Khaled Aslan

Hala Skaf-Molli

Pascal Molli
email: pascal.molli@univ-nantes.fr

GroupDiv: Group Divergence Awareness for Distributed Multi-Synchronous Collaborative Systems

Keywords: Awareness in Collaboration Systems, Collaboration Enabling Technologies, Platforms, Artifacts and Tools for Collaboration, Coordination and Cooperation Mechanisms, Simulation of Collaboration Systems, Web Infrastructure for Collaborative Applications

Collaboration can be synchronous, asynchronous or multi-synchronous. In multi-synchronous collaboration, participants work in parallel on their own copies and synchronize periodically to build a consistent state. A multi-synchronous collaboration introduces divergence between copies of shared objects; collaboration is cycles of convergence/divergence.

In existing divergence awareness systems, divergence is viewed as conflicts introduced by concurrent modifications. However, divergence can exist without conflict, whenever an operation is produced by a participant and not consumed by other ones, divergence exists. In this paper, we propose a generic model to formalize multi-synchronous collaboration. Using this model, we formalize existing divergence awareness and we define an original divergence metric GroupDiv that quantifies divergence as the editing distance of the group to the next potential convergence point. This metric enables users to control cycles of convergence/divergence i.e. they cannot control the magnitude of divergence and the frequency of synchronization to achieve convergence. The evaluation shows that GroupDiv enables participants to manage the cycle of convergence/divergence.

Introduction

Distributed collaborative systems allow people to work distributed in time, space and across organizations. Collaboration can be synchronous, asynchronous or multi-synchronous [START_REF] Dourish | The Parting of the Ways: Divergence, Data Management and Collaborative Work[END_REF]. In multi-synchronous collaboration, participants work in parallel on their own copies and synchronize periodically to build a consistent state. Version control systems (CVS, SVN, git) and synchronizers (Dropbox, isync) are examples of multi-synchronous collaboration software. The multi-synchronous collaboration introduces divergence between copies of shared objects. If working in parallel can potentially reduce completion time, it induces blind modifications [START_REF] Ignat | A Collaborative Writing Mode for Avoiding Blind Modifications[END_REF]. The overhead of solving conflicts introduced by concurrent modifications can overwhelm the expected gain [START_REF] De Souza | Breaking the code, moving between private and public work in collaborative software development[END_REF][START_REF] Perry | Parallel changes in large-scale software development: an observational case study[END_REF][START_REF] Prudêncio | To lock, or not to lock: That is the question[END_REF]. Divergence awareness [START_REF] Molli | Divergence awareness for virtual team through the web[END_REF] makes participants aware of the quantity and the location of divergence in shared objects. It allows to answers the following questions: is there any divergence? With whom? Where? And how much? Divergence awareness is an implicit coordination mechanism [START_REF] Gutwin | Effects of awareness support on groupware usability[END_REF][START_REF] Gross | User-centered awareness in computer-supported cooperative work-systems: Structured embedding of findings from social sciences[END_REF], it incites participants to coordinate their actions to reduce divergence. It can be provided by different systems, relying on different metrics with different ad-hoc visualizations like: State Treemap [START_REF] Molli | State Treemap: an awareness widget for multi-synchronous groupware[END_REF], Operational Transformation Divergence [START_REF] Molli | Divergence awareness for virtual team through the web[END_REF], Palantir [START_REF] Sarma | Palantir: Early Detection of Development Conflicts Arising from Parallel Code Changes[END_REF], Edit Profile [START_REF] Papadopoulou | Increasing Awareness in Collaborative Authoring through Edit Profiling[END_REF], Concurrent modifications [START_REF] Alshattnawi | Concurrency awareness in a P2P wiki system[END_REF], CollabVS [START_REF] Dewan | Semi-synchronous conflict detection and resolution in asynchronous software development[END_REF], and Crystal [START_REF] Brun | Proactive detection of collaboration conflicts[END_REF].

Different approaches exist for computing divergence: estimating the size of conflicts [START_REF] Molli | Divergence awareness for virtual team through the web[END_REF], estimating the difference between users' copies and a reference copy [START_REF] Molli | State Treemap: an awareness widget for multi-synchronous groupware[END_REF], or estimating divergence according to multiple copies of reference [START_REF] Brun | Proactive detection of collaboration conflicts[END_REF]. Some systems only consider published operations [START_REF] Papadopoulou | Increasing Awareness in Collaborative Authoring through Edit Profiling[END_REF], others consider unpublished operations [START_REF] Ignat | A Collaborative Writing Mode for Avoiding Blind Modifications[END_REF]. In both cases, metrics can be projected according to different perspectives such as the structure of documents, the users, or across the time. This generates different kinds of visualization.

A first issue concerns divergence quantification. Even if existing divergence metrics are able to notify users about the presence of divergence and where it is located, they fail to clearly quantify divergence. If multisynchronous collaboration systems are characterized by cycles of convergence/divergence, then a divergence metric should be able to measure the magnitude and frequency of these cycles. Such metric enables user to monitor convergence/divergence cycles i.e. fix thresholds, control frequency of convergence, and estimate at each time the effort required by the group to converge. In this paper, we define the GroupDiv divergence as the editing distance for a group to the next potential convergence state. This distance is expressed in number of operations to execute by the group. It is possible for each member to know her contribution to this distance, therefore, any member is aware of her own position in the group. Consequently, the proposed metric allows a group to measure its cohesion during collaboration.

