Gabriela Montoya
email: gabriela.montoya@univ-nantes.fr

Luis-Daniel Ibáñez

Hala Skaf-Molli

Pascal Molli
email: pascal.molli@univ-nantes.fr

Maria-Esther Vidal
email: mvidal@ldc.usb.ve

SemLAV: Local-As-View Mediation for SPARQL Queries

Keywords: Semantic Web, Data Integration, Local-as-view, SPARQL Query

The Local-As-View (LAV) integration approach aims at querying heterogeneous data in dynamic environments. In LAV, data sources are described as views over a global schema which is used to pose queries. Query processing requires to generate and execute query rewritings, but for SPARQL queries, the LAV query rewritings may not be generated or executed in a reasonable time.

In this paper, we present SemLAV, an alternative technique to process SPARQL queries over a LAV integration system without generating rewritings. SemLAV executes the query against a partial instance of the global schema which is built on-the-fly with data from the relevant views. The paper presents an experimental study for SemLAV, and compares its performance with traditional LAV-based query processing techniques. The results suggest that SemLAV scales up to SPARQL queries even over a large number of views, while it significantly outperforms traditional solutions.

Introduction

Processing queries over a set of autonomous and semantically heterogeneous data sources is a challenging problem. Particularly, a great effort has been done by the Semantic Web community to integrate datasets into the Linked Open Data (LOD) cloud [START_REF] Bizer | Linked data -the story so far[END_REF] and make these data accessible through SPARQL endpoints which can be queried by federated query engines. However, there are still a large number of data sources and Web APIs that are not part of the LOD cloud. As consequence, existing federated query engines cannot be used to integrate these data sources and Web APIs. Supporting SPARQL query processing over these environments would extend federated query engines into the deep Web.

Two main approaches exist for data integration: data warehousing and mediators. In data warehousing, data are transformed and loaded into a repository; unit UMR6241 of the Centre National de la Recherche Scientifique (CNRS) this approach may suffer from freshness problem [START_REF] Abiteboul | Web Data Management[END_REF]. In the mediator approach, there is a global schema over which the queries are posed and views describe data sources. Three main paradigms are proposed: Global-As-View (GAV), Local-As-View (LAV) and Global-Local-As-View (GLAV). In GAV mediators, entities of the global schema are described using views over the data sources, including or updating data sources may require the modification of a large number of views [START_REF] Ullman | Information integration using logical views[END_REF]. Whereas, in LAV mediators, the sources are described as views over the global schema, adding new data sources can be easily done [START_REF] Ullman | Information integration using logical views[END_REF]. Finally, GLAV is a hybrid approach that combines both LAV and GAV approaches. GAV is appropriate for query processing in stable environments. A LAV mediator relies on a query rewriter to translate a mediator query into the union of queries against the views. Therefore, it is more suitable for environments where data sources frequently change. Despite of its expressiveness and flexibility, LAV suffers from well-known drawbacks: (i) existing LAV query rewriters only manage conjunctive queries, (ii) the query rewriting problem is NP-complete for conjunctive queries, and (iii) the number of rewritings may be exponential. SPARQL queries exacerbate LAV limitations, even in presence of conjunctions of triple patterns. For example, in a traditional database system, a LAV mediator with 140 conjunctive views can generate 10,000 rewritings for a conjunctive query with eight subgoals [START_REF] Konstantinidis | Scalable query rewriting: a graph-based approach[END_REF]. In contrast, the number of rewritings for a SPARQL query can be much larger. SPARQL queries are commonly comprised of a large number of triple patterns and some may be bound to general predicates of the RDFS or OWL vocabularies, e.g., rdf:type, owl:sameAs or rdfs:label, which are usually used in the majority of the data sources. Additionally, queries can be comprised of several star-shaped sub-queries [START_REF] Vidal | Efficiently joining group patterns in sparql queries[END_REF]. Finally, a large number of variables can be projected out. All these properties impact the complexity of the query rewriting problem, even enumerating query rewritings can be unfeasible. For example, a SPARQL query with 12 triple patterns that comprises three star-shaped sub-queries can be rewritten using 476 views in billions of rewritings. This problem is even more challenging considering that statistics may be unavailable, and there are no clear criteria to rank or prune the generated rewritings [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF]. It is important to note that for conjunctive queries, GLAV query processing tasks are at least as complex as LAV tasks [START_REF] Calvanese | Query processing under glav mappings for relational and graph databases[END_REF].

