
Efficient Query Processing for SPARQL Federations
with Replicated Fragments

Gabriela Montoya1, Hala Skaf-Molli1, Pascal Molli1, and Maria-Esther Vidal2

1 LINA– Nantes University, France {first.last}@univ-nantes.fr
2 Universidad Simón Bolı́var, Venezuela mvidal@ldc.usb.ve

Abstract. Low reliability and availability of public SPARQL endpoints prevent
real-world applications from exploiting all the potential of these querying infras-
tructures. Fragmenting data on servers can improve data availability but degrades
performance. Replicating fragments can offer new tradeoff between performance
and availability. We propose FEDRA, a framework for querying Linked Data that
takes advantage of client-side data replication, and performs a source selection
algorithm that aims to reduce the number of selected public SPARQL endpoints,
execution time, and intermediate results. FEDRA has been implemented on the
state-of-the-art query engines ANAPSID and FedX, and empirically evaluated
on a variety of real-world datasets.

Keywords: SPARQL Federation, Replicated Fragments, Source Selection

1 Introduction

Linked Data [4] provides millions of triples for data consumers, however, recent stud-
ies suggest that data availability is currently the main bottleneck to the success of the
Semantic Web as a viable technology [2, 19]. Particularly, it has been reported by Buil-
Aranda et el. [2] that only one third of the 427 public SPARQL endpoints have an
availability rate equal or greater than 99%; representing this limitation the major obsta-
cle to developing Web real-world applications that access Linked Data by using these
infrastructures. Recently, the Linked Data Fragments (LDF) approach [20, 19] has ad-
dressed availability issues by delegating query processing to clients, and by transform-
ing public endpoints into simple HTTP-based triple-pattern fragments providers that
can be easily cached by clients. This tradeoff effectively improves data availability, but
it can significantly degrade performance [20]. However, we speculate that fragments
caching approaches like LDF can have two important consequences for consuming
Linked Data: (i) Each client is able to process SPARQL queries on replicated frag-
ments cached from servers. Consequently, if clients are ready to cooperate, the cost of
executing SPARQL queries can be significantly reduced, and a new compromise be-
tween availability and performance can be achieved. (ii) Potentially, clients could cache
triple-pattern fragments from different data providers creating new localities for feder-
ated queries. Therefore, some joins can be now executed on one machine without con-
tacting the public endpoints. This vision is also clearly proposed by Ibañez [9], where
triple-pattern fragments can be replicated from SPARQL public endpoints, modified

#DBpedia Execution Time (ms) # Results
Replicas FedX ANAPSID FedX ANAPSID

1 1,392 22,972 8,921 8,921
2 215,907 ě 1,800,000 418 8,921

Table 1: Execution time and results for the same query over one and two replicas of
DBpedia for FedX and ANAPSID

locally, and made available through consumer data endpoints. Approaches in [9, 20]
demonstrate how SPARQL processing resources and simple triple-based fragments can
be obtained from data consumers. We believe this represents a new opportunity for fed-
erated query processing engines to improve SPARQL query processing performance by
taking advantage of opportunistic replication and SPARQL processing offered by data
consumers.

However, current SPARQL federated query engines [1, 3, 7, 14, 17] may exhibit
poor performance in presence of replication. As presented in Figure 1, we duplicated
DBpedia and executed a three triple pattern query against one instance and next two
instances of DBpedia. We can observe that the performance in terms of execution time
and number of results is seriously degraded. This problem has been partially addressed
by recent duplicate-aware source selection strategies [8, 15]. The proposed solutions
rely on summary of datasets to detect overlapping and do not consider fragments [9,
19, 20]. With fragments, replication is defined declaratively and does not need to be
detected.

In this paper, we propose FEDRA, a source selection strategy that exploits fragment
definition to select non-redundant data sources. In contrast to [8, 15], FEDRA does not
require information about the content of the data sources to detect overlapping. FE-
DRA just relies on knowledge about the endpoint replicated fragments to reduce the
number of endpoints to be contacted, and delegate join execution to endpoints. FEDRA
implements a set covering heuristic [6] to minimize the number of sources to be con-
tacted. The implemented source selection approach ensures that triple patterns in the
same basic graph pattern are assigned to the same endpoints, and consequently, it re-
duces the size of intermediate results. We extend the state-of-the art federated query
engines FedX [17] and ANAPSID [1] with FEDRA, and compare these extensions with
the original engines. We empirically study these engines and the results suggest that
FEDRA efficiently reduces the number of public, replicated endpoints, and intermediate
results. The paper is organized as follows: Section 2 presents related works. Section 3
describes FEDRA and the source selection algorithm. Section 4 reports our experimental
results. Finally, conclusions and future works are outlined in Section 5.

2 Related Work

In distributed databases, data fragmentation and replication improve data availability
and query performance [12]. Linked Data [4] is intrinsically a federation of autonomous
participants where federated queries are unknown from a single participant, and a tight
coordination of data providers is difficult to achieve. This makes data fragmentation [12]
and distributed query processing [10] of distributed databases not a viable solution [18]
for Linked Data.

Recently, the Linked Data fragments approach (LDF) [20, 19] proposes to improve
Linked Data availability by moving query execution load from servers to clients. A
client is able to execute locally a restricted SPARQL query by downloading fragments
required to execute the query from an LDF server through a simple HTTP request. This
strategy allows clients to cache fragments locally and decreases the load on the LDF
server. A Linked Data Fragment of a Linked Data dataset is a resource consisting of the
dataset triples that match a specific selector. A triple pattern fragment is a special kind
of fragments where the selector is a triple pattern; a triple pattern fragment minimizes
the effort of the server to produce the fragments. LDF chose a clear tradeoff by shifting
query processing to clients, at the cost of slower query execution [19]. On the other
hand, LDF could create many data consumers resources that hold replicated fragments
in their cache and is able to process SPARQL queries. This opens the opportunity to
use these new resources to process SPARQL federated queries. FEDRA aims to improve
source selection algorithm of federated query engine to consider these new endpoints,
and decreases the load on public endpoints.