Once a group divergence metric is defined, a second issue arises concerning the computation of this metric. Computing group divergence is challenging for several reasons. First, it requires to maintain membership informations. If this is trivial in centralized systems with small groups, such information is more complex to maintain in highly dynamic large groups with no central authority as in distributed version control systems or P2P wikis [START_REF] Rahhal | Multi-synchronous Collaborative Semantic Wikis[END_REF][START_REF] Aslan | Connecting Distributed Version Control Systems Communities to Linked Open Data[END_REF]. Second, Divergence metric computation itself has to be efficient and scalable. If the divergence computation is slow then delivered informations are out-of-date and can be confusing. If divergence computation is not scalable then the quality of delivered information will depend of the size of the group. In this paper, we detailed how it is possible to compute GroupDiv efficiently in a fully decentralized multi-synchronous distributed collaborative system. This paper contains the following contributions: i) we define a generic formal model for multi-synchronous collaboration ii) we demonstrate how this model can be used to give semantic to existing divergence awareness metrics. iii) we define the GroupDiv divergence metric that is able to quantify divergence, iv) we evaluate GroupDiv divergence with a group of users.

This paper is structured as follows: Section 2 presents background and a motivating example. Section 3 presents related work. Section 4 defines a formal model for multi-synchronous collaboration and defines the group divergence metric. Section ?? details how we used gossiping algorithms to compute a real-time divergence metrics for fully decentralized deployment of multi-synchronous systems. Section ?? details the validation of the proposed algorithm. The last section concludes the paper and points out future work.

Background and Motivation

Collaboration can be synchronous, asynchronous or multi-synchronous. Multi-synchronous collaboration is defined by Dourish [START_REF] Dourish | The Parting of the Ways: Divergence, Data Management and Collaborative Work[END_REF] as: Working activities proceed in parallel (multiple streams of activity), during which time the participants are disconnected (divergence occurs); and periodically their individual efforts will be integrated (synchronization) in order to achieve a consistent state and progress the activity of the group.

Multi-synchronous collaboration is widely used because parallel activities can potentially reduce completion time. However when divergence occurs it could generate conflicts where the overhead of solving these conflicts can overwhelm the expected gain [START_REF] De Souza | Breaking the code, moving between private and public work in collaborative software development[END_REF][START_REF] Perry | Parallel changes in large-scale software development: an observational case study[END_REF][START_REF] Prudêncio | To lock, or not to lock: That is the question[END_REF]. For example, take a scenario of blind modifications [START_REF] Ignat | A Collaborative Writing Mode for Avoiding Blind Modifications[END_REF]: let us consider the collaboration task of editing a book by two users. Each user has a copy that he/she can work on it in isolation. They periodically synchronize and integrate each others' modifications into their own copies. Let us assume that one user is working on a paragraph, while another user is deleting the paragraph. This will waste the work done by the first user, since he/she does not know a priori what the other user is doing. pull(S 3): [op 2,1 ;op 2,2 ;op 3,1 ;op 3,2 ;op 3,3] Several approaches exist to reduce the cost of divergence in multi-synchronous collaborative systems. Planning and coordination can be used to avoid conflicts [START_REF] Estublier | Process model and awareness in SCM[END_REF]. By good planning, one can create different parallel tasks that will modify disjoint and independent objects. But fine grained planning can be very costly, and it is not always possible to define disjoint tasks. Furthermore, in the open source development communities, people often collaborate without knowing each other. The development environment is open for any contributor and it is not possible to plan and coordinate in advance. Commit often policy is a best practice for reducing the probability of conflicts [START_REF] Wloka | Safe-commit analysis to facilitate team software development[END_REF]. Commit often is not always possible because users commit their modifications after they complete the requested tasks, this means that commit depends on the task completion time. Even if planning and commit policies are good practices, conflicts still exist as detailed in [START_REF] Zimmermann | Mining Workspace Updates in CVS[END_REF][START_REF] Brun | Proactive detection of collaboration conflicts[END_REF]. Zimmermann [START_REF] Zimmermann | Mining Workspace Updates in CVS[END_REF] analyzed CVS repositories, and concluded that, 23% to 47% of all merges had textual conflicts. Brun et al. [START_REF] Brun | Proactive detection of collaboration conflicts[END_REF] found that conflicts between developers' copies are rather the norm, they persist on average ten days and they often result in compile, build and test failures.

1 1 pull(S 3): [op 3,1 ;op 3,2 ;op 3,3] 2 2 step 5
Planning and coordination can be completed by divergence awareness. Divergence awareness detect divergence and visualize it in order to help users answering the following questions: is there any divergence? With whom? Where? And how much? If existing systems [START_REF] Molli | State Treemap: an awareness widget for multi-synchronous groupware[END_REF][START_REF] Molli | Divergence awareness for virtual team through the web[END_REF][START_REF] Sarma | Palantir: Early Detection of Development Conflicts Arising from Parallel Code Changes[END_REF][START_REF] Papadopoulou | Increasing Awareness in Collaborative Authoring through Edit Profiling[END_REF][START_REF] Alshattnawi | Concurrency awareness in a P2P wiki system[END_REF][START_REF] Dewan | Semi-synchronous conflict detection and resolution in asynchronous software development[END_REF][START_REF] Brun | Proactive detection of collaboration conflicts[END_REF] provides some answers to the first three questions, they fail to answer the last one.

Consider a scenario involving three software developers developer 1 , developer 2 and developer 3 collaborating on the source code of the same project . This scenario is presented in figure 1 and inspired from [START_REF] Ignat | A Collaborative Writing Mode for Avoiding Blind Modifications[END_REF]. Although at the beginning they divide their work according to predefined tasks, their modifications will overlap later on during their isolated work since their tasks involve some common classes. Each developer works in her/his private workspace respectively S 1 , S 2 and S 3 . At step 1 , all workspaces are strictly identical and the group is convergent.

After step 1 , developer 1 adds the method isReal() to the class Integer by generating and applying locally operation op 1,1 . As op 1,1 is only applied on S 1 divergence exists between S 1 , S 2 and S 3 , it is localized on class Integer, and developer 1 produced this operation. Then she makes her modifications available for other developers by publishing her operation using publish(op 1,1). This change nothing for divergence except that now S 2 and S 3 can be aware that a new operation is available from S 1 . Consequently, developer 2 and developer 3 decide to pull op 1,1 using pull(S 1) and integrate them into their working copy by calling an arbitrary merge tool. At this precise instant, all workspaces should be strictly identical and the global system is convergent again.

