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Abstract. Federated query engines allow to consume linked data from
SPARQL endpoints. Replicating data fragments from different sources
allows to re-organize data to better fit federated query processing of
data consumers. However, existing federated query engines poorly sup-
port replication. In this paper, we propose a replication-aware federated
query engine that extends state-of-art federated query engine ANAPSID
and FedX with Fedra, a source selection strategy that approximates
the source selection problem with fragments replication (SSP-FR). For a
given set of endpoints with replicated fragments and a SPARQL query,
the problem is to find the endpoints to contact in order to minimize
the number of tuples to transfer from endpoints to the federated query
engines. We devise the Fedra source selection algorithm that approxi-
mates SSP-FR. We implement Fedra in the state-of-the-art federated
query engines FedX and ANAPSID, and empirically evaluate their per-
formance. Experimental results suggest that Fedra efficiently solves
SSP-FR, reducing the number of selected SPARQL endpoints as well
as the size of query intermediate results.
Keywords: Linked Data, Federated Query Processing, Source Selection,
Fragment Replication

1 Introduction

SPARQL endpoints enable to consume RDF data exploiting the expressiveness
of the SPARQL query language. Nevertheless, recent studies reveal that existing
public SPARQL endpoints main limitation is availability [4].

In distributed databases [16], a common practice to overcome availability
problems is to replicate data near data consumers. Replication can be achieved
by complete dataset replication, active caching, pre-fetching or fragmentation [12].

RDF data consumers can replicate subsets of RDF datasets or replicated
fragments, and make them accessible through SPARQL endpoints. This will
provide the support for an efficient RDF data re-organization according to the
needs and computational resource capacity of data consumers, while these data
can be still accessed using SPARQL endpoints. Unfortunately, although SPARQL
endpoints can transparently access replicated fragments, as well as maintain their



consistency [12], federated query engines are not tailored to exploit the benefits
of replicated fragments.

Federated SPARQL engines [1, 5, 8, 17, 20] allow data consumers to execute
SPARQL queries against a federation of SPARQL endpoints. However, these en-
gines are just designed to select the SPARQL endpoints that ensure both a com-
plete answer and an efficient execution of the query. In presence of replication,
existing federated query engines may retrieve data from every relevant endpoint,
and produce a large number of intermediate results that trigger many requests
to the endpoints. Thus, federated query engines may exhibit poor performance
while availability of the selected SPARQL endpoints is negatively impacted.

Although the problem of managing RDF data overlapping during federated
query processing has been addressed in [11, 18], the problem of managing repli-
cation in a federation of RDF datasets still remains open. DAW [18] is able to
detect overlapping between datasets and optimize source selection based on that.
However, because DAW is not designed to manage data replication, there is no
support for explicitly define and use replicated fragments. In consequence, DAW
may select redundant data sources and generate a high number of intermediate
results as we will report in our experiments.

In this paper, we build a replication-aware SPARQL federated query engine
by integrating into state-of-the art federated query engines FedX [20] and ANAP-
SID [1], a source selection strategy called Fedra that solves the source selec-
tion problem with fragment replication (SSP-FR). For a given set of SPARQL
endpoints with replicated fragments and a SPARQL query, the problem is to
minimize the number of transferred data from endpoints to the federated query
engines, while preserving answer completeness and reducing data redundancy.

We empirically study federated query engines FedX and ANAPSID extended
withFedra and DAW on synthetic and real datasets. The results suggest that
Fedra efficiently reduces intermediate results and data redundancy.

The paper is organized as follows. Section 2 describes background and moti-
vations. Section 3 defines replicated fragments and presents the source selection
problem for fragment replication. Section 4 presents the Fedra source selec-
tion algorithm. Section 5 reports our experimental results. Section 6 summarizes
related works. Finally, conclusions and future works are outlined in Section 7.