In this paper, we focus on the LAV approach, and propose SemLAV, the first scalable LAV-based approach for SPARQL query processing. Given a SPARQL query Q on a set M of LAV views, SemLAV selects relevant views for Q and ranks them in order to maximize query results. Next, data collected from selected views are included into a partial instance of the global schema, where Q can be executed whenever new data is included; and thus, SemLAV incrementally produces query answers. Compared to a traditional LAV approach, SemLAV avoids generating rewritings which is the main cause of the combinatorial explosion in traditional rewriting-based approaches; SemLAV also supports the execution of SPARQL queries. The performance of SemLAV is no more dependent on the number of rewritings, but it does depend on the number and size of relevant views. Space required to temporarily include relevant views in the global schema instance may be considerably larger than the space required to execute all the query rewritings one by one. Nevertheless, executing the query once on the partial instance of the global schema could produce the answers obtained by executing all the rewritings.

To empirically evaluate the properties of SemLAV, we conducted an experimental study using the Berlin Benchmark [START_REF] Bizer | The berlin sparql benchmark[END_REF] and queries and views designed by Castillo-Espinola [START_REF] Castillo-Espinola | Indexing RDF data using materialized SPARQL queries[END_REF]. Results suggest that SemLAV outperforms traditional LAV-based approaches with respect to answers produced per time unit, and provides a scalable LAV-based solution to the problem of executing SPARQL queries over heterogeneous and autonomous data sources.

The contributions of this paper are the following:

-Formalization of the problem of finding the set of relevant LAV views that maximize query results; we call this problem MaxCov. -A solution to the MaxCov problem.

-A scalable and effective LAV-based query processing engine to execute SPARQL queries, and to produce answers incrementally.

The paper is organized as follows: Section 2 presents basic concepts, definitions and a motivating example. Section 3 defines the MaxCov problem, SemLAV query execution approach and algorithms. Section 4 reports our experimental study. Section 5 summarizes related work. Finally, conclusions and future work are outlined in Section 6.

Preliminaries

Mediators are components of the mediator-wrapper architecture [START_REF] Wiederhold | Mediators in the architecture of future information systems[END_REF]. They provide an uniform interface to autonomous and heterogeneous data sources. Mediators also rewrite an input query into queries against the data sources, and merge data collected from the selected sources. Wrappers are software components that solve interoperability between sources and mediators by translating data collected from the sources into the schema and format understood by the mediators; the schema exposed by the wrappers is part of the schema exposed by its corresponding mediator.

The problem of processing a query Q over a set of heterogeneous data sources corresponds to answer Q using the instances of these sources. Although this problem has been extensively studied by the Database community [START_REF] Halevy | Answering queries using views: A survey[END_REF], it has not been addressed for SPARQL queries. The following definitions are taken from Database existing solutions. Many of them are given for conjunctive queries. A conjunctive query has the form: Q(X) :-p 1 (X1), . . . , p n (Xn), where p i is a predicate, Xi is a list of variables and constants, Q(X) is the head of the query, p 1 (X1), . . . , p n (Xn) is the body of the query, and each element of the body is a query subgoal. In a conjunctive query, distinguished variables are variables that appear in the head, they should also appear in the body. Variables that appear in the body, but not in the head are existential variables. [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF]). A LAV integration system is a triple IS=< G, S, M > where G is a global schema, S is a set of sources or source schema, and M is a set of views that map sources in S into the global schema G.

Definition 1 (LAV Integration System

For the rest of the paper, we assume that views in M are limited to conjunctive queries. Both views and mediator queries are defined over predicates in G.

Definition 2 (Sound LAV View [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF]). Given IS=< G, S, M > a LAV integration system, and a view v i in M. The view v i is sound if for all instance I(v i) of v i , and all D virtual database instance of G, I(v i) is contained in the evaluation of view v i over D, i.e., I(v i) ⊆ v i (D).

Definition 3 (Query Containment and Equivalence [START_REF] Doan | Principles of Data Integration[END_REF]). Given two queries Q1 and Q2 with the same number of arguments in their heads, Q1 is contained in Q2, Q1 Q2, if for any database instance D the answer of Q1 over D is contained in the answer to Q2 over D, Q1(D) ⊆ Q2(D). Q1 is equivalent to Q2 if Q1 Q2 and Q2 Q1.