Col-graph [9] enables data consumers to materialize triple pattern fragments and to
expose them through SPARQL endpoints to improve data quality. A data consumer can
update her local fragments and share updates with data providers and consumers. Col-
graph proposes a coordination free protocol to maintain the consistency of replicated
fragments. Compared to LDF, Col-graph clearly creates SPARQL endpoints available
for other data consumers, and allows federated query engines to use local fragments.
As for LDF, FEDRA can take advantage of these data consumer resources.

Recently, HiBISCuS [16] a source selection approach has been proposed to reduce
the number of selected sources. The reduction is achieved by annotating sources with
the URIs authorities they contain, and pruning sources that cannot have triples that
match any of the query triple patterns. HiBISCuS differs from our aim of both selecting
sources that are required to the answer, and avoiding the selection of sources that only
provide redundant replicated fragments. While not directly related to replication, Hi-
BISCuS index could be used in conjunction with FEDRA to perform join-aware source
selection in presence of replicated fragment.

Existing federated query engines [1, 3, 7, 14, 17] are not able to take advantage of
replicated fragments, and data overlapping can seriously degrade their performance as
reported in Figure 1 and shown in [11, 15]. We integrated FEDRA within FedX and
ANAPSID to make existing engines aware of replicated fragments. With FEDRA, repli-
cations as in Figure 1 will be detected, and performance will remain stable.

Recently, QBB[8] and DAW[15] propose duplicate-aware strategies for selecting
sources for federated query engines. Both approaches use sketches to estimate the over-
lapping among sources. DAW uses a combination of Min-Wise Independent Permuta-
tions (MIPs) [5], and triple selectivity information to estimate the overlap between the
results of different sources. Based on how many new query results are expected to be
found, sources below predefined benefits are discarded and not queried.

Compared to DAW, FEDRA does not require to compute data summaries because
FEDRA relies on fragment definitions to deduce containments. Computing contain-
ments based on fragment descriptions is less expensive than computing data summaries,
moreover data updates are more frequent than fragment description updates. FEDRA

P1 Endpoint P2 Endpoint

f1
f2 f4

f1
f4

f2
f9 f3

f5f6 f7 f5
f8

f3

f6

C1
Endpoint

C2
Endpoint

C3
Endpoint

C4
Endpoint

C5
Endpoint

t1 p1 c1 . c1 p2 l1 .
t1 p1 c2 . c2 p2 o6 .

c1 p4 d1 . c2 p4 d2

d1 p3 g1 . d1 p5 c2 .
d2 p3 g2 . d2 p5 c3 .
d1 p6 n1 . d1 p7 m .

d2 p6 n2 . d2 p7 e

t1 p1 c1.
t1 p1 c2.
c1 p2 l1.
c2 p2 o6.
d1 p3 g1.

d2 p3 g2

c1 p4 d1 .
c2 p4 d2 .
d1 p5 c2 .
d2 p5 c3 .
d1 p6 n1 .

d2 p6 n2

t1 p1 c1.
t1 p1 c2.
c1 p4 d1 .
c2 p4 d2 .

d1 p7 m

c1 p2 l1.
c2 p2 o6.
d1 p5 c2 .
d2 p5 c3 .

d2 p7 e

d1 p3 g1.
d2 p3 g2.
d1 p6 n1 .
d2 p6 n2 .

t1 p1 c1

(a) Public and Consumer Endpoints Federation

F Selector AS Endpoint
f1 CONSTRUCT

WHERE { ?x p1 ?y } P1 C1,C3
f2 CONSTRUCT

WHERE { ?x p2 ?y } P1 C1, C4
f3 CONSTRUCT

WHERE { ?x p3 ?y } P2 C1, C5
f4 CONSTRUCT

WHERE { ?x p4 ?y } P1 C2, C3
f5 CONSTRUCT

WHERE { ?x p5 ?y } P2 C2, C4
f6 CONSTRUCT

WHERE { ?x p6 ?y } P2 C2, C5
f7 CONSTRUCT

WHERE { ?x p7 m } P2 C3
f8 CONSTRUCT

WHERE { ?x p7 e } P2 C4
f9 CONSTRUCT

WHERE { ?x p1 c1 } P1 C5

(b) Fragments Definitions

Fig. 1: figure (a) describes how fragments of public endpoints are replicated at consumer
endpoints. Table (b) describes the selector of each fragment, ”authoritative” source (AS)
and Endpoint where the fragment is available

also try to remove public endpoints and minimize the number of endpoints to execute
a query. Consequently, if DAW and FEDRA could find the same number of sources to
execute a query, FEDRA minimizes the number of public endpoints to be contacted. Ad-
ditionally, FEDRA source selection considers the query basic graph patterns to delegate
join execution to the endpoints and reduce intermediate results size. This key feature
cannot be achieved by DAW as it performs source selection only at the triple pattern
level.

3 Fedra Approach

Fragments and Endpoints Descriptions To define a fragment, we will use the Linked
Data Fragment definition given by Verborgh et al. [19]. Let U ,L, and V denote the
set of all URIS, literals and variables, respectively. T ˚ “ U ˆ U ˆ pU Y Lq is a
finite set of blank-node-free RDF triples. Every dataset G published via some kind of
fragments on the Web is a finite set of blank-node free triples; i.e., G Ď T ˚. Any tuple
tp P pU Y Vq ˆ pU Y Vq ˆ pU Y V Y L) is a triple pattern.

Definition 1 (Fragment [19]). A Linked Data Fragment (LDF) of G is a tuple f “
xu, s, Γ,M,Cy with the following five elements: i) u is a URI (which is the “authorita-
tive” source from which f can be retrieved); ii) s is a selector; iii) Γ is a set consisting
of all subsets of G that match selector s, that is, for every G1 Ď G it holds that G1 P Γ
if and only if G1 P dompsq and spG1q “ true; iv) M is a finite set of (additional) RDF
triples, including triples that represent metadata for f; and v) C is a finite set of controls.