2 Background and Motivations

Existing SPARQL federated query engines do not support replicated data. To
illustrate, we replicated the DBpedia dataset 4 and defined two federations.
The first is composed of one mirror of DBpedia, and the second of two identical
mirrors of DBpedia. We used FedX [20] and ANAPSID [1] to execute the query in
Figure 1a against both federations. In the first federation, these engines produced
the same query answers. On the other hand, for the second federation, these
query engines have no knowledge about the relationships among the mirrors of

4 DBpedia Live at August 15th, 2013.



(a) DBpedia Query

s e l e c t d i s t i n c t ?p ?m ?n ?d where {
?p dbprop : name ?m .
?p dbprop : n a t i o n a l i t y ?n .
?p dbprop : d o c t o r a l A d v i s o r ?d

}

(b) Query Execution

#DBpedia Execution Time (ms) # Results
Replicas FedX ANAPSID FedX ANAPSID

1 1,392 22,972 8,921 8,921
2 215,907 ě 1,800,000 418 8,921

Fig. 1: DBpedia query and its execution time and number of results over one and
two replicas of DBpedia for FedX and ANAPSID

DBpedia, and they contact both data sources. In this way, performance in terms
of execution time and number of results, is seriously degraded as depicted in
Figure 1b5.

Furthermore, if the DAW approach were used, data providers would have to
compute summaries of DBpedia; this computation may take up to six hours and
the size of the obtained index is 89Mo. Then, after downloading each DBpedia
summary, DAW would detect the overlap between the two data sources. DAW
could select different DBpedia data sources per triple pattern, and execute thus
the join between retrieved data at the federated engine level.

Of course, if federated query engines would know that one endpoint is the
mirror of the other, the source selection pruning could be done more efficiently,
i.e., only one source were selected to execute the query. This problem is even
more challenging if we consider that one endpoint can partially replicate data
from several RDF datasets, i.e., replicate a dataset fragment.

Suppose a Web application performs federated queries on A1 (DBpedia) and
A2 (LinkedMDB). In order to speed up the queries, a data consumer endpoint C1
with replicated fragments has been installed as in Figure 2. Fragments are defined
as simple CONSTRUCT SPARQL queries with one triple pattern. Fragments
allow re-organizing the RDF data on C1 to better address data consumer’s needs.

Even in this simple setup, processing our running query on a federation in-
cluding A1, A2, and C1 raises the problem of source selection with fragment
replication (SSP-FR). There are five options to select sources for executing this
query; these choices produce different number of transferred tuples as shown
in Figure 2: (i) If no information about replicated fragments is available, all
sources may be selected to retrieve data for all the triple patterns. The number
of intermediate results is given in the solution s1. This will be the behavior of a
federated query engine like FedX that ensures answer completeness 6. (ii) End-
points A1 and A2 could be chosen, in this case the number of intermediate results
is given in s2. The number of intermediate results in s2 is less than s1 since some
joins could be executed at A1 and A2. (iii) Another choice may be to use the C1
endpoint in combination with either A1 or A2 ps3, s4q. This produces the same

5 FedX retrieves less results with two mirrors of DBpedia because it reaches the end-
points maximum number of result rows

6 In order to preserve joins between different endpoints, each triple pattern should be
posed to each endpoint individually.



A1
Triples to
transfer

s1 s2 s3 s4 s5

DBpedia 166,177 3,229 3,229 0 0
LinkedMDB 76,180 13,430 0 13,430 0
Consumer1 242,357 0 13,430 3,229 48

A2

C1

select distinct ?director ?nat
?genre where {
?director dbo : nationality ?nat .
?film dbo : director ?director .
?movie owl : sameAs ?film .
?movie linkedmdb : genre ?genre }

client

f1:?director dbo : nationality ?nat
f2:?film dbo : director ?director

f3:?movie owl : sameAs ?film
f4:?movie linkedmdb : genre ?genre

48

3, 229 13, 430

Fig. 2: Client defines a federation composed of DBpedia (A1), LinkedMDB (A2),
and one consumer (C1) endpoints with four replicated fragments.

number of intermediate results as in s2, but they have the advantage of access-
ing less public endpoints. (iv) A last choice could be to use the C1 endpoint to
retrieve data for all the triple patterns ps5q. This solution profits from replicated
fragments to execute opportunistic joins at C1; thus, it is able to achieve the
best performance in terms of the number of intermediate results.