Next, developer 1 decides to remove the method isReal() from the class Integer. Concurrently, developer 2 updates the method isReal() from class Integer such that it returns false instead of real. developer 3 tests the class Integer by creating the test class IntegerTest. One of the added methods in that class is the test method for isReal(). Just before step 2 , three concurrent operations are existing in the system and represent all the divergence present in the system: op 1,2 , op 2,1 , op 3,1

After step 2 , developer 1 publishes op 1,2 and developer 2 and developer 3 pull the missing operation and integrate it. developer 2 decides to (re)insert the method isReal(), and developer 3 decides to remove the test method since the isReal() has been deleted. From the divergence point of view, we can see that op 1,1 and op 1,2 are now consumed by all sites and represent some common prefix for 3 sites. Divergence is now represented by unpublished operation of sites S 2 and S 3 : op 2,1 , op 2,2 , op 3,1 , op 3,2

After step 3 , developer 2 publishes his modifications for other developers but only developer 3 integrates it and re-create TestIsReal (op 3,3). At this instant, S 3 has all the seven operations produced in the system, S 2 has just seen four operations, and S 1 two operations.

After step 4 , developer 3 publishes his modifications. developer 1 and developer 2 pulles from the workspace of developer 3 operations done by the later and all preceding operations missing from their respective workspaces. For instance, developer 1 will pull the sequence of five operations missing in her workspace. At step 5 , the whole group is convergent again.

In this scenario, divergence can be seen as an history of conflicts. developer 1 deleted the method isReal() while developer 2 and developer 3 was using it. This can be viewed as a conflict. When they are aware of deletion, they react differently, developer 2 reinserts the method while developer 3 deletes the test. In fact, after observing the conflict in their own context, each user solved it differently, generating another conflict i.e. a conflict of conflict. When developer 3 observed that developer 2 reinserted the "isReal method", then he decided to reinsert his test again.

In this scenario, most divergence awareness systems will warn users about concurrent modifications just before step 2 as in State Treemap [START_REF] Molli | State Treemap: an awareness widget for multi-synchronous groupware[END_REF]. They will try to estimate size of conflicts as in Palantir [START_REF] Sarma | Palantir: Early Detection of Development Conflicts Arising from Parallel Code Changes[END_REF], and maybe switch to synchronous mode to help solving conflicts as in CollabVS [START_REF] Dewan | Semi-synchronous conflict detection and resolution in asynchronous software development[END_REF] and thus avoid a conflict of conflict.

If a conflict-based approach of divergence makes sense, we think it captures only a part of divergence. Conflicts are characterized by incompatible concurrent write operations that can be performed on the same object or on different object (direct or indirect conflict). However, divergence starts to exist from the moment an operation has been produced on one site and has not been consumed by the others. Therefore, divergence can exist even without any conflict. In the previous scenario, divergence appears just after step 1 when op 1,1 is created and it disappears just after op 1,1 is consumed by S 2 and S 3 . This raises the issue of a formal definition of divergence. Conflict-based approach of divergence leads to define divergence as the lack of convergence, nearly a boolean value. That's why we argue that conflict-based approach of divergences fail to answer the "how much?" question.

To answer this question, we come back on the Dourish definition of Multi-synchronous systems. Dourish suggests the existence of cycles of divergence and convergence within the group. We think that if divergence can be quantified, groups should be able to compute and display these cycles. Once quantified, groups are able to fix divergence threshold and constraints convergence frequency. More important, such divergence metric should be able to maintain group cohesion during activity progress i.e. the ability for a group to see if everyone follows the change at the same speed.

For example, imagine just two people working on a document, but only one is writing, the other is just reading and give feedback by mail (see figure 2). There is no conflicts created by this activity i.e. there is no concurrent operations, however, divergence exists between the workspace of the writer and the workspace of the reader. What can be important in this scenario is to keep divergence under a predefined threshold For this purpose, we defined divergence in a multi-synchronous collaborative system as the editing distance of a group to the next potential state of convergence i.e. the minimal number of operations to be performed by the group to reach convergence. We define GroupDiv formally in section 4. A corollary of this definition, is that each group member is able to know how much she contributes to this distance. So it is possible to know for each group member if she/he is walking at the head of the group and if the group is waiting for her/him. Therefore, quantifying divergence allows each group member to adapt her/his speed.

S 1 : user 1 S 2 : user 2 step 1 op 1,1 =update(doc) publish(op 1,1) pull(S 1):[op 1,1] l l step 2 op 1,2 =update(doc) op 1,3 =update(doc) publish(op 1,2 , op 1,3) pull(S 1):[op 1,2 ; op 1,3] l l step 3
In the previous scenario of writer/reader, the divergence will be the number of operations produced by the writer to integrate in the workspace of the reader. Writer can estimate reader speed by observing evolution of this metric. Reader can also evaluate the writer speed with same observation. In the scenario of figure 1, divergence at step 2 should be 6 because each member has to integrate at least two concurrent operations to reach convergence. Before step 4 , S 1 has to integrate 5 operations, S 2 has to integrate 3 operations, and S 1 is the head. 8 operations has to be integrated by the group to reach the nearest point of convergence and S 1 has the longest path to do.

In the following section, we present related work. Then we present our group divergence metric in sections 4, and its computations is detailed in sections ?? and ??.

Related Work

Existing divergence awareness systems are characterized by divergence metric, when and how they are computed.

