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Federated query engines allow to consume linked data from SPARQL endpoints. Replicating data fragments from different sources allows to re-organize data to better fit federated query processing of data consumers. However, existing federated query engines poorly support replication. In this paper, we propose a replication-aware federated query engine that extends state-of-art federated query engine ANAPSID and FedX with Fedra, a source selection strategy that approximates the source selection problem with fragments replication (SSP-FR). For a given set of endpoints with replicated fragments and a SPARQL query, the problem is to find the endpoints to contact in order to minimize the number of tuples to transfer from endpoints to the federated query engines. We devise the Fedra source selection algorithm that approximates SSP-FR. We implement Fedra in the state-of-the-art federated query engines FedX and ANAPSID, and empirically evaluate their performance. Experimental results suggest that Fedra efficiently solves SSP-FR, reducing the number of selected SPARQL endpoints as well as the size of query intermediate results.

Introduction

SPARQL endpoints enable to consume RDF data exploiting the expressiveness of the SPARQL query language. Nevertheless, recent studies reveal that existing public SPARQL endpoints main limitation is availability [START_REF] Aranda | Sparql webquerying infrastructure: Ready for action?[END_REF].

In distributed databases [START_REF] Özsu | Principles of distributed database systems[END_REF], a common practice to overcome availability problems is to replicate data near data consumers. Replication can be achieved by complete dataset replication, active caching, pre-fetching or fragmentation [START_REF] Ibáñez | Col-graph: Towards writable and scalable linked open data[END_REF].

RDF data consumers can replicate subsets of RDF datasets or replicated fragments, and make them accessible through SPARQL endpoints. This will provide the support for an efficient RDF data re-organization according to the needs and computational resource capacity of data consumers, while these data can be still accessed using SPARQL endpoints. Unfortunately, although SPARQL endpoints can transparently access replicated fragments, as well as maintain their consistency [START_REF] Ibáñez | Col-graph: Towards writable and scalable linked open data[END_REF], federated query engines are not tailored to exploit the benefits of replicated fragments.

Federated SPARQL engines [START_REF] Acosta | Anapsid: An adaptive query processing engine for sparql endpoints[END_REF][START_REF] Basca | Avalanche: Putting the spirit of the web back into semantic web querying[END_REF][START_REF] Görlitz | Splendid: Sparql endpoint federation exploiting void descriptions[END_REF][START_REF] Quilitz | Querying distributed RDF data sources with SPARQL[END_REF][START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF] allow data consumers to execute SPARQL queries against a federation of SPARQL endpoints. However, these engines are just designed to select the SPARQL endpoints that ensure both a complete answer and an efficient execution of the query. In presence of replication, existing federated query engines may retrieve data from every relevant endpoint, and produce a large number of intermediate results that trigger many requests to the endpoints. Thus, federated query engines may exhibit poor performance while availability of the selected SPARQL endpoints is negatively impacted.

Although the problem of managing RDF data overlapping during federated query processing has been addressed in [START_REF] Hose | Towards benefit-based RDF source selection for SPARQL queries[END_REF][START_REF] Saleem | Daw: Duplicate-aware federated query processing over the web of data[END_REF], the problem of managing replication in a federation of RDF datasets still remains open. DAW [START_REF] Saleem | Daw: Duplicate-aware federated query processing over the web of data[END_REF] is able to detect overlapping between datasets and optimize source selection based on that. However, because DAW is not designed to manage data replication, there is no support for explicitly define and use replicated fragments. In consequence, DAW may select redundant data sources and generate a high number of intermediate results as we will report in our experiments.

In this paper, we build a replication-aware SPARQL federated query engine by integrating into state-of-the art federated query engines FedX [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF] and ANAP-SID [START_REF] Acosta | Anapsid: An adaptive query processing engine for sparql endpoints[END_REF], a source selection strategy called Fedra that solves the source selection problem with fragment replication (SSP-FR). For a given set of SPARQL endpoints with replicated fragments and a SPARQL query, the problem is to minimize the number of transferred data from endpoints to the federated query engines, while preserving answer completeness and reducing data redundancy.