As the number of transferred tuples increases, the availability of the con-
tacted SPARQL endpoints can be affected. A replication aware federated query
engine could select the best sources to reduce the size of intermediate results
while preserving answer completeness. In this paper, we formally address the
following problem: Given a SPARQL query and a set of relevant SPARQL end-
points with replicated fragments, choose the SPARQL endpoints to contact in
order to produce a complete query answer and transfer the minimum amount
of data? We aim to develop an algorithm that produces solution s5 whenever
possible, providing as output the sources to be used by a federated query engine.

3 Definitions and Problem Description

This section introduces definitions and the source selection problem with frag-
ment replication (SSP-FR).

3.1 Definitions

Fragments are used to replicate RDF data. The data of a fragment is defined
by means of the dataset public endpoint, or authoritative endpoint, and a CON-
STRUCT query with one triple pattern.



A1
F CONSTRUCT WHERE { %s% }
f2 ?film dbo:director ?director
f3 ?movie owl:sameAs ?film
f4 ?movie linkedmdb:genre ?genre
f5 ?movie linkedmdb:genre film genre:14
f6 ?director dbo:nationality dbr:France
f7 ?director dbo:nationality dbr:United Kingdom

A2

C1 C2 C3

select distinct
?director ?nat ?genre where {
?director dbo : nationality ?nat . (tp1)
?film dbo : director ?director . (tp2)
?movie owl : sameAs ?film . (tp3)
?movie linkedmdb : genre ?genre } (tp4)

Client

f2, f6

f4

f2, f7 f3, f5 f3, f4

f2

tp1, tp2, tp4 tp1, tp2, tp3, tp4 tp2, tp3, tp4

Fig. 3: Client defines a federation composed of C1,C2, and C3 that replicates
fragments f2´ f7

Definition 1 (Fragment). A fragment is a tuple f “ xu, sy

– u is the non-null URI of the authoritative endpoint where f is available;
– s is a CONSTRUCT query with one triple pattern.

Without loss of generality, s is limited to one triple pattern as in [12, 22];
this reduces the complexity of fragment containment problem as described in
Definition 2. Additionally, we assume replicated fragments comprise RDF data
accessible from public endpoints, i.e., the authoritative endpoints of the repli-
cated fragments are disjoint with data consumer endpoints. This will allow data
consumers to re-organize RDF data replicated from different public endpoints
to fit in this way, their needs and requirements.

In this work, we make the following hypotheses: (i) Fragments are replicated
from public endpoints, and there is just one level of replication. (ii) Fragments
are read-only and perfectly synchronized; the fragment synchronization problem
is studied in [12], while querying fragments with divergence is addressed in [15].
(iii) For the sake of simplicity, we suppose that RDF data accessible through the
endpoints are described as fragments.

To illustrate, consider the federation given in Figure 3. This federation ex-
tends the setup in Figure 2. Suppose three Web applications perform queries
against DBpedia and LinkedMDB. To speed up query processing, data consumer
endpoints: C1, C2, and C3 with replicated fragments have been configured.



At startup, the federated query engine loads the fragments description for
each of the federation endpoints, and computes both the fragment and contain-
ment mappings. The fragment mappings is a function that maps fragments
to a set of endpoints; the containment mapping is based on containment
relation (fl Ď fk) described in the Definition 2.

Two fragments loaded from two different endpoints Ci,Cj that have the
same authoritative endpoint and equivalent construct queries are concatenated
in the fragment mapping. For example, the federated engine loads fragments
x?film db:director ?director, http://dbpedia.org/sparqly from C1, C2, C3, com-
putes equivalence, and adds in its fragment mappings x?film db:director ?direc-
tor, http://dbpedia.org/sparqly Ñ {C1,C2,C3}.

Query containment and equivalence have been studied extensively. We adapt
the definition given in [10] for the case of a triple pattern query.

Definition 2 (Triple Pattern Containment). Let TP pDq denote the result
of execution of the triple pattern TP over an RDF dataset D. Let TP1 and
TP2 be two triple patterns. We say that TP1 is contained in TP2, denoted by
TP1 Ď TP2, if for any RDF dataset D, TP1pDq Ď TP1pDq. We say that TP1 is
equivalent to TP2 denotes TP1 ” TP2 if TP1 Ď TP2 and TP2 Ď TP1.