We restrict fragments to triple pattern fragments as in [9, 20]. Hereafter, we consider
that fragments are read-only and data cannot be updated; the fragment synchronization

Listing 1.1: C1 Endpoint Description
@prefix sd:<h t t p : / / www.w3 . org / ns / sparq l śe rv ice´d e s c r i p t i o n #>.
@prefix dc : <h t t p : / / p u r l . org / dc / elements /1.1/> .
@prefix dcterms : <h t t p : / / p u r l . org / dc / terms/> .
[] <h t t p : / / www.w3 . org /1999/02/22´ rd f śyntax ńs#type> sd : Serv ice ;
sd : endpoint <h t t p : / / consumer1 / sparq l>;
dcterms : hasPart [

dc : d e s c r i p t i o n ” Const ruct where{ ?x p1 ?y }” ;
dcterms : source <h t t p : / / pub l icEndpo in t1 / sparq l>;] ;

dcterms : hasPart [
dc : d e s c r i p t i o n ” Const ruct where{ ?x p2 ?y }” ;
dcterms : source <h t t p : / / pub l icEndpo in t1 / sparq l>;] ;

dcterms : hasPart [
dc : d e s c r i p t i o n ” Const ruct where{ ?x p3 ?y }” ;
dcterms : source <h t t p : / / pub l icEndpo in t2 / sparq l>;] ;

Listing 1.2: Queries Q1 and
Q2
Q1: CONSTRUCT

where { ?x1 p1 ?x2 }

Q2: CONSTRUCT
where { ?x1 p4 ?x2 .

?x1 p7 ?x3 }

problem is studied in [9].
Consider the federation in Figure 1a, where five data consumer endpoints (C1-C5) in-
clude fragments (f1-f9) from public endpoints P1 and P2. Table 1b shows the SPARQL
CONSTRUCT query used as a selector for a fragment. Fragments f1, f2, f4, and f9 have
as “authoritative” source P1, and fragments f3 and f5-f8 have as “authoritative” source
P2. The last column presents the consumer endpoints where fragments are available.
To participate in a FEDRA federation, data consumers annotate each fragment exposed
through their endpoints with the fragment selector s and the public endpoint that pro-
vides the data u. The vocabulary term sd:endpoint refers to the SPARQL endpoint that
publishes the fragment. The vocabulary term dcterms:hasPart introduces a fragment
description, the vocabulary term dc:description refers to the SPARQL CONSTRUCT
query s, and the vocabulary term dcterms:source specifies u, the fragment “authorita-
tive” source URI. Listing 1.1 shows the description of the endpoint C1 of Figure 1a.

For source selection with replicated fragments, we need to define when a fragment
is relevant for answering a query. A fragment is relevant for answering a query, if it is
relevant for at least one triple pattern of the query.

Definition 2 (Fragment relevance). A fragment f “ xu, s, Γ,M,Cy is relevant for a
triple pattern tp, if the triple pattern evaluated over Γ , vtpwΓ [13], is not empty.

Consider queries Q1 and Q2 (cf. Listing 1.2), and the federation of Figure 1. Frag-
ments f1 and f9 are relevant for query Q1, while fragments f4, f7, and f8 are relevant
for query Q2. We can define two types of containments: containment between SPARQL
endpoints and containment between fragments.

Definition 3 (Endpoint Containment). Let e1 and e2 be the URI of two SPARQL end-
points that respectively expose fragments f1 “ xu1, s, Γ1,M1, C1y and f2 “ xu2 ,
s, Γ2,M2, C2y such that f1 and f2 have the same selector s and the same “authorita-
tive” source (u2 = u1). Then all triples in f2 are contained in f1 and vice versa, i.e.,
Γ2 Ď Γ1^Γ1 Ď Γ2. And we use the notation e1Ďs e2, and e2Ďs e1 to represent the
endpoint containment relationship.

f1 triples in consumers C1 and C3 from Figure 1 are the same (from Definition 3):
C1 Ďs C3 and C3 Ďs C1 where s is f1 selector. Endpoint containment can be used
to reduce the number of endpoints to contact to answer a query. f1 and f9 are relevant
for query Q1, from the endpoint containments f1 data is also available through P1, C1,
and C3 and f9 data is also available through P1 and C5. Therefore, only one endpoint
per fragment needs to be selected to answer the query. A good choice could be C1,

SELECT DISTINCT ∗
WHERE {
{?x1p1?x2 .? x2p4?x3}
UNION
{?x1p2?x2 .? x2p5?x3}
UNION
{?x1p3?x2 .? x2p6?x3}
}

(a) Query Q3

TP RF Endpoints
?x1 p1 ?x2 f1 C1, C3, P1

f9 C5, P1
?x2 p4 ?x3 f4 C2, C3, P1
?x1 p2 ?x2 f2 C1, C4, P1
?x2 p5 ?x3 f5 C2, C4, P2
?x1 p3 ?x2 f3 C1, C5, P2
?x2 p6 ?x3 f6 C2, C5, P2

(b) RF for Q3

tp D1(tp) D2(tp)
?x1 p1 ?x2 { C1 } { C3 }
?x2 p4 ?x3 { C2 } { C3 }
?x1 p2 ?x2 { C1 } { C4 }
?x2 p5 ?x3 { C2 } { C4 }
?x1 p3 ?x2 { C1 } { C5 }
?x2 p6 ?x3 { C2 } { C5 }

(c) Conditions 1-3

BGP tp D2(tp)
BGP1 ?x1 p1 ?x2 { C3 }

?x2 p4 ?x3 { C3 }
BGP2 ?x1 p2 ?x2 { C4 }

?x2 p5 ?x3 { C4 }
BGP3 ?x1 p3 ?x2 { C5 }

?x2 p6 ?x3 { C5 }

(d) Conditions 1-4

Fig. 2: SSP solutions for query Q3: (a): Query Q3, (b):Relevant fragments for Q3, (c):
Maps D1 and D2 that satisfy Source Selection Problem (SSP) conditions 1-3., (d): Map
D2 that satisfies Source Selection Problem (SSP) conditions 1-4

C5 or C3, C5; this will reduce the load of the public endpoint P1 and will improve P1
availability. By contacting only C1, C5 or C3, C5, complete query answers are obtained
because the triple pattern fragment defines a copy of the data source using the fragment
selector. Another type of containment that allows to reduce the number of sources to be
contacted is defined based on the fragment selector.