We empirically study federated query engines FedX and ANAPSID extended withFedra and DAW on synthetic and real datasets. The results suggest that Fedra efficiently reduces intermediate results and data redundancy.

The paper is organized as follows. Section 2 describes background and motivations. Section 3 defines replicated fragments and presents the source selection problem for fragment replication. Section 4 presents the Fedra source selection algorithm. Section 5 reports our experimental results. Section 6 summarizes related works. Finally, conclusions and future works are outlined in Section 7.

Background and Motivations

Existing SPARQL federated query engines do not support replicated data. To illustrate, we replicated the DBpedia dataset 4 and defined two federations. The first is composed of one mirror of DBpedia, and the second of two identical mirrors of DBpedia. We used FedX [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF] and ANAPSID [START_REF] Acosta | Anapsid: An adaptive query processing engine for sparql endpoints[END_REF] to execute the query in Figure 1a against both federations. In the first federation, these engines produced the same query answers. On the other hand, for the second federation, these query engines have no knowledge about the relationships among the mirrors of Fig. 1: DBpedia query and its execution time and number of results over one and two replicas of DBpedia for FedX and ANAPSID DBpedia, and they contact both data sources. In this way, performance in terms of execution time and number of results, is seriously degraded as depicted in Figure 1b 5 . Furthermore, if the DAW approach were used, data providers would have to compute summaries of DBpedia; this computation may take up to six hours and the size of the obtained index is 89Mo. Then, after downloading each DBpedia summary, DAW would detect the overlap between the two data sources. DAW could select different DBpedia data sources per triple pattern, and execute thus the join between retrieved data at the federated engine level.

Of course, if federated query engines would know that one endpoint is the mirror of the other, the source selection pruning could be done more efficiently, i.e., only one source were selected to execute the query. This problem is even more challenging if we consider that one endpoint can partially replicate data from several RDF datasets, i.e., replicate a dataset fragment.

Suppose a Web application performs federated queries on A1 (DBpedia) and A2 (LinkedMDB). In order to speed up the queries, a data consumer endpoint C1 with replicated fragments has been installed as in Figure 2. Fragments are defined as simple CONSTRUCT SPARQL queries with one triple pattern. Fragments allow re-organizing the RDF data on C1 to better address data consumer's needs.

Even in this simple setup, processing our running query on a federation including A1, A2, and C1 raises the problem of source selection with fragment replication (SSP-FR). There are five options to select sources for executing this query; these choices produce different number of transferred tuples as shown in Figure 2: (i) If no information about replicated fragments is available, all sources may be selected to retrieve data for all the triple patterns. The number of intermediate results is given in the solution s1. This will be the behavior of a federated query engine like FedX that ensures answer completeness6 . (ii) Endpoints A1 and A2 could be chosen, in this case the number of intermediate results is given in s2. The number of intermediate results in s2 is less than s1 since some joins could be executed at A1 and A2. (iii) Another choice may be to use the C1 endpoint in combination with either A1 or A2 ps3, s4q. This produces the same Fig. 2: Client defines a federation composed of DBpedia (A1), LinkedMDB (A2), and one consumer (C1) endpoints with four replicated fragments.

number of intermediate results as in s2, but they have the advantage of accessing less public endpoints. (iv) A last choice could be to use the C1 endpoint to retrieve data for all the triple patterns ps5q. This solution profits from replicated fragments to execute opportunistic joins at C1; thus, it is able to achieve the best performance in terms of the number of intermediate results.

As the number of transferred tuples increases, the availability of the contacted SPARQL endpoints can be affected. A replication aware federated query engine could select the best sources to reduce the size of intermediate results while preserving answer completeness. In this paper, we formally address the following problem: Given a SPARQL query and a set of relevant SPARQL endpoints with replicated fragments, choose the SPARQL endpoints to contact in order to produce a complete query answer and transfer the minimum amount of data? We aim to develop an algorithm that produces solution s5 whenever possible, providing as output the sources to be used by a federated query engine.

Definitions and Problem Description

This section introduces definitions and the source selection problem with fragment replication (SSP-FR).