In the case of triple patterns, testing containment7 amounts to finding a
substitution of the variables in the triple patterns8. TP1 Ď TP2, iff there is
a substitution θ such that applying θ to TP2 returns the triple pattern TP1.
Testing triple pattern containment has a complexity of Op1q. Solving the deci-
sion problem of triple pattern containment between TP1 and TP2, TP1 Ď TP2,
requires to check if TP1 imposes at least the same restrictions as TP2 on the
subject, predicate, and object positions, i.e., TP1 should have at most the same
number of variables as TP2.

For the federation in Figure 3, f5 Ď f4 because f4 and f5 share the same au-
thoritative endpoint and there is a substitution θ defined as tp?genre, film genre :
14q, p?movie, ?moviequ and applying θ to f4 returns f5. After identifying a sub-
stitution θ for all pair-wise fragments, it is straightforward to compute a con-
tainment mapping for a federation of SPARQL endpoints.

We can rely on fragment descriptions and the containment property to de-
termine relevant fragments to a query. Relevant fragments contain relevant RDF
data to each of the triple patterns of the query. A fragment is relevant to a query
Q, if it is relevant to at least one triple pattern of the query.

Definition 3 (Fragment relevance). Let f be a fragment defined by a triple
pattern TP1. Let TP2 be a triple pattern of a query Q. f is relevant to Q if
TP2 Ď TP1 or TP1 Ď TP2.

Table 1a shows the relevant fragments to the triple patterns in query Q, and
the endpoints that provide these fragments. For example, the triple pattern tp1

7 Containment testing is adapted from [9].
8 The substitution operator preserves URIs and literals, i.e., only variables are substi-

tuted.



Q triple pattern RF Endpoints
tp1 ?director

dbo:nationality ?nat
f6 C1

f7 C2
tp2 ?film dbo:director ?di-

rector
f2 C1, C2, C3

tp3 ?movie owl:sameAs ?film f3 C2, C3
tp4 ?movie linkedmdb:genre

?genre
f4 C1, C3

f5 C2

(a) Relevant Fragments to Q

TP D0(tp) D1(tp) D2(tp)
tp1 { C1,C2 } { C1,C2 } { C1,C2 }
tp2 { C1,C2,C3 } { C1 } { C3 }
tp3 { C2,C3 } { C2 } { C3 }
tp4 { C1,C2,C3 } { C3 } { C3 }
Triples
to
transfer

421,675 170,078 8,953

(b) Answer completeness preservation

Table 1: SSP-FR for query Q over a federation of C1, C2, and C3 of Figure 3.

has two relevant fragments: f6 and f7, and triple pattern tp4 has two relevant
fragments: f4 and f5. Fragment f4 can produce the complete answer of tp4
because f5 Ď f4, while both f6 and f7 are required to answer tp1.

3.2 Source Selection Problem with Fragment Replication (SSP-FR)

Given a SPARQL query Q, a set of SPARQL endpoints E, the set of fragments
F that have been replicated by at least one endpoint in E, a fragment mapping
endpoints(), a containment mapping Ď.

The Source Selection Problem with Fragment Replication (SSP-FR) is to
assign to each triple pattern in Q, the set of endpoints from E that need to be
contacted to answer Q. A solution of SSP-FR corresponds to a mapping D that
satisfies the following properties:

1. Answer completeness preservation: sources selected in D do not reduce
the query engine answer completeness.

2. Data redundancy minimization: cardinality(D(tp)) is minimized for all
triple pattern tp in Q, i.e., redundant data is minimized.

3. Data transfer minimization: executing the query using the sources se-
lected in D minimizes the number of transferred data.

We illustrate SSP-FR on running query Q of Figure 3. Table 1a presents
relevant fragments for each triple pattern. Table 1b shows threeDptpq that ensure
the completeness preservation property. Even if D1 and D2 minimize the number
of selected endpoints per triple pattern, only D2 minimizes the transferred data.
Indeed, executing tp1, tp2, tp3 against replicated fragments that are located in
the same data consumer endpoint will greatly reduce the size of intermediate
results.

The approach proposed by Saleem et al. [18] is not designed for solving
SSP-FR. Indeed, it does not take into account replicated data, and may produce
a solution as D1. The Fedra algorithm exploits properties of the replicated
fragments and is able to find solution D2.