Definition 4 (Fragment Containment). Let f1 “ xu, s1, Γ1,M1, C1y and f2 “
xu, s2, Γ2,M2, C2y be two fragments that share the same “authoritative” source u,
and a triple pattern tp. If for all possible values of Γ1 and Γ2, always the triples in Γ1
that match tp are also in Γ2, i.e., vtpwΓ1 Ď vtpwΓ2. Then, regarding tp, f1 is contained
in f2. And we use the notation f1 Ď f2.

Triples of fragment f9 replicated at consumer C5 in Figure 1 are contained in fragment
f1 at C1 and C3 (f9 Ď f1) because f1 and f9 share the same “authoritative” source, and
all the triples that match predicate p1 and object c1 always matches predicate p1 in f1.
Using fragment containment, contacting C1 or C3 is enough to answer Q1.

Source Selection Problem (SSP) Given a set of SPARQL endpoints E, a set of public
endpoints P, P Ď E, the set of fragments contained in each endpoint as a function
frags : EndpointÑ set of Fragment, a containment relation among endpoints (given by
Definition 3) for f P frags(ei) ^ f P frags(ej), ei Ďf ej , a containment relation among
fragment selectors (given by Definition 4) fl Ď fk, and a SPARQL query Q. Find a
map D, such that for each triple pattern tp in Q, D(tp) Ď E and: 1) For each endpoint
e that may contribute with relevant data to answer query Q, e is included in D, or D
includes another endpoint that contributes with at least the same relevant data as e.
2) D(tp) contains as few public endpoints as possible. 3) size(D(tp)) is minimized for
all triple pattern tp in Q. 4) The number of different endpoints used within each basic
graph pattern is minimized.

Condition 1 states that the selected sources will produce an answer as complete
as possible given the set of fragments accessible through the endpoints E, but answer
may be incomplete if some fragments definitions are missing. Condition 2 ensures that
public endpoints availability problem will be avoided whenever is possible. Condition
3 establishes that the number of selected sources is reduced. Condition 4 aims to reduce
the size of intermediate results, and to delegate the join execution to endpoints whenever
is possible. Even if the public endpoint can provide all the fragments, the use of several

consumer endpoints is preferable. To illustrate these four conditions, consider query
Q3 in Figure 2a and fragments and endpoints of Figure 1. Table 2b shows the relevant
fragments for Q3 triple patterns, and the endpoints that provide these fragments. For
example, for the triple pattern ?x1 p1 ?x2, there are two relevant fragments f1 and f9.
As previously discussed using endpoint containments, contacting C1 or C3 is enough to
answer this triple pattern without contacting the public endpoint. The maps D1 and D2

in Figure 2c satisfy the SSP conditions 1-3: all relevant fragments have been included
directly or through containment relation, the number of selected endpoints per triple
pattern has been minimized, and no public endpoints has been included in the map.
However, only the map D2 satisfies condition 4, as the number of different endpoints
selected per basic graph pattern has been also minimized (see Figure 2d). Then, joins
are delegated to the selected endpoints, and the size of intermediate results is reduced.
Current state-of-the-art [15] is triple pattern wise and does not guarantee condition 4.

Source Selection Algorithm Algorithm 1 sketches the FEDRA source selection algo-
rithm. First, the algorithm pre-selects for each triple pattern in Q the sources that can
be used to evaluate it (lines 2-29). All the endpoints e and their exposed fragments f
are considered (lines 5-27). In line 6, the function canAnswer() is used to determine
if endpoint e can provide triples from fragment f that matches triple pattern tp. An
initial check based on the selector of f and tp is done, and when it is satisfied, a dy-
namic check using an ASK query is done to ensure that f is relevant for triple pattern
tp (as in Definition 2). An ASK query is used to avoid considering fragments that are
not relevant for the triple pattern, in the case the triple pattern has constants where the
fragment definition has variables. QueryQ3 relevant endpoints and fragments are given
in Table 2b.

The function subFrag determines if the data provided by one fragment is also pro-
vided by another fragment. This function has as arguments the fragments and endpoints
that provide them, and also the containment relationships. For each relevant fragment
f , it determines if the considered fragment f in endpoint e provides the same data as
already found fragments or if it provides at least the same data as already found frag-
ments or if it provides at most the same data as already found fragments (lines 8-22).
Function subFrag tests if there is a containment in both senses or only in one of them.
Accordingly, the fragment is grouped with the fragments that provide the same data
(lines 10-12), some of the already found fragments are not anymore of interest (line
14-15), or it is chosen not to include the fragment (lines 17-18). Between the fragments
f1 and f9 selected as relevant fragments for the first triple pattern of Q3, there is a
containment f9 Ď f1, and in consequence, only the fragment f1 needs to be selected.
Moreover, f1 is provided by endpoints C1, C3, and P1, and as they provide the same
data, each of them can be selected alone to provide data for this triple pattern, i.e.,
they offer alternative sources for the same fragment. Table 2 (left) shows the changes
in fragments for the first triple pattern of Q3 . Contrarily, between the fragments f7
and f8 selected as relevant for the second triple pattern of Q2, there is no containment
relation, and in consequence, both fragments are selected. Table 2 (right) shows the
changes in fragments for the second triple pattern of Q2.