Definition 4 (Containment Mapping [START_REF] Doan | Principles of Data Integration[END_REF]). Given two queries Q1 and Q2, X and Ȳ the head variables of Q1 and Q2 respectively, and ψ a variable mapping from Q1 to Q2, ψ is a containment mapping if ψ(X) = Ȳ and for every query subgoal g(Xi) in the body of Q1, ψ(g(Xi)) is a subgoal of Q2.

Theorem 1 (Containment [START_REF] Doan | Principles of Data Integration[END_REF]). Let Q1 and Q2 be two conjunctive queries, then there is a containment mapping from Q1 to Q2 if and only if Q2 Q1.

Definition 5 (Query Unfolding [START_REF] Doan | Principles of Data Integration[END_REF]). Given a query Q and a query subgoal g i (Xi), g i (Xi) ∈ body(Q), where g i corresponds to a view: g i (Ȳ) :-s 1 (Ȳ1), . . . , s n (Ȳn), the unfolding of g i in Q is done using a mapping τ from variables in Ȳ to variables in Xi , replacing g i (Xi) by s 1 (τ (Ȳ1)), . . . , s n (τ (Ȳn)) in Q. Variables that occur in the body of g i but not in Xi are replaced by fresh (unused) variables by mapping τ . Definition 6 (Equivalent Rewriting [START_REF] Halevy | Answering queries using views: A survey[END_REF]). Let Q be a query and M = {v 1 , . . . , v m } be a set of views definitions. The query Q is an equivalent rewriting of Q using M if:

-Q refers only to views in M , and -Q is equivalent to Q. Definition 7 (Maximally-Contained Rewriting [START_REF] Halevy | Answering queries using views: A survey[END_REF]). Let Q be a query, M = {v 1 , . . . , v m } be a set of views definitions, and L be a query language 3 . The query Q is a maximally-contained rewriting of Q using M with respect to L if:

-Q is a query in L that refers only to the views in M , -Q is contained in Q, and -there is no rewriting Q 1 ∈ L, such that Q Q 1 Q and Q 1 is not equivalent to Q .
Theorem 2 (Number of Candidate Rewritings [START_REF] Abiteboul | Web Data Management[END_REF]). Let N , O and M be the number of query subgoals, the maximal number of views subgoals, and the set of views, respectively. The number of candidate rewritings in the worst case is:

(O × |M |) N .
Theorem 3 (Complexity of Finding Rewritings [START_REF] Halevy | Answering queries using views: A survey[END_REF]). The problem of finding an equivalent rewriting is NP-complete.

Consider L in Definition 7 as the union of conjunctive queries, then view v would be used to answer query Q if there is one conjunctive query r ∈ Q such that v appears as the relation of one of r query subgoals. As Q Q, then r Q. View v is called a relevant view atom. The next definition formalizes this notion.

Definition 8 (Relevant View Atom [START_REF] Doan | Principles of Data Integration[END_REF]). A view atom v is relevant for a query atom g if one of its subgoals can play the role of g in the rewriting. To do that, several conditions must be satisfied: [START_REF] Bizer | Linked data -the story so far[END_REF] the view subgoal should be over the same predicate as g, and (2) if g includes a distinguished variable of the query, then the corresponding variable in v must be a distinguished variable in the view definition.

The concepts of relevant view and coverage have been widely used in the literature [START_REF] Doan | Principles of Data Integration[END_REF][START_REF] Halevy | Answering queries using views: A survey[END_REF]; nevertheless, they have been introduced in an informal way. The following definitions precise the properties that are assumed in this paper.

Definition 9 (Relevant Views). Let Q be a conjunctive query, M = {v 1 , . . . , v m } be a set of view definitions, and q be a query subgoal, i.e., q ∈ body(Q). The set of relevant views for q corresponds to the set of relevant view atoms for the query subgoal q, i.e., RV (M, q) = {τ (v) : v ∈ M ∧ w ∈ body(v) ∧ ψ(q) = τ (w) ∧ (∀x : x ∈ V ars(q) ∧ distinguished(x, Q) : distinguished(x, v))}4 . The set of relevant views for Q corresponds to the views that are relevant for at least one query subgoal, i.e., RV (M,

Q) = {τ (v) : q ∈ body(Q) ∧ v ∈ M ∧ w ∈ body(v) ∧ ψ(q) = τ (w) ∧ (∀x : x ∈ V ars(q) ∧ distinguished(x, Q) : distinguished(x, v))}.
Definition 10 (Coverage). Let Q be a conjunctive query, v be a view definition, q be a query subgoal, and w be a view subgoal. The predicate covers(w, q) holds if and only if w can play the role of q in a query rewriting.