Definitions

Fragments are used to replicate RDF data. The data of a fragment is defined by means of the dataset public endpoint, or authoritative endpoint, and a CON-STRUCT query with one triple pattern. 
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Fig. 3: Client defines a federation composed of C1,C2, and C3 that replicates fragments f 2 ´f 7

Definition 1 (Fragment). A fragment is a tuple f " xu, sy u is the non-null URI of the authoritative endpoint where f is available; s is a CONSTRUCT query with one triple pattern.

Without loss of generality, s is limited to one triple pattern as in [START_REF] Ibáñez | Col-graph: Towards writable and scalable linked open data[END_REF][START_REF] Verborgh | Querying datasets on the Web with high availability[END_REF]; this reduces the complexity of fragment containment problem as described in Definition 2. Additionally, we assume replicated fragments comprise RDF data accessible from public endpoints, i.e., the authoritative endpoints of the replicated fragments are disjoint with data consumer endpoints. This will allow data consumers to re-organize RDF data replicated from different public endpoints to fit in this way, their needs and requirements.

In this work, we make the following hypotheses: (i) Fragments are replicated from public endpoints, and there is just one level of replication. (ii) Fragments are read-only and perfectly synchronized; the fragment synchronization problem is studied in [START_REF] Ibáñez | Col-graph: Towards writable and scalable linked open data[END_REF], while querying fragments with divergence is addressed in [START_REF] Montoya | Fedra: Query Processing for SPARQL Federations with Divergence[END_REF]. (iii) For the sake of simplicity, we suppose that RDF data accessible through the endpoints are described as fragments.

To illustrate, consider the federation given in Figure 3. This federation extends the setup in Figure 2. Suppose three Web applications perform queries against DBpedia and LinkedMDB. To speed up query processing, data consumer endpoints: C1, C2, and C3 with replicated fragments have been configured.

At startup, the federated query engine loads the fragments description for each of the federation endpoints, and computes both the fragment and containment mappings. The fragment mappings is a function that maps fragments to a set of endpoints; the containment mapping is based on containment relation (f l Ď f k ) described in the Definition 2.

Two fragments loaded from two different endpoints Ci, Cj that have the same authoritative endpoint and equivalent construct queries are concatenated in the fragment mapping. For example, the federated engine loads fragments x?film db:director ?director, http://dbpedia.org/sparqly from C1, C2, C3, computes equivalence, and adds in its fragment mappings x?film db:director ?director, http://dbpedia.org/sparqly Ñ {C1,C2,C3}.

Query containment and equivalence have been studied extensively. We adapt the definition given in [START_REF] Halevy | Answering queries using views: A survey[END_REF] for the case of a triple pattern query.

Definition 2 (Triple Pattern Containment). Let T P pDq denote the result of execution of the triple pattern T P over an RDF dataset D. Let T P 1 and T P 2 be two triple patterns. We say that T P 1 is contained in T P 2 , denoted by T P 1 Ď T P 2 , if for any RDF dataset D, T P 1 pDq Ď T P 1 pDq. We say that T P 1 is equivalent to T P 2 denotes T P 1 " T P 2 if T P 1 Ď T P 2 and T P 2 Ď T P 1 .

In the case of triple patterns, testing containment7 amounts to finding a substitution of the variables in the triple patterns 8 . T P 1 Ď T P 2 , iff there is a substitution θ such that applying θ to T P 2 returns the triple pattern T P 1 . Testing triple pattern containment has a complexity of Op1q. Solving the decision problem of triple pattern containment between T P 1 and T P 2 , T P 1 Ď T P 2 , requires to check if T P 1 imposes at least the same restrictions as T P 2 on the subject, predicate, and object positions, i.e., T P 1 should have at most the same number of variables as T P 2 .

For the federation in Figure 3, f 5 Ď f 4 because f 4 and f 5 share the same authoritative endpoint and there is a substitution θ defined as tp?genre, f ilm genre : 14q, p?movie, ?moviequ and applying θ to f 4 returns f 5. After identifying a substitution θ for all pair-wise fragments, it is straightforward to compute a containment mapping for a federation of SPARQL endpoints.