When the fragment provides non-redundant data, it is included in the selected frag-
ments (lines 23-24). In the previous examples, it happens once for the first triple pattern

Algorithm 1 Source Selection algorithm

Require: Q: SPARQL Query; E: set of Endpoints; frags :
EndpointÑ set of Fragment; P : set of Endpoint; Ďf :
Endpointˆ Endpoint; Ď : BGPˆ BGP

Ensure: D: map from Triple Pattern to set of Endpoints.
1: function SOURCESELECTION(Q,E,frags,P,Ďf ,Ď)
2: triplePatternsÐ get triple patterns in Q
3: for each tp P triplePatterns do
4: fragmentsÐH

5: for each e P E^ f P frags(e) do
6: if canAnswer(e, f, tp) then
7: includeÐ true
8: for each fs P fragments do
9: (f’,e’)Ð take one element of fs
10: if subFrag(f,e,f’,e’,Ďf ,Ď)^ subFrag(f’,e’,f,e,Ďf ,Ď)

then
11: fs.add((f,e))
12: includeÐ false
13: else
14: if subFrag(f’,e’,f,e,Ďf ,Ď) then
15: fragments.remove(fs)
16: else
17: if subFrag(f,e,f’,e’,Ďf ,Ď) then
18: includeÐ false
19: end if

20: end if
21: end if
22: end for
23: if include then
24: fragments.add({(f,e)})
25: end if
26: end if
27: end for
28: G(tp)Ð getEndpoints(fragments)
29: end for each
30: basicGPÐ get basic graph patterns in Q
31: for each bgp P basicGP do
32: (S, C) Ð minimal set covering instance using

bgpCG
33: C’Ð minimalSetCovering(S, C)
34: for each tp P bgp do
35: G(tp)Ð filter G(tp) according to C’
36: end for each
37: end for each
38: for each tp P domain(G) do
39: D(tp)Ð for each set in G(tp) include one element
40: end for each
41: return D
42: end function

Table 2: fragments changes due to execution of lines 5-27 of Algorithm 1 for the first
triple pattern of Q3 (left) and the second triple pattern of Q2 (right)

line fragments
4 { }
24 { { (f1, C1) } }
11 { { (f1, C1), (f1, C3) } }
11 { { (f1, C1), (f1, C3), (f1, P1) } }

line fragments
4 { }
24 { { (f7, C3) } }
24 { { (f7, C3) }, { (f8, C4) } }
11 { { (f7, C3), (f7, P2) }, { (f8, C4) } }
11 { { (f7, C3), (f7, P2) }, { (f8, C4), (f8, P2) } }

of Q3 and twice for the second triple pattern of Q2. Function getEndpoints in line 28
takes the endpoints of fragments, and when for one subset fs there are endpoints in E - P,
then all endpoints in P are removed. In the previous examples, the public endpoints are
removed and the value of G(?x1 p1 ?x2) is {{C1,C3}}, and the value of G(?x1 p7 ?x3)
is {{ C3 },{C4}}. At the end of the first for loop (lines 3-29), a set whose elements are a
set of endpoints and fragments that can be used to evaluate the triple pattern is produced
for each triple pattern in the query. All the endpoints in the same set offer the same data
for that fragment, and during execution only one of them needs to be contacted. And
different elements of this resulting set correspond to different fragments that should be
considered in order to obtain an answer as complete as possible, modulo the considered
fragments. For queries Q2 and Q3, C1 and C3 provide the same data for the first triple
pattern of Q3, and C3, C4 provide different data for the second triple pattern of Q2 .

Next, for each basic graph pattern, a general selection takes place, considering the
pre-selected sources for each triple pattern in the basic graph pattern. This last part can
be reduced to the well-known set covering problem, and an existing heuristic like the

tp1:

tp2:

Triple Pattern (tp)

?x1 p4 ?x2

?x1 p7 ?x3

G(tp)

{{C2,C3}}

{{C3},{C4}}

S

{ s1,1,

s2,1, s2,2 }

(a) S instance

{{s1,1},{s1,1,s2,1},{s2,2}}

C2 C3 C4

(b) C instance

Fig. 3: Set covering instances of S and C for the query Q2 and federation given in
Figure 1. For each element in G(tp), one element is included in set S. For each endpoint
in G, one set is included in collection C and its elements are the elements of S related
to the endpoint

one given in [6] may be used to perform the procedure indicated in line 33. To use the
set covering heuristic, an instance of the set covering problem is produced in line 32
using bgp C G 3. Figure 3a shows G values obtained after lines 3-29 loop has ended
for query Q2, and S instance for the set covering problem. For each set in G(tp), one
element is included in S, e.g., for set {C2,C3}, the element s1,1 is included in S. We
have used subscripts i,j to denote that the element comes from the triple pattern i, and it
is the j-th element coming from this triple pattern. The collection C is composed of one
set for each endpoint that is present in G, and its elements are the elements of S related
to each endpoint. Figure 3b shows the instance of C for this example. The collection C’
obtained in line 33 is {C3,C4}, as the union of C3 and C4 is equals to S, and there is
no smaller subset of C that can achieve this. The instruction in line 35 removes from
each G(tp) the elements that do not belong to C’. In the example, C2 is removed from
G(?x1 p4 ?x2). A last step may be performed to choose among endpoints that provide
the same fragment and ensure a better query processing by existing federated query
engines (lines 38-40). Nevertheless, these alternative sources could be used to speed up
query processing, e.g., by getting a part of the answer from each endpoint.