Edit Profile [START_REF] Papadopoulou | Increasing Awareness in Collaborative Authoring through Edit Profiling[END_REF] makes users aware of "hot areas" and also who is or has been active in various parts of the document. The different contributions of users are quantified and distributed at different levels: document, paragraph, sentence, word and character. It is possible to observe who contributed where, and how much. We compute EditProfile for the scenario in figure 1 considering the extreme case where we have only one document (one node). At step 2 , Edit Profile will give the following values (2,1,1) for the sites (S1, S2, S3). At step 3 , the values become (2,2,2), then at step 4 (2,2,3), and finally at step 5 [START_REF] Ignat | A Collaborative Writing Mode for Avoiding Blind Modifications[END_REF][START_REF] Ignat | A Collaborative Writing Mode for Avoiding Blind Modifications[END_REF][START_REF] De Souza | Breaking the code, moving between private and public work in collaborative software development[END_REF]. This clearly shows that Edit Profile does not give any indication on the group cohesion, nor the work needed in order to achieve convergence. It only gives an indication of the users' past activity.

Concurrency awareness [START_REF] Alshattnawi | Concurrency awareness in a P2P wiki system[END_REF] helps users to quickly find where automatic merges have been performed for a P2P network of synchronized wikis and consequently facilitates the verification of final results. Concurrency awareness relies on plausible clocks to detect concurrency a posteriori. On the scenario of figure 1, concurrency awareness will warn nothing before step 2 . It will highlight op 1,2 and op 2,1 after pull(S 1) on S 2 , and op 1,2 and op 3,1 after pull(S 1) on S 3 . Concurrency awareness is computed on already integrated Figure 3: Crystal widget for divergence awareness operations, so the primary objective is to alert people where concurrency occurred, not where divergence is currently present.

Crystal [START_REF] Brun | Proactive detection of collaboration conflicts[END_REF] is a speculative analysis tool that provides concrete information and advice about pending conflicts while remaining largely unobtrusive. It provides developers with information about their development states and the relationships between their repositories and collaborators' repositories. It shows the developer if she is in advance over the other's or if she is behind, which means that modifications have been made to the shared project and she did not consume them yet. It also alerts the developer of the potential conflicts in case she consumes the remote operations (see figure 3). Crystal tracks divergence by checking the state of all workspaces according to a master copy. It helps to locate where divergence is located and with who. For the scenario in figure 1 at step 1 , Crystal will give the following states (same, same, same) for the three sites (S1, S2, S3) respectively. At step 2 , the states become (conflict, conflict, conflict). At step 3 , the states become (behind, conflict, conflict). At step 4 , the states become (behind, behind, ahead). At step 5 , the states become (same, same, same).

This clearly shows that divergence is not really quantified, it is impossible to measure the total amount of divergence in the system.

State Treemap [START_REF] Molli | State Treemap: an awareness widget for multi-synchronous groupware[END_REF] shown in figure 4 is an example of divergence awareness widget. It informs participants about the states of shared documents stored in a file system. Different states are defined for a document: LocallyModified, RemotelyModified, PotentialConflict, etc. When a document is modified by a participant, it will be marked as LocallyModified in her own workspace, while in the others participants' workspaces it will be marked as RemotelyModified. Divergence awareness is delivered as a Treemap where each rectangle is colored with the state of the shared object. For instance, if the whole Treemap is white, it means that there is no divergence in the system. If some parts are colored, then users know who changed the file i.e. For the scenario in figure 1 if we consider that we have only one shared object then at step 1 , State Treemap will give the following states (up-to-date, up-to-date, up-to-date) for the three sites (S1, S2, S3) respectively. At step 2 , the states become (potential conflict, potential conflict, potential conflict). At step 3 , the states become (remotely modified, potential conflict, potential conflict). At step 4 , the states become (remotely modified, remotely modified, locally modified). At step 5 , the states become (up-to-date, up-todate, up-to-date).

In State Treemap, different users do not see the same Treemap (see figure 4). So the quantification of divergence as the number of rectangle of different colors will be different. The quantity of divergence in the global system should not depend of the workspace the user is working in, it should estimate the entropy relative to global state of the system with all its workspaces. In this paper, we propose a group divergence metric that aims to quantify divergence as the editing distance to next potential convergence point. Furthermore, State Treemap relies on a central server for performing metrics computations. Users must open a session on this server and send in real-time all local changes in order to get awareness. This kind of architecture can hardly be transposed to more decentralized multi-synchronous collaborative systems such as distributed version control systems or P2P wikis. These systems have been designed to avoid single point of failure, or central authority. They do not maintain membership. Sites just follow the updates of other sites as in social network and generate complex networks of synchronization. In such conditions, how to deliver divergence awareness that needs to build a global knowledge about the system?

Another approach of divergence awareness based on operational transformation [START_REF] Sun | Achieving convergence, causality preservation, and intention preservation in real-time cooperative editing systems[END_REF] is described in [START_REF] Molli | Divergence awareness for virtual team through the web[END_REF]. For convenience reason, we will call it OT divergence awareness. In this approach, sites are synchronized on demand but they exchange unpublished operations in real-time as in a distributed real-time editor. An OT algorithm simulates the integration of remote operations in real-time and computes conflict objects. The size of all conflict objects determines the quantity of divergence on each site. Next, this quantification can projected on objects as described in figure 5.