We can rely on fragment descriptions and the containment property to determine relevant fragments to a query. Relevant fragments contain relevant RDF data to each of the triple patterns of the query. A fragment is relevant to a query Q, if it is relevant to at least one triple pattern of the query. Definition 3 (Fragment relevance). Let f be a fragment defined by a triple pattern T P 1 . Let T P 2 be a triple pattern of a query

Q. f is relevant to Q if T P 2 Ď T P 1 or T P 1 Ď T P 2 .
Table 1a shows the relevant fragments to the triple patterns in query Q, and the endpoints that provide these fragments. For example, the triple pattern tp1 (a) Relevant Fragments to 3.

Q TP D0(tp) D1(tp) D2(tp) tp1 { C1,C2 } { C1,C2 } { C1,C2 } tp2 { C1,C2,C3 } { C1 } { C3 } tp3 { C2,C3 } { C2 } { C3 } tp4 { C1,C2,C3 } { C3 } { C3 } Triples to
has two relevant fragments: f 6 and f 7, and triple pattern tp4 has two relevant fragments: f 4 and f 5. Fragment f 4 can produce the complete answer of tp4 because f 5 Ď f 4, while both f 6 and f 7 are required to answer tp1.

Source Selection Problem with Fragment Replication (SSP-FR)

Given a SPARQL query Q, a set of SPARQL endpoints E, the set of fragments F that have been replicated by at least one endpoint in E, a fragment mapping endpoints(), a containment mapping Ď.

The Source Selection Problem with Fragment Replication (SSP-FR) is to assign to each triple pattern in Q, the set of endpoints from E that need to be contacted to answer Q. A solution of SSP-FR corresponds to a mapping D that satisfies the following properties:

1. Answer completeness preservation: sources selected in D do not reduce the query engine answer completeness. 2. Data redundancy minimization: cardinality(D(tp)) is minimized for all triple pattern tp in Q, i.e., redundant data is minimized. 3. Data transfer minimization: executing the query using the sources selected in D minimizes the number of transferred data.

We illustrate SSP-FR on running query Q of Figure 3. Table 1a presents relevant fragments for each triple pattern. Table 1b shows three Dptpq that ensure the completeness preservation property. Even if D 1 and D 2 minimize the number of selected endpoints per triple pattern, only D 2 minimizes the transferred data. Indeed, executing tp1, tp2, tp3 against replicated fragments that are located in the same data consumer endpoint will greatly reduce the size of intermediate results.

The approach proposed by Saleem et al. [START_REF] Saleem | Daw: Duplicate-aware federated query processing over the web of data[END_REF] is not designed for solving SSP-FR. Indeed, it does not take into account replicated data, and may produce a solution as D 1 . The Fedra algorithm exploits properties of the replicated fragments and is able to find solution D 2 . 

Algorithm 1 Fedra Source Selection algorithm

E(tp) Ð { commonSources }
4 Fedra: an Algorithm for SSP-FR

The goal of Fedra is to reduce data transfer by taking advantage of the replication of relevant fragments for several triple patterns on the same endpoint. Algorithm 1 proceeds in four main steps: I. Identify relevant fragments for triple patterns, a triple pattern of a Basic Graph Pattern (BGP) can be contained in one fragment or a union of fragments (cf lines 4-5). II. Localize relevant replicated fragments on the endpoints, e.g., for Q: tp1 C1YC2 ' tp2 C1,C2,C3 ' tp3 C2,C3 ' tp4 C1,C3 (line 6). III. Prune endpoints for the unions (line 9). IV. Prune endpoints for the BGPs using a set covering heuristic (line 10). Next, we illustrate how Algorithm 1 works on our running query Q and data consumer endpoints C1, C2, C3 from Figure 3 9 .

First, for each triple pattern, Fedra computes relevant fragments in R(tp), and groups them if they provide the same relevant data. For tp1, Rptp1q Ñ ttf 6u, tf 7uu. For tp4, as f 5 Ď f 4, f 5 is safely removed at line 5, and Rptp4q Ñ ttf 4uu. Second, Fedra localizes fragments on endpoints in Eptpq. Figure 4 shows the execution plans encoded in R(tp) and E(tp). Triple patterns like tp1, with more than one relevant fragment, represent unions in the execution plan.