4 Experiments

We conducted many experimentations in different setups to demonstrate the impact of
FEDRA on existing approaches, complete results are available at the FEDRA web site4.
The performance of the FedX and the ANAPSID query engines is our baseline. General
results are the comparison of performance of FedX alone, FedX+DAW, FedX+FEDRA,
same thing for ANAPSID. Compared to FedX and ANAPSID, FEDRA should reduce
selected sources significantly and speed up queries execution time. Compared to DAW,
we expect FEDRA to achieve same source reduction but without pre-computed MIPS in-
dex, and generate less intermediate results thanks to endpoints reduction and to finding
join opportunities.
Datasets, Queries and Federations Benchmark: we used Diseasome, Semantic Web
Dog Food, LinkedMDB, and DBpedia geo-coordinates datasets, Table 3a shows char-

3 bgpCG represents function domain restriction, i.e., it takes the elements of map G that relates
elements in bgp with some set of set of endpoints

4 https://sites.google.com/site/fedrasourceselection

Dataset Version date # DT # P
Diseasome 19/10/2012 72,445 19

Semantic Web Dog Food 08/11/2012 198,797 147
DBpedia Geo-coordinates 06/2012 1,900,004 4

LinkedMDB 18/05/2010 3,579,610 148

(a) Datasets

Dataset ST 2P 3P 4P 2S 3S
Diseasome 5 4 5 2 5 5

Semantic Web Dog Food 5 7 7 4 5 5
DBpedia Geo-coordinates 5 0 0 0 5 5

LinkedMDB 5 0 0 0 0 0

(b) Queries sizes and number

Dataset J OP U F(R) L OB
Diseasome 19 2 1 11(7) 4 9

Semantic Web Dog Food 24 5 2 8(7) 4 9
DBpedia Geo-coordinates 10 0 0 6(1) 6 6

LinkedMDB 0 0 0 1(1) 1 2

(c) Queries with operators, modifiers

Dataset # FD # E1F # E2F
Diseasome 16 16 120

Semantic Web Dog Food 40 40 780
DBpedia Geo-coordinates 4 4 6

LinkedMDB 4 4 6

(d) Federations
Table 3: Datasets, queries and federations characteristics. For the datasets: the version,
number of different triples (# DT), and predicates (# P). For the queries: the number of
queries with 1 triple pattern (ST), 2, 3 or 4 triple patterns in star shape (S) or path shape
(P). Also the number of queries with: joins (J), optionals (OP), unions (U), filter (F),
regex expressions (R), limit (L), and order by (OB). For the federations: the number of
fragments definitions (FD), endpoints exposing one and two fragments (E1F, E2F)

acteristics of the evaluated datasets. We studied the datasets and queries used in [15]5.
However, we modified the queries to include the DISTINCT modifier in all the queries.
Additionally, the ORDER BY clause was included in the queries with the LIMIT clause,
in order to make them susceptible to a reduction in the set of selected sources without
changing the query answer, and to ensure a semantically unambiguous query answer.
Tables 3b and 3c present queries characteristics. As federations used in [15] do not
take into account fragments, they were not reprised. A federation was set up for each
dataset; each federation is composed of the triple pattern fragments that are relevant
for the studied queries. The federation endpoints offer one or two fragments; endpoints
with two fragments offer opportunities to execute joins for the engine. Table 3d shows
the federation characteristics. In average, DAW indexes were computed in 2,513 secs,
and FEDRA containments in 32 secs.

Notice that as FEDRA containments depends only on fragment descriptions, their
updates are less frequent than DAW indexes. Virtuoso 6.1.76 endpoints were used. A
Virtuoso server was set up to provide all the endpoints as virtual endpoints. It was
configured with timeouts of 600 secs. and 100,000 tuples. In order to measure the size
of intermediate results, proxies were used to access the endpoints.
Implementations: FedX 3.07 and ANAPSID8 have been modified to call FEDRA and
DAW [15] source selection strategies during query processing. Thus, each engine can
use the selected sources to perform its own optimization strategies. Because FedX is im-
plemented in Java, while ANAPSID is implemented in Python, FEDRA and DAW9 were
implemented in both Java 1.7 and Python 2.7.3.. Thus, FEDRA and DAW were inte-

5 They are available at https://sites.google.com/site/dawfederation.
6 http://virtuoso.openlinksw.com/, November 2013.
7 http://www.fluidops.com/fedx/, September 2014.
8 https://github.com/anapsid/anapsid, September 2014.
9 We had to implement DAW as its code is not available.

ST 2PATH 2STAR 3PATH 3STAR 4PATH

Query Type

Av
er

ag
e N

SS

0
10

20
30

40
50

60

0
25
50
75
100

Fig. 4: FedX and FEDRA Number of Selected Sources (NSS) when the percentage of
known containments is 0%, 25%, 50%, 75% and 100%, for Diseasome Federation

grated in FedX and ANAPSID, reducing the performance impact of including these new
source selection strategies. Proxies were implemented in Java 1.7. using the Apache
HttpComponents Client library 4.3.5.10

Evaluation Metrics: i) Number of Selected Public Sources (NSPS): is the sum of
the number of public sources that has been selected per triple pattern. ii) Number of
Selected Sources (NSS): is the sum of the number of sources that has been selected per
triple pattern. iii) Execution Time (ET): is the elapsed time since the query is posed by
the user and the answers are completely produced. It is detailed in source selection time
(SST), and total execution time (TET). Time is expressed in seconds (secs.). A timeout
of 300 secs. has been enforced. Time was measured using the bash time command.
iv) Intermediate Results (IR): is the number of tuples transferred from all the endpoints
to the query engine during a query evaluation. v) Recall (R): is the proportion of results
obtained by the underlying engine, that are also obtained including proposed strategy.

Impact of the number of containments over FEDRA behavior We study the impact
of the number of containments known during the source selection on the number of
selected sources and intermediate results size. For each query, the set of known con-
tainments have been set to contain 0%, 25%, 50%, 75%, and 100% of the containments
concerning the relevant fragments, and queries have been executed in these five configu-
rations. Results show that the number of selected public sources is equal to the number
of triple patterns in the queries when no containment is known. However, as soon as
some containments are known (25%-100%), this number is reduced to zero. Also, the
number of selected sources is considerably reduced when FEDRA source selection strat-
egy is used instead of just using ANAPSID and FedX source selection strategies; see
FedX results in Figure 4. ANAPSID results exhibit a similar behavior.

