for the former are obtained
from the seven expert subjects only, making the statistical
processing not very relevant. The latter is omitted because it is
not possible to determine how many observers evaluated each
image from the description. Only overall number of observers



is provided but not all of them evaluated all the content.
Computation of z-scores would therefore be unreliable.

The results for the four databases are depicted in Figure 5.
The Tables III-VI contain the final values obtained from the
datasets separately, as well as from their combination. Note
that in Table IV, we also report the thresholds for the |∆model|
necessary to ensure the 5% FPR (i.e. for 5% probability that
the pair is classified as different while being similar). The
values are dependent on the range of models’ values and
therefore cannot be directly used for models’ comparison but
their differences for particular datasets provide another insight
and they are important for the practical use of the models.

Several conclusions can be drawn from the overall results.
Firstly, the best performing model is IW-SSIM, followed by
MS-SSIM. We can see in the Table III that even though the
IW-PSNR metric reaches higher AUC value than MS-SSIM in
the Different vs. Similar Analysis for each database separately,
the overall performance of MS-SSIM is higher. This shows
that weighted average of the particular results does not have
to lead to the same conclusions as analysing all the data at the
same time.

Also the effect described in the Section III-A where SSIM
provides better classification in the Better vs. Worse Analysis
but the AUC value is higher for IW-PSNR is reflected in the
overall results as well. For the explanation, refer to the stated
Section.

For most of the metrics, CSIQ database appears to be the
most challenging. The only exception from this is PSNR which
works the worst for Toyama dataset. These findings are in
parallel with correlation measures from [5].

The last observation we will provide is the room for
improvement in models’ abilities with respect to the the
Different vs. Similar Analysis. Although it is true that not
all well-performing objective methods has been tested here.
Nevertheless, IW-SSIM is considered to be one of the reliable
models, outperforming other popular metrics [5], and the
overall AUC value of 0.7419 is not very high.

IV. CONCLUSION

We presented a novel methodology for performance eval-
uation of objective models inspired by the real applications.
The method does not require any mapping to enable numerical
comparisons, takes into account statistical significance of sub-
jective scores, depends less on the quality range of the dataset,
enables easy combination of data from different subjective
experiments, and provides means to determine statistical sig-
nificance of the performance differences.

It has been demonstrated and analysed in detail on five
objective models. It has been shown that the methodology
provides a complementary information about the models’
behavior while being in parallel with other state-of-the-art
techniques and simultaneously enables for simple compar-
isons.

The ability to easily and meaningfully combine data from
multiple experiments has been presented. The result suggests
that the averaging of results (possibly weighted according to

the dataset size) can lead to different conclusions than the
analysis on all the data. Moreover, our methodology maintains
the possibility to analyse the data statistically even after
merging results from multiple experiments.
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