Procedure unionReduction (cf. Algorithm 2) reduces subsets of endpoints with relevant fragments into one set with all the common endpoints if at least one Fig. 4: Execution plan encoded in data structures R and E; multiple subsets represent union of different fragment (ex. {f 6 }, {f 7 }); elements of the subset represent alternative location of fragments (ex. {C1,C3}); bold sources are the selected sources after set covering is used to reduce the sources common endpoint exists. In our running example there is no common endpoint that replicates both f 6 and f 7. However, if, for example, f 7 were also replicated at C1, then only C1 would be selected to execute tp1. Procedure bgpReduction (cf. Algorithm 3) transforms the join part of Eptpq (cf. Figure 4) into a set covering problem (cf. line 22). Each triple pattern is an element of the set to cover, e.g., tp2, tp3, tp4 correspond to s2, s3, s4 (cf. Figure 5a). And for each endpoint in Eptpq, we include the subset of triple patterns associated with that endpoint, e.g., for endpoint C1 we include the subset {s2,s4} as relevant fragments tp2 and tp4 are replicated by C1 (cf. Figure 5b). Line 23 relies on an existing heuristic [START_REF] Johnson | Approximation algorithms for combinatorial problems[END_REF] to find the minimum set covering.

In our example, it computes C' ={{s2,s3,s4}}. Line 24 computes the selected endpoints, in our example, selected={ C3 }.

Finally, (Algorithm 1, line 12) chooses among endpoints that provide the same fragment and reduces data redundancy. For query Q, the whole algorithm returns D 2 of Table 1b. Proposition 1. Algorithm 1 has a time complexity of Opn.m 2 q, with n the number of triple patterns in the query, m the number of fragments, k the number of endpoints, l the number of basic graph patterns in the query, and m " k ^k " l. Theorem 1 If all the RDF data accessible through the endpoints of a federation are described as replicated fragments, Fedra source selection does not reduce query engine answer completeness.

Experimental Study

The goal of the experimental study is to evaluate the effectiveness of Fedra. We compare the performance of federated SPARQL queries using FedX, DAW+FedX, Fedra +FedX, ANAPSID, DAW+ANAPSID, and Fedra +ANAPSID. We expect to see that Fedra selects less sources than DAW, and transfers less data from endpoints to the query engines. Datasets and Queries: We use the real datasets: Diseasome, Semantic Web Dog Food, LinkedMDB, and DBpedia Geo-coordinates. Further, we consider two instances of the Waterloo SPARQL Diversity Test Suite (WatDiv) synthetic dataset [START_REF] Aluç | Diversified stress testing of RDF data management systems[END_REF][START_REF] Aluç | chameleon-db: a workloadaware robust rdf data management system[END_REF] with 10 5 and 10 7 triples. Table 2 shows the characteristics of these datasets. The datasets are hosted on local Linked Data Fragment (LDF) servers.

We generate 50,000 queries from 500 templates for the WatDiv federation. We remove the queries that caused engines to abort execution, and queries that returned zero results. For the real datasets, we generate more than 10,000 queries using PATH and STAR shaped templates with two to eight triple patterns, that are instantiated with random values from the datasets. We include the DISTINCT modifier in all the queries, in order to make them susceptible to a reduction in the set of selected sources without changing the query answer.

For each dataset, we setup a ten consumer SPARQL endpoint federation. A consumer SPARQL endpoint is implemented using Jena Fuseki 1.1.1 10 Each consumer endpoint selects 100 random queries. Each triple pattern of the query is executed as a SPARQL construct query with the LDF client 11 . The results are stored locally if not present in at least three consumer endpoints and a fragment definition is created.

In order to measure the number of transferred data, the federated query engine access data consumer endpoints through a proxy. Implementations: FedX 3.0 12 and ANAPSID 13 have been modified to call Fedra and DAW [START_REF] Saleem | Daw: Duplicate-aware federated query processing over the web of data[END_REF] source selection strategies during query processing. Thus, each engine can use the selected sources to perform its own optimization strategies. Because FedX is implemented in Java and ANAPSID is implemented in Python, Fedra and DAW 14 are implemented in both Java 1.7 and Python 2.7.3.. Thus, Fedra and DAW are integrated in FedX and ANAPSID, reducing the performance impact of including these new source selection strategies. Proxies are implemented in Java 1.7. using the Apache HttpComponents Client library 4.3.5. 15 . We used R project 16 to compute the Wilcoxon signed rank test [START_REF] Wilcoxon | Individual comparisons by ranking methods[END_REF]. Evaluation Metrics: i) Number of Selected Sources (NSS): is the sum of the number of sources that has been selected per triple pattern. ii) Number of Transferred Tuples (NTT): is the number of tuples transferred from all the endpoints to the query engine during a query execution.