Preservation of the Query Answer The goal of this experiment is to determine the im-
pact of FEDRA source selection strategy on query completeness. Queries were executed
using both the ANAPSID and the FedX query engines, and then, we executed the same
engines enhanced with the FEDRA source selection strategy. Recall was computed and

10 https://hc.apache.org/, October 2014.

ST 2STAR 3STAR

Query Type

Av
era

ge
 S

ST
 (s

ec
s)

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

F

D+
F

F+
F

F

D+
F

F+
F

F

D+
F

F+
F

ST 2STAR 3STAR

Query Type

Av
era

ge
 S

ST
 (s

ec
s)

0.0
0.5

1.0
1.5

2.0

A

D+
A

F+
A

A

D+
A

F+
A

A

D+
A

F+
A

Fig. 5: Source selection time (SST) for Geo-coordinates federation. The FedX (F, left)
and the ANAPSID (A, right) query engines are combined with FEDRA (F+F and F+A),
and DAW (D+F and D+A)

was 1.0 in the majority of the cases. In few cases the recall was considerably reduced,
but these cases correspond to queries with OPTIONAL operator using the FedX query
engine, and it was due to an implementation error for this operator. FEDRA only dis-
cards relevant sources when relevant fragments data are provided by another source that
was already selected. Then, it does not reduce the recall of the answer. Finally, the query
engine implementation limitations were also the causes of the reduction of recall.

Source Selection Time To measure the FEDRA and DAW source selection cost, the
source selection time using each engine with and without FEDRA or DAW was mea-
sured. Results are diverse, for federations with a large number of endpoints like the
SWDF federation, the cost of performing the FEDRA source selection is considerably
inferior to the cost of contacting all the endpoints using FedX, but similar to the cost
of using the ANAPSID source selection strategy. On the other hand, the DAW cost is
similar to the FedX cost, and it is considerably superior to the ANAPSID cost. For fed-
erations with a small number of endpoints like Geo-coordinates (see Figures 5a and 5b),
the cost of performing source selection with FEDRA is less expensive than performing
just FedX source selection, but more expensive than performing just ANAPSID source
selection strategy. And the cost of performing source selection with DAW is more ex-
pensive than performing just FedX or ANAPSID source selection strategy. ANAPSID
source selection mostly relies on the endpoints descriptions, and avoids to contact end-
points in most cases. On the other hand, FedX source selection strategy relies on end-
point contacts to determine which endpoints can be used to obtain data for each triple
pattern. FEDRA source selection is somewhere in the middle, it does contact all the end-
points that are considered relevant according to their descriptions to confirm that they
can provide relevant data, and has the added cost of using the containments to reduce
the number of selected sources. DAW source selection does not contact sources, but
relies on no negligible cost of operating Min-Wise Independent Permutations (MIPs) in
order to determine the overlapping sources.

Execution Time To measure the FEDRA and DAW execution time, queries were exe-
cuted using each engine with and without FEDRA or DAW. For small federations or
queries with only one triple pattern, FEDRA and DAW achieve a similar reduction in

ST 2STAR 3STAR

Query Type

Av
era

ge
 N

SS

0
5

10
15

F

D+
F

F+
F

F

D+
F

F+
F

F

D+
F

F+
F

ST 2STAR 3STAR

0
5

10
15 NSPS

ST 2STAR 3STAR

Query Type

Av
era

ge
 TE

T (
se

cs
)

0
20

40
60

80
10

0
12

0

F

D+
F

F+
F

F D+
F F+
F

F D+
F

F+
F

Fig. 6: Number of Selected Sources and Total Execution Time (TET) for Geo-
coordinates federation and the FedX (F) query engine. FedX is also combined with
FEDRA and DAW source selection strategies (F+F and D+F). For F, 4 out of 5 queries
timed out for each query type. For F+F, 4 out of 5 queries timed out for 3STAR queries.
For D+F, 4 out of 5 queries timed out for 2STAR and 3STAR queries

execution time. However, for larger federations and queries with more triple patterns,
FEDRA reduction is larger than DAW. In all cases, the reduction is considerable when
the combination of FEDRA and the query engine is compared to using the engine alone,
e.g., Figure 6b shows the results for the Geo-coordinates federation and FedX. For
star-shape queries, the use of FEDRA source selection strategy has made the difference
between timing out or obtaining answers. For queries with two triple patterns, this dif-
ference is important, as FEDRA enhances FedX to obtain answers in just few seconds.
The difference in execution time is a direct consequence of the selected sources reduc-
tion. Further, executing the joins in the endpoints whenever it is possible, may reduce
the size of intermediate results and produce answers sooner.

Reduction of the Number of Selected Sources To measure the reduction of the number
of selected sources, the source selection was performed using ANAPSID and FedX with
and without FEDRA or DAW. For each query, the sum of the number of selected sources
per triple pattern was computed, for all the sources and just for the public sources. Fig-
ure 6 shows the results for the Geo-coordinates federation and FedX, similar results
are observed for the other federations and for ANAPSID. DAW source selection strat-
egy exhibits the same reduction in the total number of selected sources. Consequently,
some of the selected public sources are pruned, but as it does not aim to reduce the
public sources, it does not achieve a consistent reduction of them. On the other hand,
FEDRA has as input the public condition of sources, and as one of its goals is to select as
few public sources as possible, it is natural to observe such a reduction consistently for
all the query types. FEDRA source selection strategy identifies the relevant fragments
and endpoints that provide the same data. Only one of them is actually selected, and in
consequence, a huge reduction on the number of selected sources is achieved. More-
over, public endpoints are safely removed from the selected sources as their data can be
retrieved from other sources.