Algorithm 1 Fedra Source Selection algorithm

Require: Q: SPARQL Query; F: set of Fragments; endpoints : Fragment Ñ set of Endpoint; Ď :
triplePattern ˆ triplePattern

Ensure: selectedEndpoints: map from Triple Pattern to set of Endpoint.
1: function sourceSelection(Q,F,endpoints,Ď)
2: triplePatterns Ð get triple patterns in Q
3: for each tp P triplePatterns do
4: R(tp) Ð relevantFragments(tp, F) Ź Relevant fragments as in Definition 3
5: R(tp) Ð ttf : f P Rptpq : tp Ď fuu

Ť

ttfu : f P Rptpq : f Ď tp^ pDg : g P Rptpq : f Ă g Ď tpqu
6: E(tp) Ð { (

Ť

endpoints(f) : f P fs) : fs P R(tp) }
7: basicGP Ð get basic graph patterns in Q
8: for each bgp P basicGP do
9: unionReduction(bgp, E) Ź endpoints reduction for multiple fragments triples
10: bgpReduction(bgp, E) Ź endpoints reduction for the bgp triples

11: for each tp P domain(E) do
12: selectedEndpoints(tp) Ð for each set in E(tp) include one element

13: return selectedEndpoints

Algorithm 2 Union reduction algorithm

Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint
14: procedure unionReduction(tps, E)
15: triplesWithMultipleFragments Ð { tp : tp P tps ^ cardinality(E(tp)) ą 1 }
16: for each tp P triplesWithMultipleFragments do
17: commonSources Ð (

Ş

f : f P E(tp)) Ź get sources in all subsets in E(tp)
18: if commonSources ‰ H then
19: E(tp) Ð { commonSources }

4 Fedra: an Algorithm for SSP-FR

The goal of Fedra is to reduce data transfer by taking advantage of the repli-
cation of relevant fragments for several triple patterns on the same endpoint.
Algorithm 1 proceeds in four main steps: I. Identify relevant fragments for triple
patterns, a triple pattern of a Basic Graph Pattern (BGP) can be contained in
one fragment or a union of fragments (cf lines 4-5). II. Localize relevant replicated
fragments on the endpoints, e.g., for Q: tp1C1YC2 ’ tp2C1,C2,C3 ’ tp3C2,C3 ’

tp4C1,C3 (line 6). III. Prune endpoints for the unions (line 9). IV. Prune end-
points for the BGPs using a set covering heuristic (line 10).

Next, we illustrate how Algorithm 1 works on our running query Q and data
consumer endpoints C1, C2, C3 from Figure 3 9.

First, for each triple pattern, Fedra computes relevant fragments in R(tp),
and groups them if they provide the same relevant data. For tp1, Rptp1q Ñ
ttf6u, tf7uu. For tp4, as f5 Ď f4, f5 is safely removed at line 5, and Rptp4q Ñ
ttf4uu. Second, Fedra localizes fragments on endpoints in Eptpq. Figure 4 shows
the execution plans encoded in R(tp) and E(tp). Triple patterns like tp1, with
more than one relevant fragment, represent unions in the execution plan.

Procedure unionReduction (cf. Algorithm 2) reduces subsets of endpoints
with relevant fragments into one set with all the common endpoints if at least one

9 Notice that DBpedia is not included in the federation for processing Q, so using only
fragments f6 and f7 to retrieve data for tp1 will not produce all the answers that
would be produced using DBpedia.



Algorithm 3 Basic graph pattern reduction algorithm

Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint
20: procedure bgpReduction(tps, E)
21: triplesWithOneFragment Ð { tp : tp P tps ^ cardinality(E(tp)) = 1 }
22: (S, C) Ð minimal set covering instance using triplesWithOneFragmentCE
23: C’ Ð minimalSetCovering(S, C)
24: selected Ð get endpoints encoded by C’
25: for each tp P triplesWithOneFragment do
26: E(tp) Ð E(tp)

Ş

selected

(a) R(tp)

’

’

’

Y

tp1tf6u tp1tf7u

tp2tf2u

tp3tf3u

tp4tf4u

(b) E(tp)

’

’

’

Y

tp1tC1u tp1tC2u

tp2tC1,C2,C3u

tp3tC2,C3u

tp4tC1,C3u

Fig. 4: Execution plan encoded in data structures R and E; multiple subsets
represent union of different fragment (ex. {f6}, {f7}); elements of the subset
represent alternative location of fragments (ex. {C1,C3}); bold sources are the
selected sources after set covering is used to reduce the sources

common endpoint exists. In our running example there is no common endpoint
that replicates both f6 and f7. However, if, for example, f7 were also replicated
at C1, then only C1 would be selected to execute tp1.