We illustrate some of the given definitions for the LAV-based query rewriting approach using SPARQL queries. This will provide evidence of the approach limitations even for simple queries. In the following example, the global schema G is defined over the Berlin Benchmark [START_REF] Bizer | The berlin sparql benchmark[END_REF] Listing 1.3: Q expressed as a conjunctive query s1(X1,X2,X3,X4):-label(X1,X2),type(X1,X3),productfeature(X1,X4) s2(X1,X2,X3):-type(X1,X2),productfeature(X1,X3) s3(X1,X2,X3,X4):-producer(X1,X2),label(X2,X3),publisher(X1,X2), productfeature(X1,X4) s4(X1,X2,X3):-productfeature(X1,X2),label(X2,X3) s5(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),comment(X1,X3),producer(X1,X4), label(X4,X5),publisher(X1,X4),productpropertytextual1(X1,X6), productpropertynumeric1(X1,X7) s6(X1,X2,X3,X4,X5):-label(X1,X2),product(X3,X1),price(X3,X4),vendor(X3,X5) s7(X1,X2,X3,X4,X5,X6):-label(X1,X2),reviewfor(X3,X1),reviewer(X3,X4), name(X4,X5),title(X3,X6) s9(X1,X2,X3,X4):-reviewfor(X1,X2),title(X1,X3),text(X1,X4) s10(X1,X2,X3):-reviewfor(X1,X2),rating1(X1,X3) s11(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),comment(X1,X3),producer(X1,X4), label(X4,X5),publisher(X1,X4),productpropertytextual2(X1,X6), productpropertynumeric2(X1,X7) s12(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),comment(X1,X3),producer(X1,X4), label(X4,X5),publisher(X1,X4),productpropertytextual3(X1,X6), productpropertynumeric3(X1,X7) s13(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),product(X3,X1),price(X3,X4), vendor(X3,X5),offerwebpage(X3,X6),homepage(X5,X7) s14(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),product(X3,X1),price(X3,X4), vendor(X3,X5),deliverydays(X3,X6),validto(X3,X7) s15(X1,X2,X3,X4,X5,X6,X7,X8,X9):-product(X1,X2),price(X1,X3),vendor(X1,X4), label(X4,X5),country(X4,X6),publisher(X1,X4),reviewfor(X7,X2), reviewer(X7,X8),name(X8,X9)

Listing 1.4: Views s1-s10 from [START_REF] Castillo-Espinola | Indexing RDF data using materialized SPARQL queries[END_REF] Consider M composed of 14 data sources defined as conjunctive views over the global schema G as in Listing 1.4; the Berlin Benchmark [START_REF] Bizer | The berlin sparql benchmark[END_REF] vocabulary terms are represented as binary predicates in the conjunctive queries that define the data sources. Source s1 can be defined as in Listing 1.2; note that we have done just a syntactic translation from this SPARQL query to the conjunctive query presented in Listing 1.4.

For instance, s1 retrieves information about product type, label and product feature. The rdfs:label predicate is a general predicate. Commonly, general predicates are part of the definition of many data sources, and the number of rewritings of SPARQL queries that comprise triple patterns bound to general predicates can be very large. The general predicate rdfs:label in query Q can be mapped to views s1, s3-s7, s11-s15. r(X1,X2,X3,X8,X9,X10,X11,X12) :-s6(X1,X2,_0,_1,_2), s5(X1,_3,X3,_4,_5,_6,_7), s5(X1,_8,_9,_10,_11,X8,_12), s11(X1,_13,_14,_15,_16,X9,_17), s12(X1,_18,_19,_20,_21,X10,_22), s5(X1,_23,_24,_25,_26,_27,X11), s11(X1,_28,_29,_30,_31,_32,X12)

Listing 1.5: A query rewriting for Q Listing 1.5 presents a query rewriting for Q, its subgoals cover each of the query subgoals of Q, e.g., s6(X1, X2, 0, 1, 2) covers the first query subgoal of Q, label(X1, X2). ψ(label(X1, X2)) = τ (label(X1, X2)); the mapping τ from view variables to rewriting variables is:

τ (X1) = X1, τ (X2) = X2, τ (X3) = 0, τ (X4) = 1, τ (X5) = 2,
and the mapping ψ from query variables to rewriting variables is: ψ(Xi) = Xi, for all Xi in the query head. Then, view s6(X1, X2, 0, 1, 2) is relevant for answering the first query subgoal of Q. Notice that third, fourth and fifth projected variables of s6 correspond to existential variables because they are not relevant to cover the first query subgoal of Q with s6.