Reduction of the Intermediate Results Size To measure the intermediate results size
reduction, queries were executed using proxies that measure the number of transmitted

ST 2PATH 2STAR 3PATH 3STAR 4PATH

Query Type

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
IR

0
5

0
0

0
1

0
0

0
0

2
0

0
0

0

D
+

F

F
+

F

D
+

F

F
+

F

D
+

F

F
+

F

D
+

F F
+

F

D
+

F

F
+

F

D
+

F

F
+

F

(a) Federation with public endpoint

ST 2PATH 2STAR 3PATH 3STAR 4PATH

Query Type

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
IR

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0

D
+

F

F
+

F D
+

F

F
+

F D
+

F

F
+

F

D
+

F

F
+

F

D
+

F

F
+

F

D
+

F

F
+

F

(b) Federation without public endpoint

Fig. 7: Intermediate results size for Diseasome federation and FedX (F). FedX is also
combined with FEDRA and DAW source selection strategies (F+F and D+F)

tuples from endpoints to the engines. Additionally, each query was executed against the
federation with and without the public endpoint. Figure 7 shows the sizes of interme-
diate results for the Diseasome federation and FedX combined with FEDRA and DAW;
similar results were obtained for the other federations and for ANAPSID. Figure 7a
shows that when the public endpoint is part of the federation, DAW source selection
strategy leads to executions with considerably less intermediate results.

Figure 7b shows that when the public endpoint is not part of the federation, FE-
DRA source selection strategy leads to executions with considerably less intermediate
results. Since the FEDRA source selection strategy finds opportunities to execute joins
in the endpoints, and mostly, it leads to significant reduction in the intermediate results
size. These results are consequence of SSP Condition 4, and cannot be systematically
achieved by DAW as it is a triple wise based approach. Nevertheless, as DAW source
selection does not avoid public endpoints, it may select to execute all triple patterns
in the public endpoint, and this comes with a huge reduction of the size of intermedi-
ate results. Figure 7b shows that when this “public endpoint” opportunity to execute
all triple patterns in one endpoint is removed, DAW source selection strategy does not
consistently reduce the intermediate results size.

5 Conclusions and Future Works

Recent works on replicated fragments spread data and SPARQL processing capabili-
ties over data consumers. This opens new opportunities for federated query processing
by offering new tradeoffs between availability and performance. We presented FEDRA,
a source selection approach that takes advantage of replicated fragment definitions to
reduce the use of public endpoints as they are mostly overloaded. FEDRA identifies
and uses opportunities to perform join in the sources relieving the query engine of
performing them, and reducing the size of intermediate results. Experimental results
demonstrate that the number of selected sources remains low even when high number
of endpoints and replicated fragments are part of the federations. Results rely on con-

tainments induced by replicated fragment definitions. Next, selecting the same sources
for Basic Graph Patterns triples is a strategy that allows to reduce significantly the
number of intermediate results. Perspectives include dynamic discovery of endpoints
providing replicated fragments. This allows federated query engines to expand at run-
time declared federations with consumer endpoints of interests. Such mechanism can
improve both data availability and performances of federated queries in Linked Data.

References

1. M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. Anapsid: An adaptive query
processing engine for sparql endpoints. In ISWC, pages 18–34, 2011.

2. C. B. Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. Sparql web-querying infras-
tructure: Ready for action? In ISWC (2), pages 277–293, 2013.

3. C. Basca and A. Bernstein. Avalanche: Putting the spirit of the web back into semantic web
querying. In A. Polleres and H. Chen, editors, ISWC Posters&Demos, volume 658 of CEUR
Workshop Proceedings. CEUR-WS.org, 2010.

4. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. IJSWIS, 5(3):1–22,
2009.

5. A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent
permutations. JCSS, 60(3):630–659, 2000.

6. S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms. McGraw-Hill, 2008.
7. O. Görlitz and S. Staab. Splendid: Sparql endpoint federation exploiting void descriptions.

In O. Hartig, A. Harth, and J. Sequeda, editors, COLD, 2011.
8. K. Hose and R. Schenkel. Towards benefit-based RDF source selection for SPARQL queries.

In SWIM, page 2, 2012.
9. L.-D. Ibáñez, H. Skaf-Molli, P. Molli, and O. Corby. Col-graph: Towards writable and scal-

able linked open data. In ISWC, 2014.
10. D. Kossmann. The state of the art in distributed query processing. ACM Computer Survey,

32(4):422–469, 2000.
11. G. Montoya, H. Skaf-Molli, P. Molli, and M.-E. Vidal. Fedra: Query Processing for SPARQL

Federations with Divergence. Technical report, Université de Nantes, May 2014.
12. M. T. Özsu and P. Valduriez. Principles of distributed database systems. Springer, 2011.
13. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. ACM TODS,

34(3), 2009.
14. B. Quilitz and U. Leser. Querying distributed RDF data sources with SPARQL. In ESWC,

pages 524–538, 2008.
15. M. Saleem, A.-C. N. Ngomo, J. X. Parreira, H. F. Deus, and M. Hauswirth. Daw: Duplicate-

aware federated query processing over the web of data. In ISWC, pages 574–590, 2013.
16. M. Saleem and A. N. Ngomo. Hibiscus: Hypergraph-based source selection for SPARQL

endpoint federation. In ESWC, pages 176–191, 2014.
17. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimization tech-

niques for federated query processing on linked data. In ISWC, pages 601–616, 2011.
18. J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and A. Polleres. Comparing data summaries

for processing live queries over linked data. WWW, 14(5-6):495–544, 2011.
19. R. Verborgh, O. Hartig, B. De Meester, G. Haesendonck, L. De Vocht, M. Vander Sande,

R. Cyganiak, P. Colpaert, E. Mannens, and R. Van de Walle. Querying datasets on the Web
with high availability. In ISWC, 2014.

20. R. Verborgh, M. Vander Sande, P. Colpaert, S. Coppens, E. Mannens, and R. Van de Walle.
Web-scale querying through Linked Data Fragments. In LDOW, 2014.