Procedure bgpReduction (cf. Algorithm 3) transforms the join part of
Eptpq (cf. Figure 4) into a set covering problem (cf. line 22). Each triple pattern
is an element of the set to cover, e.g., tp2, tp3, tp4 correspond to s2, s3, s4 (cf.
Figure 5a). And for each endpoint in Eptpq, we include the subset of triple pat-
terns associated with that endpoint, e.g., for endpoint C1 we include the subset
{s2,s4} as relevant fragments tp2 and tp4 are replicated by C1 (cf. Figure 5b).
Line 23 relies on an existing heuristic [13] to find the minimum set covering.
In our example, it computes C’={{s2,s3,s4}}. Line 24 computes the selected
endpoints, in our example, selected={ C3 }.

Finally, (Algorithm 1, line 12) chooses among endpoints that provide the
same fragment and reduces data redundancy. For query Q, the whole algorithm
returns D2 of Table 1b.

Proposition 1. Algorithm 1 has a time complexity of Opn.m2q, with n the num-
ber of triple patterns in the query, m the number of fragments, k the number of
endpoints, l the number of basic graph patterns in the query, and m " k^ k " l.



(a) S instances

Triple Patterns (Tps) E(tp) S

tp2: ?film dbo : director ?director {{C1,C2,C3}} { s2

tp3: ?movie owl : sameAs ?film {{C2,C3}} s3

tp4: ?movie linkedmdb : genre ?genre {{C1,C3}} s4}

(b) C instance

{{s2,s4},{s2,s3},{s2,s3,s4}}

C1 C2 C3

Fig. 5: Set covering instances of S and C of BGP reduction Algorithm 3 for the
query Q (Figure 3).

Table 2: Dataset characteristics: version, number of different triples (# DT), and
predicates (# P)

Dataset Version date # DT # P
Diseasome 19/10/2012 72,445 19

Semantic Web Dog Food 08/11/2012 198,797 147
DBpedia Geo-coordinates 06/2012 1,900,004 4

LinkedMDB 18/05/2010 3,579,610 148
WatDiv1 104,532 86

WatDiv100 10,934,518 86

Theorem 1 If all the RDF data accessible through the endpoints of a federation
are described as replicated fragments, Fedra source selection does not reduce
query engine answer completeness.

5 Experimental Study

The goal of the experimental study is to evaluate the effectiveness of Fedra. We
compare the performance of federated SPARQL queries using FedX, DAW+FedX,
Fedra +FedX, ANAPSID, DAW+ANAPSID, and Fedra +ANAPSID.

We expect to see that Fedra selects less sources than DAW, and transfers
less data from endpoints to the query engines.

Datasets and Queries: We use the real datasets: Diseasome, Semantic Web
Dog Food, LinkedMDB, and DBpedia Geo-coordinates. Further, we consider
two instances of the Waterloo SPARQL Diversity Test Suite (WatDiv) synthetic
dataset [2, 3] with 105 and 107 triples. Table 2 shows the characteristics of these
datasets. The datasets are hosted on local Linked Data Fragment (LDF) servers.

We generate 50,000 queries from 500 templates for the WatDiv federation.
We remove the queries that caused engines to abort execution, and queries that
returned zero results. For the real datasets, we generate more than 10,000 queries
using PATH and STAR shaped templates with two to eight triple patterns,
that are instantiated with random values from the datasets. We include the
DISTINCT modifier in all the queries, in order to make them susceptible to a
reduction in the set of selected sources without changing the query answer.



For each dataset, we setup a ten consumer SPARQL endpoint federation.
A consumer SPARQL endpoint is implemented using Jena Fuseki 1.1.110 Each
consumer endpoint selects 100 random queries. Each triple pattern of the query
is executed as a SPARQL construct query with the LDF client 11. The results are
stored locally if not present in at least three consumer endpoints and a fragment
definition is created.