Data Redundancy Minimization

To measure the reduction of the number of selected sources, 100 queries were randomly chosen, and the source selection was performed for these queries for each federation using ANAPSID and FedX with and without Fedra or DAW. For each query, the sum of the number of selected sources per triple pattern was computed. Boxplots are used to present the results (cf. Figure 6). Both Fedra and DAW significantly reduce the number of selected sources, however, the reduction achieved by Fedra is greater than the achieved by DAW.

To confirm it, we formulated the null hypothesis: "Fedra selects the same number of sources as DAW does", and performed a Wilcoxon signed rank test, p-values were inferior or equal to 1.4e-05 for all federations and engines 17 . Obtained p-values allow to discard the null hypothesis DAW and Fedra reduction are similar and accept the alternative hypothesis that Fedra reduction is greater than the one achieved by DAW. Fedra source selection strategy identifies the 10 http://jena.apache.org/, January 2015. 11 https://github.com/LinkedDataFragments, March 2015 12 http://www.fluidops.com/fedx/, September 2014. 13 https://github.com/anapsid/anapsid, September 2014. 14 We had to implement DAW as its code is not available. 15 https://hc.apache.org/, October 2014. 16 http://www.r-project.org/ 17 All the p-values are available in the web page: https://sites.google.com/site/ fedrasourceselection q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q F+A D+A A Number of Selected Sources q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q F+F D+F F relevant fragments and endpoints that provide the same data. Only one of them is actually selected; in consequence, a huge reduction on the number of selected sources of up to 400% per query is achieved.

Data transfer minimization

To measure the reduction in the number of transferred tuples, queries were executed using proxies that measure the number of transmitted tuples from endpoints to the engines. Because queries that timed out have no significance on number of transferred tuples, we removed all these queries from the study 18 . Results (cf. Figure 7) show that Fedra source selection strategy leads to executions with considerably less intermediate results in all the federations except SWDF federation. In some queries of the SWDF federation, Fedra +FedX sends exclusive groups composed of triple patterns with no join variable, and 18 Up to six queries out of 100 queries did not successfully finish in 1,800 seconds, details available at the web page q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q F+A D+A A Diseasome Geocoordinates LinkedMDB SWDF WatDiv1 WatDiv100

Number of Transferred Tuples q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q F+F D+F F Despite that, globally Fedra shows an effective reduction of the number of transferred tuples. To confirm it, we formulated the null hypothesis: "using sources selected by Fedra leads to transfer the same number of tuples as using sources selected by DAW"; and performed a Wilcoxon signed rank test, p-values were inferior or equal to 0.002 for all federations and engines except SWDF federation + FedX engine. In consequence, for all combinations of federation and engines except SWDF+FedX, we can discard the null hypothesis DAW and Fedra number of transferred tuples are similar and accept the alternative hypothesis that Fedra achieves a greater reduction of the number of transferred tuples than DAW. The reduction of the number of transferred tuples is mainly due to Fedra source selection strategy aims to find opportunities to execute joins in the endpoints, and mostly, it leads to significant reduction in the intermediate results size of up to four orders of magnitude.

In distributed databases, data fragmentation and replication improve data availability and query performance [START_REF] Özsu | Principles of distributed database systems[END_REF]. Linked Data [START_REF] Bizer | Linked data -the story so far[END_REF] is intrinsically a federation of autonomous participants where federated queries are unknown to a single participant, and a tight coordination of data providers is difficult to achieve. This makes data fragmentation [START_REF] Özsu | Principles of distributed database systems[END_REF] and distributed query processing [START_REF] Kossmann | The state of the art in distributed query processing[END_REF] of distributed databases not a feasible solution [START_REF] Umbrich | Comparing data summaries for processing live queries over linked data[END_REF] for Linked Data.