We compute OT divergence at step 2 of the scenario presented in figure 1. First op 1,2 is integrated on S 2 and site S 3 . On S 2 , op 2,1 is transformed according to op 1,2 . We suppose that a conflict is detected by transformation function and op 2,1 is transformed into an operation op 2,1 = conf lict(op 1,2 , op 2,1). On S 3 , with the same reasoning, op 3,1 is transformed into op 3,1 = conf lict(op 1,2 , op 3,1). Finally, op 2,1 is integrated on S 3 and op 3,1 is transformed into op 3,1 = conf lict(conf lict(op 1,2 , op 2,1), conf lict(op 1,2 , op 3,1)). At the end of the process, each site will have computed the sequence [op 1,2 ; op 2,1 ; op 3,1]. The divergence in the system is the size of conflict objects produced by this sequence. As the computed sequence is the same for all sites, the OT divergence metric ensures that all sites will see the same value of the metric. OT divergence awareness has been designed for measuring conflicts introduced by concurrent writes. If there Figure 6: Ghost operations result for the scenario in figure 1 is no concurrent writes, no divergence will be detected. Therefore, OT divergence awareness cannot detect divergence for the writer/reader scenario presented in figure 2.

Ghost operations [START_REF] Ignat | A Collaborative Writing Mode for Avoiding Blind Modifications[END_REF] provides awareness on concurrent ongoing activities to prevent blind modifications while preserving privacy. Ghost operations represent real unpublished operations, some parameters of operations can be blurred according to user preferences to better preserve privacy. Running ghost operations on the scenario presented earlier in figure 1 would give the results shown in figure 6. From this results, we can clearly see that the class Integer has blind modifications, and we can also see that these modifications are in the method isReal(). Figure 6 shows that ghost operations only notify users where is divergence but it fails answering the question: how much divergence exists in the system?

Palantir [START_REF] Sarma | Palantir: Early Detection of Development Conflicts Arising from Parallel Code Changes[END_REF] is a workspace awareness designed for configuration management systems. It enables early detection of potential conflicts arising from concurrent changes to the same file or dependency violations in ongoing parallel work (see figure 7). For instance in step 2 of the motivating scenario of the figure 1, Palantir will detect conflicts between S 1 and S 2 and dependency conflicts between S 1 and S 3 . Palantir measures the severity of changes based on ratio of lines changed, added or deleted according to total number of lines. The FASTDash [START_REF] Biehl | Fastdash: a visual dashboard for fostering awareness in software teams[END_REF] is another awareness system designed for small teams of 3-8 collaborating programmers. It provides contextual awareness information such as which code files are changing, who is changing them and how they are being used. This awareness mechanism does not scale for large-scale decentralized systems. Furthermore, this awareness system fails answering the question: how much divergence in the system?

CollabVS [START_REF] Dewan | Semi-synchronous conflict detection and resolution in asynchronous software development[END_REF] proposes a semi-synchronous collaboration model in which editing phases are asynchronous and conflict detection and recovery phases can be asynchronous or synchronous. On detecting conflicts, CollabVS displays a notification balloon (see figure 8), user can ignore the notification or go further to have more information about the conflicts and can start a collaborative session with other developers for reviewing and fixing conflicts. CollabVS does not quantify divergence, for instance, in step 2 of the motivating scenario of the figure 1, CollabVS will detect conflict between S 1 and S 2 and indirect conflict between S 1 and S 3 . CollabVS enables collaborative resolution of conflicts.

All previous divergence awareness systems do not formally define the underlying formula they use to calculate their metrics. Existing divergence awareness systems keep users aware of the presence of divergence, potential conflicts and where conflicts are located, but they poorly quantify divergence in a multi-synchronous collaborative system and they are not suitable for fully decentralized systems. Our proposal completes the existing divergence metrics with a group divergence metric. This original metric is formally defined and can be efficiently computed in fully decentralized systems.

Group Divergence Awareness Formal Model

We observed that existing multi-synchronous collaborative systems behave like optimistic replication systems [START_REF] Saito | Optimistic replication[END_REF]. An optimistic replication model considers N sites where any kind of objects are replicated. We can say that a site corresponds to a stream of activity in Dourish definition [START_REF] Dourish | The Parting of the Ways: Divergence, Data Management and Collaborative Work[END_REF]. Objects can be modified anytime, anywhere by applying an update operation locally. According to the optimistic replication models, every operation follows the following lifecycle:

1. An operation is generated in one site, in isolation. It is executed immediately without any locking, even if the local site is off-line. This is the disconnection phase of the multi-synchronous collaboration where divergence is growing.

2. It is broadcasted to all other sites. The broadcast is supposed reliable. All generated operations will eventually arrive to all sites. Pairwise synchronization of sites is a way to broadcast operations to all sites. There is no constraint about how operations are disseminated (broadcast, anti-entropy, pairwise synchronization, gossiping, etc.). We just suppose that a graph of dissemination exists between sites. This graph represents a collaboration network.

3. Received operations are integrated and re-executed. This is the synchronization phase of the multisynchronous collaboration. Integration relies on merge algorithms such as those used in operational transformation [START_REF] Sun | Achieving convergence, causality preservation, and intention preservation in real-time cooperative editing systems[END_REF]. In this paper, we suppose that the merge algorithm is deterministic, commutative, and associative i.e. merging operations produce the same state in all sites whatever the order of reception of concurrent operations.

Different consistency models can be applied at this stage, causal consistency, eventual consistency, intention preservation etc. We made no hypothesis about the consistency model used. However, divergence awareness relies on concurrent operations analysis and two operations are concurrent if there is no causal relation between them. Causal relations aka "happened-before" relations are defined in [START_REF] Lamport | Clocks, and the Ordering of Events in a Distributed System[END_REF], we use these definitions for multi-synchronous collaboration systems.

The general idea of the group divergence awareness is:

• Following the optimistic replication model, each site builds a causal history of operations i.e. an history that ensure causal order with causality relation as defined by Lamport [START_REF] Lamport | Clocks, and the Ordering of Events in a Distributed System[END_REF] • If all these causal histories are merged, we obtain a maximal causal history, we call it H max .

• If every local causal history is equal to H max , then the convergence is achieved.