In order to measure the number of transferred data, the federated query
engine access data consumer endpoints through a proxy.
Implementations: FedX 3.012 and ANAPSID13 have been modified to call
Fedra and DAW [18] source selection strategies during query processing. Thus,
each engine can use the selected sources to perform its own optimization strate-
gies. Because FedX is implemented in Java and ANAPSID is implemented in
Python, Fedra and DAW14 are implemented in both Java 1.7 and Python 2.7.3..
Thus, Fedra and DAW are integrated in FedX and ANAPSID, reducing the
performance impact of including these new source selection strategies. Proxies
are implemented in Java 1.7. using the Apache HttpComponents Client library
4.3.5.15. We used R project16 to compute the Wilcoxon signed rank test [24].
Evaluation Metrics: i) Number of Selected Sources (NSS): is the sum of
the number of sources that has been selected per triple pattern. ii) Number
of Transferred Tuples (NTT): is the number of tuples transferred from all the
endpoints to the query engine during a query execution.

5.1 Data Redundancy Minimization

To measure the reduction of the number of selected sources, 100 queries were
randomly chosen, and the source selection was performed for these queries for
each federation using ANAPSID and FedX with and without Fedra or DAW.
For each query, the sum of the number of selected sources per triple pattern
was computed. Boxplots are used to present the results (cf. Figure 6). Both
Fedra and DAW significantly reduce the number of selected sources, however,
the reduction achieved by Fedra is greater than the achieved by DAW.

To confirm it, we formulated the null hypothesis: “Fedra selects the same
number of sources as DAW does”, and performed a Wilcoxon signed rank test,
p-values were inferior or equal to 1.4e-05 for all federations and engines 17. Ob-
tained p-values allow to discard the null hypothesis DAW and Fedra reduction
are similar and accept the alternative hypothesis that Fedra reduction is greater
than the one achieved by DAW. Fedra source selection strategy identifies the

10 http://jena.apache.org/, January 2015.
11 https://github.com/LinkedDataFragments, March 2015
12 http://www.fluidops.com/fedx/, September 2014.
13 https://github.com/anapsid/anapsid, September 2014.
14 We had to implement DAW as its code is not available.
15 https://hc.apache.org/, October 2014.
16 http://www.r-project.org/
17 All the p-values are available in the web page: https://sites.google.com/site/

fedrasourceselection
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Fig. 6: Number of Selected Sources for execution of ANAPSID (A) and FedX
(F) using Fedra (F+), DAW (D+), and the engine source selection

relevant fragments and endpoints that provide the same data. Only one of them
is actually selected; in consequence, a huge reduction on the number of selected
sources of up to 400% per query is achieved.

5.2 Data transfer minimization

To measure the reduction in the number of transferred tuples, queries were ex-
ecuted using proxies that measure the number of transmitted tuples from end-
points to the engines. Because queries that timed out have no significance on
number of transferred tuples, we removed all these queries from the study 18.
Results (cf. Figure 7) show that Fedra source selection strategy leads to exe-
cutions with considerably less intermediate results in all the federations except
SWDF federation. In some queries of the SWDF federation, Fedra +FedX
sends exclusive groups composed of triple patterns with no join variable, and

18 Up to six queries out of 100 queries did not successfully finish in 1,800 seconds,
details available at the web page
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Fig. 7: Number of Transferred Tuples during execution with ANAPSID (A) and
FedX (F) using Fedra (F+), DAW (D+), and the engine source selection

these exclusive groups leads to a significant number of intermediate results that
counters Fedra positive impact over other queries.

Despite that, globally Fedra shows an effective reduction of the number
of transferred tuples. To confirm it, we formulated the null hypothesis: “using
sources selected by Fedra leads to transfer the same number of tuples as using
sources selected by DAW”; and performed a Wilcoxon signed rank test, p-values
were inferior or equal to 0.002 for all federations and engines except SWDF
federation + FedX engine. In consequence, for all combinations of federation
and engines except SWDF+FedX, we can discard the null hypothesis DAW and
Fedra number of transferred tuples are similar and accept the alternative hy-
pothesis that Fedra achieves a greater reduction of the number of transferred
tuples than DAW. The reduction of the number of transferred tuples is mainly
due to Fedra source selection strategy aims to find opportunities to execute
joins in the endpoints, and mostly, it leads to significant reduction in the inter-
mediate results size of up to four orders of magnitude.