Recently, the Linked Data fragments approach (LDF) [START_REF] Verborgh | Web-scale querying through Linked Data Fragments[END_REF][START_REF] Verborgh | Querying datasets on the Web with high availability[END_REF] proposes to improve Linked Data availability by moving query execution load from servers to clients. A client is able to execute locally a restricted SPARQL query by downloading fragments required to execute the query from an LDF server through a simple HTTP request. This strategy allows clients to cache fragments locally and decreases the load on the LDF server. LDF chooses a clear tradeoff by shifting query processing to clients, at the cost of slower query execution [START_REF] Verborgh | Querying datasets on the Web with high availability[END_REF]. In experiments, we presented how to federate several SPARQL consumer endpoints that replicates fragments from LDF servers. Re-organizing fragments on data consumers opens the opportunity to process federated queries even with LDF servers.

Col-graph [START_REF] Ibáñez | Col-graph: Towards writable and scalable linked open data[END_REF] enables data consumers to materialize triple pattern fragments and to expose them through SPARQL endpoints to improve data quality. A data consumer can update her local fragments and share updates with data providers and consumers. Col-graph proposes a coordination free protocol to maintain the consistency of replicated fragments. Currently, Fedra can process federated queries over Col-graph collaboration networks if the topology of Col-graph is restricted to two layers without cycles. Moreover, Fedra does not yet consider divergence between fragments produced by concurrent editing. Querying fragments with divergence is addressed in [START_REF] Montoya | Fedra: Query Processing for SPARQL Federations with Divergence[END_REF].

Recently, HiBISCuS [START_REF] Saleem | Hibiscus: Hypergraph-based source selection for SPARQL endpoint federation[END_REF] a source selection approach has been proposed to reduce the number of selected sources. The reduction is achieved by annotating sources with their authority URIs, and pruning sources that cannot have triples that match any of the query triple patterns. HiBISCuS differs from our aim of both selecting sources that are required to the answer, and avoiding the selection of sources that only provide redundant replicated fragments. While not directly related to replication, HiBISCuS index could be used in conjunction with Fedra to perform join-aware source selection in presence of replicated fragments.

Recently, QBB [START_REF] Hose | Towards benefit-based RDF source selection for SPARQL queries[END_REF] and DAW [START_REF] Saleem | Daw: Duplicate-aware federated query processing over the web of data[END_REF] propose duplicate-aware strategies for selecting sources for federated query engines. Both approaches use sketches to estimate the overlapping among sources.

DAW uses a combination of Min-Wise Independent Permutations (MIPs) [START_REF] Broder | Min-wise independent permutations[END_REF], and triple selectivity information to estimate the overlap between the results of different sources. Based on how many new query results are expected to be found, sources that are below predefined benefits, are discarded and not selected. Compared to DAW, Fedra does not require to compute data summaries because Fedra relies on fragment definitions and fragment containment to manage replication. Computing containments based on fragment descriptions is less expensive than computing data summaries; moreover, data updates are more frequent than fragment description updates. Fedra minimizes the number of endpoints and data transfer and produces complete query answers. Consequently, if DAW and Fedra could find the same number of sources to execute a query, Fedra source selection considers the query basic graph patterns to delegate join execution to the endpoints and reduce intermediate results size. This key feature cannot be achieved by DAW as it performs source selection only at the triple pattern level.

Conclusions

In this paper, we illustrated how replicating fragments allow to re-organize data from different data sources to better fit queries of data consumers. Then, we proposed a replication-aware federated query engine by extending state-of-art federated query engine ANAPSID and FedX with Fedra, a source selection strategy that approximates SSP-FR.

Fedra exploits fragment localities to reduce intermediate results. Experimental results demonstrate that Fedra achieves significant reduction of intermediate results while preserving query answer completeness.

This work opens several perspectives. First, we made the hypothesis that replicated fragments are perfectly synchronized and cannot be updated. We can leverage this hypothesis and manage the problem of federated query processing with divergence [START_REF] Montoya | Fedra: Query Processing for SPARQL Federations with Divergence[END_REF].