• Otherwise, there is a divergence in the system. This divergence is the number of operations to be integrated by the group to reach convergence i.e. the number of operations that belongs to H max and not in the local history of all sites. Consequently, our vision of divergence has to be understood as a group divergence and not as an editing distance between two members of this group. This divergence metric makes all members aware of the minimal distance for the group to reach the next potential convergence point represented by H max . It is possible for each member to know how she contributes to this distance, so any member is aware of her own position in the group.

• Computing such divergence metric requires to determine the membership; who is in the group? Answering this question is challenging because multi-synchronous models have no clear procedure for joining and leaving the group. Next, computing the number of operations to be integrated by the group to reach convergence requires a global knowledge of the state of all sites. Membership and global knowledge are not a problem for building a divergence model, however, they are challenging for metric computation at run-time. In the following, we define S as the set of sites in the system at the divergence awareness computation time, and N = |S| as the number of sites. Each site is uniquely identified by a unique identifier id, and it maintains a counter c id that increments when the site generates a new operation. An operation op is uniquely identified by the pair (id, c id), where id is the identifier of the generating site and c id is its counter value when it generated the operation. The operation can be annotated with meta-data such as author, timestamp, modified object, position, operation type, etc.

H S1 H S2 H S3 step 1 ∅ ∅ ∅ step 2 op1,2 op1,1 O O op2,1 op1,1 O O op3,1 op1,1 O O step 3 op1,2 op1,1 O O op2,2 op1,2 O O op2,1 b b op1,1 b b O O op3,2 op1,2 6
As in [START_REF] Sun | Achieving convergence, causality preservation, and intention preservation in real-time cooperative editing systems[END_REF], following Lamport [START_REF] Lamport | Clocks, and the Ordering of Events in a Distributed System[END_REF] we define a causal (partial) ordering relation on operations in terms of their generation and execution sequences as follows.

Definition 1 (Causal Ordering Relation "→"). Given two operations op a and op b generated respectively at sites i and j then op a → op b iff (1) i = j and the generation of op a happened before the generation of op b ;

(2) i = j and the execution of op a at j happened before the generation of op b ; (3) ∃op x such that op a → op x and op x → op b For example in the collaboration scenario in figure 1, operations op 1,1 and op 1,2 are generated on site S 1 and op 1,1 is generated before op 1,2 , so we can express that op 1,1 → op 1,2 , op 1,1 → op 3,1 , the execution of op 1,1 at site S 3 happened before the generation of op 3,1 at site S 3 . Remember according to the optimistic replication model an operation generated on a site is executed immediately. Definition 2 (Concurrent operations " "). Given any two operations op a and op b , op a and op b are said concurrent iff ¬(op a → op b) ∧ ¬(op b → op a), which is expressed as op a op b .

For example, op 1,2 op 2,1 and op 1,2 op 3,1 in figure 1 . We associate a local causal history H Si to every site S i in the system, H Si is defined as follow.

Definition 3 (Local Causal history "H Si "). Let H Si the causal history of the site S i , for any operation

op b ∈ H Si if op a → op b then op a ∈ H Si .
In other words, H Si corresponds to all operations generated and received by the site S i . The definition implies that if an operation belongs to the local history, then all operations that causally precede this operation belongs also to the local history. Consequently, the history is complete.

Figure 9 shows the evolution of the causal history of sites S 1 , S 2 and S 3 at the different steps of the scenario in the figure 1. The causal history is modeled as a directed acyclic graph with the operations as nodes and causal ordering relations as arcs. For instance, in step 2 in site 3 , op 1,1 → op 1,3 and op 1,2 op 3,1 .

A site has only one function to manipulate its causal history, this function inserts new operation into the causal history. There is no function that deletes an operation from the causal history.

In order to compute the group divergence awareness, we need to calculate the maximal causal history H max of the sites participating in the system at the computation moment. We define H max as follow.

Definition 4 (Maximal causal history "H max ").

H max = i H Si : ∀S i ∈ S
H max represents the next potential state of the system i.e. as state where the group divergence is null. From H max we can deduce the total number of unique operations in the system. Definition 5 (Total number of operations "op tot ").

op tot = |H max |
We define the global divergence of a site as the the number of operations in H max that are not in its local causal history. Definition 6 (A site global divergence "GD(S i)"). Let S i ∈ S, H Si its local causal history and H max is the maximal causal history in the system then

GD(S i) = |H max \ H Si |
This corresponds to the number of concurrent operations that site S i has to integrate to reach the next potential convergence state represented by H max .

In the figure 10, we compute the GD(S 1), GD(S 2) and GD(S 3) at each step of the scenario of the motivating example. For instance, at the beginning, site S 1 , GD(S 1) = 0 therefore S 1 is convergent wrt to S 2 and S 3 . In step 2 , GD(S 1) = 2, S 1 needs to integrate two operations to re-establish convergence. In step 3 , GD(S 1) = 4, divergence is increased, in step 4 , GD(S 1) = 5 more divergence, in step 5 , GD(S 1) = 0, convergence is re-established. Now we can define the group divergence metric, as the total number of operations to be consumed in the system to reach the next potential convergence state. And we note it: GD tot , formally it corresponds to the sum of operations in H max that are not in H Si of every site S i in the system. Definition 7 (Group divergence "GD tot ").

GD tot = i |H max \ H Si | : ∀S i ∈ S
Figure 10 shows the results of calculating H max , GD(S i) and the group divergence GD tot for the scenario of figure 1. For example, at step 4 , every user knows that the group divergence is GD tot = 8. This represents the distance for next potential convergence state. Every user knows her own contribution to this distance. S 1 has to integrate five operations: {op 2,1 , op 2,2 , op 3,1 , op 3,2 , op 3,3 }, S 2 has to integrate three operations:{op 3,1 , op 3,2 , op 3,3 } and S 3 is up-to-date. Figure 11 shows a possible visualization of GD tot on the scenario of three developers based on results presented in figure 10.