To illustrate how the number of rewritings for Q can be affected by the number of data sources that use the general predicate rdfs:label, we run the LAV query rewriter MCDSAT [START_REF] Arvelo | Compilation of query-rewriting problems into tractable fragments of propositional logic[END_REF]. 5 First, if 14 data sources are considered, Q can be rewritten in 42 rewritings. For 28 data sources, there are 5,376 rewritings, and 1.12743e+10 rewritings are generated for 224 sources. 6 With one simple query, we can illustrate that the number of rewritings can be extremely large, being in the worst case exponential in the number of query subgoals and views. In addition to the problem of enumerating this large number of query rewritings, the time needed to compute them may be excessively large. Even using reasonable timeouts, only a small number of rewritings may be produced.

Table 1 shows the number of rewritings obtained by the state-of-the-art LAV rewriters GQR [START_REF] Konstantinidis | Scalable query rewriting: a graph-based approach[END_REF], MCDSAT [START_REF] Arvelo | Compilation of query-rewriting problems into tractable fragments of propositional logic[END_REF] and MiniCon [START_REF] Pottinger | Minicon: A scalable algorithm for answering queries using views[END_REF], when 224 views are considered for Q and timeouts are set up to 5, 10 and 20 minutes. Note that all these rewriters are able to produce only empty results or a small number of rewritings.

In summary, even if the LAV approach constitutes a flexible approach to integrate data from heterogeneous data sources, query rewriting and processing tasks may be unfeasible in the context of SPARQL queries. Either the number of query rewritings is too large to be enumerated or executed in a reasonable time.

To overcome these limitations and make feasible the LAV approach for SPARQL queries, we propose a novel approach named SemLAV. SemLAV identifies and ranks the relevant views of a query, and executes the query over the data collected from the relevant views; thus, SemLAV is able to output a high proportion of the answer in a short time.

The SemLAV Approach

SemLAV is a scalable LAV-based approach for processing SPARQL queries. It is able to produce answers even for SPARQL queries against large integration systems with no statistics. SemLAV follows the traditional mediator-wrapper architecture [START_REF] Wiederhold | Mediators in the architecture of future information systems[END_REF]. Schemas exposed by the mediators and wrappers are expressed as RDF vocabularies. Given a SPARQL query Q over a global schema G and a set of sound views M = {v 1 , . . . , v m }, SemLAV executes the original query Q rather than generating and executing rewritings as in traditional LAV approaches. SemLAV builds an instance of the global schema on-the-fly with data collected from the relevant views. The relevant views are considered in an order that enables to produce results as soon as the query Q is executed against this instance. Contrary to traditional wrappers which populate structures that represent the heads of the corresponding views, SemLAV wrappers return RDF Graphs composed of the triples that match the triple patterns in the definition of the views. SemLAV wrappers could be more expensive in space than the traditional ones. However, they ensure that original queries are executable even for full SPARQL queries and they make query execution dependent on the number of views rather than on the number of rewritings.

To illustrate the SemLAV approach, consider a SPARQL query Q with four subgoals:

SELECT * WHERE {

?Offer bsbm:vendor ?Vendor . ?Vendor rdfs:label ?Label . ?Offer bsbm:product ?Product . ?Product bsbm:productFeature ?ProductFeature . } and a set M of five views: v1(P,L,T,F):-label(P,L),type(P,T),productfeature(P,F) v2(P,R,L,B,F):-producer(P,R),label(R,L),publisher(P,B),productfeature(P,F) v3(P,L,O,R,V):-label(P,L),product(O,P),price(O,R),vendor(O,V) v4(P,O,R,V,L,U,H):-product(O,P),price(O,R),vendor(O,V),label(V,L), offerwebpage(O,U),homepage(V,H) v5(O,V,L,C):-vendor(O,V),label(V,L),country(V,C)

In the traditional LAV approach, 60 rewritings are generated and the execution of all these rewritings will produce all possible answers. However, this is time-consuming and uses a non-negligible amount of memory to store data collected from views present in the rewritings. In case there are not enough resources to execute all these rewritings, as many rewritings as possible would be executed. We apply a similar idea in SemLAV, if it is not possible to consider the whole global schema instance to ensure a complete answer, then a partial instance will be built. The partial instance will include data collected from as many relevant views as the available resources allow.