6 Related Work

In distributed databases, data fragmentation and replication improve data avail-
ability and query performance [16]. Linked Data [6] is intrinsically a federation
of autonomous participants where federated queries are unknown to a single
participant, and a tight coordination of data providers is difficult to achieve.
This makes data fragmentation [16] and distributed query processing [14] of
distributed databases not a feasible solution [21] for Linked Data.

Recently, the Linked Data fragments approach (LDF) [23, 22] proposes to
improve Linked Data availability by moving query execution load from servers
to clients. A client is able to execute locally a restricted SPARQL query by down-
loading fragments required to execute the query from an LDF server through a
simple HTTP request. This strategy allows clients to cache fragments locally and
decreases the load on the LDF server. LDF chooses a clear tradeoff by shifting
query processing to clients, at the cost of slower query execution [22]. In ex-
periments, we presented how to federate several SPARQL consumer endpoints
that replicates fragments from LDF servers. Re-organizing fragments on data
consumers opens the opportunity to process federated queries even with LDF
servers.

Col-graph [12] enables data consumers to materialize triple pattern fragments
and to expose them through SPARQL endpoints to improve data quality. A data
consumer can update her local fragments and share updates with data providers
and consumers. Col-graph proposes a coordination free protocol to maintain
the consistency of replicated fragments. Currently, Fedra can process feder-
ated queries over Col-graph collaboration networks if the topology of Col-graph
is restricted to two layers without cycles. Moreover, Fedra does not yet con-
sider divergence between fragments produced by concurrent editing. Querying
fragments with divergence is addressed in [15].

Recently, HiBISCuS [19] a source selection approach has been proposed to
reduce the number of selected sources. The reduction is achieved by annotating
sources with their authority URIs, and pruning sources that cannot have triples
that match any of the query triple patterns. HiBISCuS differs from our aim of
both selecting sources that are required to the answer, and avoiding the selection
of sources that only provide redundant replicated fragments. While not directly
related to replication, HiBISCuS index could be used in conjunction with Fedra
to perform join-aware source selection in presence of replicated fragments.

Recently, QBB[11] and DAW[18] propose duplicate-aware strategies for se-
lecting sources for federated query engines. Both approaches use sketches to
estimate the overlapping among sources.

DAW uses a combination of Min-Wise Independent Permutations (MIPs) [7],
and triple selectivity information to estimate the overlap between the results
of different sources. Based on how many new query results are expected to be
found, sources that are below predefined benefits, are discarded and not selected.
Compared to DAW, Fedra does not require to compute data summaries because
Fedra relies on fragment definitions and fragment containment to manage repli-
cation. Computing containments based on fragment descriptions is less expensive



than computing data summaries; moreover, data updates are more frequent than
fragment description updates. Fedra minimizes the number of endpoints and
data transfer and produces complete query answers. Consequently, if DAW and
Fedra could find the same number of sources to execute a query, Fedra source
selection considers the query basic graph patterns to delegate join execution to
the endpoints and reduce intermediate results size. This key feature cannot be
achieved by DAW as it performs source selection only at the triple pattern level.

7 Conclusions

In this paper, we illustrated how replicating fragments allow to re-organize data
from different data sources to better fit queries of data consumers. Then, we
proposed a replication-aware federated query engine by extending state-of-art
federated query engine ANAPSID and FedX with Fedra, a source selection
strategy that approximates SSP-FR.

Fedra exploits fragment localities to reduce intermediate results. Experi-
mental results demonstrate that Fedra achieves significant reduction of inter-
mediate results while preserving query answer completeness.

This work opens several perspectives. First, we made the hypothesis that
replicated fragments are perfectly synchronized and cannot be updated. We can
leverage this hypothesis and manage the problem of federated query processing
with divergence [15].

Several variants of SSP-FR can also be developed. SSP-FR do not make dif-
ferences between endpoints, the cost of accessing endpoints is considered equal.
SSP-FR and Fedra can be modified to compute the source selection that min-
imize public endpoint access as addressed in [15].
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