As defined in definition 7, GD tot requires to compute the difference between sets. However, given H Si ⊆ H max we can rewrite global divergence GD(S i) for a site S i using the total number of operations in the system op tot as follow.

Definition 8 (Site global divergence using aggregation "GD(S i)").

op tot = N i=1 c Si : ∀S i ∈ S GD(S i) = op tot -|H Si |
Consequently, we can rewrite the computation of group divergence GD tot in the system with only aggregation functions as follows. Definition 9 (Group divergence using aggregation 'GD tot ").

H S1 H S2 H S3 H max step 1 ∅ GD(S 1) = 0 ∅ GD(S 2) = 0 ∅ GD(S 3) = 0 ∅ GD tot = 0 step 2 op1,2 op1,1 O O GD(S 1) = 2 op2,1 op1,1 O O GD(S 2) = 2 op3,1 op1,1 O O GD(S 3) = 2 op1,2 op2,1 op3,1 op1,1 b b O O < < GD tot = 6 step 3 op1,2 op1,1 O O GD(S 1) = 4 op2,2 op1,2 O O op2,1 b b op1,1 b b O O GD(S 2) = 2 op3,2 op1,2 6 6 op3,1 O O op1,1 b b < < GD(S 3) = 2 op2,2 op3,2 op1,2 O O 6 6 op2,1 b b op3,1 O O op1,1 b b O O < < GD tot = 8
O O op1,1 b b O O < < GD(S 3) = 0 op3,3 op2,2 < < op3,2 b b op1,2 O O 6 6 op2,1 b b op3,1 O O op1,1 b b O O < < GD tot = 8 step 5 op3,3 op2,2 < < op3,2 b b op1,2 O O 6 6 op2,1 b b op3,1 O O op1,1 b b O O < < GD(S 1) = 0 op3,3 op2,2 < < op3,2 b b op1,2 O O 6 6 op2,1 b b op3,1 O O op1,1 b b O O < < GD(S 2) = 0 op3,3 op2,2 < < op3,2 b b op1,2 O O 6 6 op2,1 b b op3,1 O O op1,1 b b O O < < GD(S 3) = 0 op3,3 op2,2 < < op3,2 b b op1,2 O O 6 6 op2,1 b b op3,1 O O op1,1 b b O O < < GD tot = 0
GD tot = op tot × N - N i=1 |H Si |
To better understand GD tot definition, we will compare it with two common strategies for existing divergence awareness metrics. The first one relies on comparing the causal histories of sites pairwise. The second one relies on a copy of reference for comparing the causal histories. Suppose we define divergence between two sites as the number of missing operations in their respective local causal histories. We note divergence between two sites ∇. This corresponds to the editing distance between the two sites.

Definition 10 (Divergence between two sites "∇"). ∇ :

S × S → N, ∇(S i , S j) = |(H Si \ H Sj) ∪ (H Sj \ H Si)| Definition 11 (Group divergence using ∇). DIV ∇ = i,j ∇(S i , S j)
We calculate the divergence between the sites in the scenario in figure 1, the results are shown in the table [START_REF] Dourish | The Parting of the Ways: Divergence, Data Management and Collaborative Work[END_REF].

In order to calculate the group divergence, it is incorrect to only rely on ∇. As shown in figure 1, at step4 S 3 has consumed op 2,1 and op 2,2 from S 2 . These two operations will be calculated twice: 1) in ∇(S 1 , S 3) and 2) in ∇(S 1 , S 2) this is incorrect.

From this example, we can easily deduce that:

GD tot = i,j ∇(S i , S j)
This illustrates that group divergence awareness cannot rely on distance between sites. GD tot prevents overlapping while counting operations to integrate and keeps the group divergence metric safe.

Step Now we define the divergence based on a copy of reference H ref , as the sum of operations missing from the local site and present in the reference copy, plus the sum of operations missing from the reference copy and present in the local site, we call it DIV ref .

Definition 12 (Group divergence using a reference copy

DIV ref). DIV ref = i |(H Si \H ref)∪(H ref \H Si)|
In order to calculate DIV ref for the scenario in figure 1, we choose the first site's causal history as the reference copy i.e. H ref = H S1 the results are shown in table 2.

We clearly see that DIV ref underestimates the work needed for the group to reach the next potential point of convergence.

Most existing divergence awareness systems use a copy of reference to compute divergence and focus on specific kind of operations in the causal histories i.e. conflicts operations, local operations and remote operations.

Awareness can be interpreted as the projection of H max according to these operations. Therefore, we believe that GroupDiv formalism can be used to define existing divergence awareness.

For instance, we can rewrite State Treemap for one object using GroupDiv model as follows:

Definition 13 (Locally-modified).

S i) = ∃S j =i ∈ S, ∃op ∈ H Sj : op / ∈ H Si Definition 15 (Potential-conflict). The site S i is in a potential-conflict state if P C(S i) = LM (S i)∧RM (S i)
This formalization demonstrates that State Treemap only relies on causal histories for computing its states. Suppose, there is only one shared object and we run State Treemap on the scenario shown in figure 1 (at step 4). We will obtain:

At the same state, the group divergence metric will give a distance GD tot = 4 + 2 + 2 = 8. This clearly demonstrates that State Treemap allows user to perceive divergence and where it is located, but not really to quantify it.

We can also rewrite Palantir states using GroupDiv formal model as follows: If we annotate the operation with a type, then we can check if a document has been created on a site using the operation type create document. This corresponds to Palantir populated state. Or we can check if a document has returned to its original state if we find an operation type undo. This corresponds to the change reverted state of Palantir.