Several variants of SSP-FR can also be developed. SSP-FR do not make differences between endpoints, the cost of accessing endpoints is considered equal. SSP-FR and Fedra can be modified to compute the source selection that minimize public endpoint access as addressed in [START_REF] Montoya | Fedra: Query Processing for SPARQL Federations with Divergence[END_REF].

(a )
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  Require: Q: SPARQL Query; F: set of Fragments; endpoints : Fragment Ñ set of Endpoint; Ď : triplePattern ˆtriplePattern Ensure: selectedEndpoints: map from Triple Pattern to set of Endpoint.

1 :

 1 function sourceSelection(Q,F,endpoints,Ď) 2: triplePatterns Ð get triple patterns in Q 3: for each tp P triplePatterns do 4: R(tp) Ð relevantFragments(tp, F) Ź Relevant fragments as in Definition 3 5: R(tp) Ð ttf : f P Rptpq : tp Ď f uu Ť ttf u : f P Rptpq : f Ď tp ^ pDg : g P Rptpq : f Ă g Ď tpqu 6: E(tp) Ð { ( Ť endpoints(f) : f P fs) : fs P R(tp) } 7: basicGP Ð get basic graph patterns in Q 8: for each bgp P basicGP do 9: unionReduction(bgp, E) Ź endpoints reduction for multiple fragments triples 10: bgpReduction(bgp, E) Ź endpoints reduction for the bgp triples

Algorithm 3

 3 Basic graph pattern reduction algorithm Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint 20: procedure bgpReduction(tps, E) 21: triplesWithOneFragment Ð { tp : tp P tps ^cardinality(E(tp)) = 1 } 22: (S, C) Ð minimal set covering instance using triplesWithOneFragment E 23: C' Ð minimalSetCovering(S, C) 24: selected Ð get endpoints encoded by C' 25: for each tp P triplesWithOneFragment do 26: E(tp) Ð E(tp)

Fig. 5 :

 5 Fig.5: Set covering instances of S and C of BGP reduction Algorithm 3 for the query Q (Figure3).

Fig. 6 :

 6 Fig. 6: Number of Selected Sources for execution of ANAPSID (A) and FedX (F) using Fedra (F+), DAW (D+), and the engine source selection

Fig. 7 :

 7 Fig. 7: Number of Transferred Tuples during execution with ANAPSID (A) and FedX (F) using Fedra (F+), DAW (D+), and the engine source selection

Table 1 :

 1 SSP-FR for query Q over a federation of C1, C2, and C3 of Figure

	421,675	170,078	8,953
	transfer		
	(b) Answer completeness preservation

  11: for each tp P domain(E) do 12: selectedEndpoints(tp) Ð for each set in E(tp) include one element 13: return selectedEndpoints Algorithm 2 Union reduction algorithm

Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint 14: procedure unionReduction(tps, E) 15: triplesWithMultipleFragments Ð { tp : tp P tps ^cardinality(E(tp)) ą 1 } 16: for each tp P triplesWithMultipleFragments do 17: commonSources Ð ( Ş f : f P E(tp)) Ź get sources in all subsets in E(tp) 18: if commonSources ‰ H then 19:

Table 2 :

 2 Dataset characteristics: version, number of different triples (# DT), and predicates (# P)

	Dataset	Version date	# DT	# P
	Diseasome	19/10/2012	72,445	19
	Semantic Web Dog Food 08/11/2012 198,797 147
	DBpedia Geo-coordinates	06/2012	1,900,004	4
	LinkedMDB	18/05/2010 3,579,610 148
	WatDiv1		104,532	86
	WatDiv100		10,934,518 86

DBpedia Live at August 15th, 2013.

FedX retrieves less results with two mirrors of DBpedia because it reaches the endpoints maximum number of result rows

[START_REF] Bizer | Linked data -the story so far[END_REF] In order to preserve joins between different endpoints, each triple pattern should be posed to each endpoint individually.

Containment testing is adapted from[START_REF] Gutierrez | Foundations of semantic web databases[END_REF].

The substitution operator preserves URIs and literals, i.e., only variables are substituted.

Notice that DBpedia is not included in the federation for processing Q, so using only fragments f 6 and f 7 to retrieve data for tp1 will not produce all the answers that would be produced using DBpedia.