State

S i) = |{op | ∀S j =i ∈ S : (op ∈ H i \ H j) ∨ (op ∈ H j \ H i)}|
If we interpret Palantir system with GroupDiv, sharing events containing operations between all participants in real-time is like building H max in each workspace. Next, different projections according to various meta-data can be performed locally such as conflict interpretation and impact analysis. If we compute Palantir states on the scenario shown in figure 1 (at step 4). We will obtain:

Compared to GroupDiv, Palantir does not allow to observe the cycle of divergence/convergence, it focuses on estimating size of direct or indirect conflict as in OT divergence awareness [START_REF] Molli | Divergence awareness for virtual team through the web[END_REF]. Next, we proposed an efficient algorithm to compute the group metric that does not require to flood the network to build H max in each workspace.

Concurrent awareness [START_REF] Alshattnawi | Concurrency awareness in a P2P wiki system[END_REF] can be defined using GroupDiv as follows:

Definition 20 (Concurrent Modification). The site S i is in a concurrent modification state if CM (S i) = ∃op 1 , op 2 ∈ H i : op1 op2

If we compare with Edit Profile with GroupDiv, Edit Profile can be as the projection of H max according to the structure of the shared document in order to deliver localized awareness.

Evaluation

We conducted two-tiered experimentation that evaluated the effectiveness and usability of GroupDiv through a collaborative writing task. We present and analyze our experiment results by addressing three research questions :

1. Does group divergence awareness affect participants behavior ? 2. Does group divergence awareness affect the group cohesion ? 3. Does group divergence awareness affect the time-to-completion for tasks with divergence?

The first question is answered through analysis the actions of participants after a divergence occurrence. The second question is answered through a quantitative analysis of the divergence. If the divergence is under a threshold then the group cohesion is maintained. The third question is answered by comparing task completion time when using GroupDiv or not.

Experiment Setup

The goal of the experiments was to mimic a collaborative writing of a book with writer and reader roles [?]. In this collaborative writing, a participant is responsible of writing a section and another one can review it and and add comments.. We designed a simple text-based experimentation and not a development one to avoid the individual difference in technical skills that could impact the result of the evaluation. The designed experimentation is without conflicts because we want to show that divergence can exist without conflicts and because the impact of the conflicts on parallel activities have studied in several works [? ?].

Two experimentations were conducted. As a multi-synchronous collaborative system we use git. The first experimentation uses git with GroupDiv (called Experimental group) and the second uses git without GroupDiv (called Normal group). A short tutorial about git were given to participants to ensure that they could understand pull and commit commands of git. A short description for GroupDiv widget was given for the experimental group.

The experiments were conducted at the University of Nantes. All experiment participants were and undergraduate and PhD students in computer sciences. We had twenty participants totally, teen in each group.

Experiment results

Conclusion and Future Work

In this paper, we proposed a clean formal definition of divergence in multi-synchronous collaboration model. This definition overwhelm previous ad-hoc definitions and is not limited to the detection of concurrent conflicting write operations. To the best of our knowledge, GroupDiv is the first metric that allows to quantify divergence in multi-synchronous system opening new opportunities for divergence management: monitoring cycles of convergence/divergence, fix thresholds for divergence, fix frequency for convergence and give awareness about group cohesion during activity progress. We also explained how GroupDiv basic concepts can be used to give clean semantic to existing divergence awareness systems.

Next, we demonstrated how GroupDiv can be efficiently computed even in a fully decentralized multisynchronous system. The simulation demonstrates that aggregate gossip protocols approximate GroupDiv in few seconds even for a network of 10000 edges.

This work opens several perspectives. First, in this paper we focused on defining and computing the group divergence metric. We have, of course, to experiment how this metric can be understood by users and how users react to divergence in usage studies. Second, GroupDiv is built on causal histories where only write operations are present. Somehow, GroupDiv deduces read operations by comparing local histories. We think that integrating read operations directly in the causal history can improve GroupDiv model. Third, we used an overlay network for membership and metrics computations. We think the overlay network can be used to fully host the multi-synchronous system itself and consequently propose a new kind of architecture of multi-synchronous distributed systems.

Figure 1 :

 1 Figure 1: Three developers multi-synchronous collaboration scenario

Figure 2 :

 2 Figure 2: Writer/reader scenario

Figure 4 :

 4 Figure 4: State Treemap

Figure 5 :

 5 Figure 5: Operational Transformation divergence awareness (OT)

Figure 7 :Figure 8 :

 78 Figure 7: Palantir divergence awareness

Figure 9 :

 9 Figure 9: Causal history for three sites at step 1 , step 2 and step 3

Figure 10 :Figure 11 :

 1011 Figure 10: Max causal history and group divergence for three sites

Table 1 :

 1 Comparing divergence using ∇ to group divergence GD tot

		1 , S 2)	∇(S 1 , S 3)	∇(S 2 , S 3)	DIV ∇	GD tot
	step 1	0	0	0	0	0
	step 2	2	2	2	6	6
	step 3	2	2	4	8	8
	step 4	2	5	3	10	8
	step 5	0	0	0	0	0

Table 2 :

 2 Comparing divergence using a reference copy DIV ref to group divergence GD tot

		DIV ref	GD tot
	step 1	0	0
	step 2	4	6
	step 3	4	8
	step 4	7	8
	step 5	0	0

Table 3 :

 3 Computing State Treemap for the scenario shown in figure 1 (at step 4)

Table 4 :

 4 Computing Palantir for the scenario shown in figure 1 (at step 4) Definition 16 (Populated). A document has been created on a site. P op(S i) = ∃op ∈ H Si : op.type = "createdocument" Definition 17 (Change In Progress). This state is similar to the Locally-Modified or Remotely-Modified states already mentioned in State Treemap. CP (S i) = LM (S i) ∨ RM (S i) Definition 18 (Change Reverted). The document has returned to its original state. CR(S i) = ∃op ∈ H Si : op.type = "undo" Definition 19 (Change Severity). The number of operations that have been done on a document. CS(

		S 1	S 2	S 3
	Change in Progress true true true
	Change Severity	5	5	5