The execution of the query over this partial schema instance will cover the results of executing a number of rewritings. The number of rewritings covered by the execution of Q over the partial schema instance could be exponential in the number of views included in the instance. Therefore, the size of the set of covered rewritings may be even greater than the number of rewritings executable in the same amount of time. The order in which views are included in the partial global schema instance impacts the number of covered rewritings. Consider two different orders for including the views of the above example: v5, v1, v3, v2, v4 and v4, v2, v3, v1, v5. Table 2 considers partial global schema instances of different sizes. For each partial global schema instance, the included views and the number of covered rewritings are presented. Executing Q over the growing instances corresponds to the execution of a quite different number of rewritings. For instance, if only four views could be included with the available resources, one order corresponds to the execution of 32 rewritings while the another one corresponds to the execution of only eight rewritings. If all relevant views for query Q could be included, then a complete answer will be produced. However, the number of relevant views could be considerably large, therefore, if we only have resources to consider k relevant views, V k , we should consider the ones that increase the chances of obtaining answers. With no knowledge about data distribution, we can only suppose that each rewriting has nearly the same chances of producing answers. Thus, the chances of obtaining answers are proportional to the number of rewritings covered by the execution of Q over an instance that includes views in V k .

Maximal Coverage Problem (MaxCov). Given an integer k > 0, a query Q on a global schema G, a set M of sound views over G, and a set R of conjunctive queries whose union is a maximally-contained rewriting of

Q in M . The Maximal Coverage Problem is to find a subset V k of M comprised of k relevant views for Q, V k ⊆ M ∧ (∀v : v ∈ V k : v ∈ RV (Q, M)) ∧ |V k | = k, such that the set of rewritings covered by V k , Coverage(V k , R)
, is maximal for all subsets of M of size k, i.e., there is no other set of k views that can cover more rewritings than

V k . Coverage(V k , R) is defined as: Coverage(V k , R) = {r : r ∈ R ∧ (∀p : p ∈ body(r) : p ∈ V k)} (1)
The MaxCov problem has as an input a solution to the Maximally-Contained Rewriting problem. Nevertheless, using this for building a MaxCov solution would be unreasonable since it makes the MaxCov solution at least as expensive as the rewriting generation. Instead of generating the rewritings, we define a formula that estimates the number of covered rewritings when Q is executed over a global schema instance that includes a set of views. It is the product of the number of ways each query subgoal can be covered by the set of views. For a query Q(X) :-p 1 (X1), . . . p n (Xn) using only views in V k this formula is expressed as:

N umberOf CoveredRewritings(Q, V k) = Π 1≤i≤n |U se(V k , p i (Xi))|, (2)
where U se(V k , p) = Σ v∈V k Σ w∈body(v)∧covers(w,p) 1. This formula computes the exact number of covered rewritings when all the view variables are distinguished; this is because the coverage of each query subgoal by a given view can be considered in isolation. Otherwise, this expression corresponds to an upper bound of the number of covered rewritings of Q with respect to V k .

Consider the second proposed ordering of the views in the above example, the numbers of views in V 4 that cover each query subgoal are:

two for the first query subgoal (v4 and v3), four for the second query subgoal (v4, v2, v3 and v1), two for the third query subgoal (v4 and v3), and two for the fourth query subgoal (v2 and v1).

Thus, the number of covered rewritings is 32 (2 × 4 × 2 × 2). Next, we detail a solution to the MaxCov problem under the assumption that views only contain distinguished variables.

The SemLAV Relevant View Selection and Ranking Algorithm

The relevant view selection and ranking algorithm finds the views that cover each subgoal of a query. This algorithm creates a bucket for each query subgoal q, where a bucket is a set of relevant views; this resembles the first step of the Bucket algorithm [START_REF] Halevy | Answering queries using views: A survey[END_REF]. Additionally, the algorithm sorts the buckets views according to the number of covered subgoals. Hence, the views that are more likely to contribute to the answer will be considered first. This algorithm is defined in Algorithm 1.

Algorithm 1 The Relevant View Selection and Ranking

Input: Q : SPARQL Query; M : Set of Views defined as conjunctive queries Output: Buckets: Predicate → List<View> for all q ∈ body(Q) do buckets(q) ← ∅ end for for all q ∈ body(Q) do b ← buckets(q) for all v ∈ M do for all w ∈ body(v) do if There are mappings τ , ψ, such that ψ(q) = τ (w) then vi ← λ(v) {λ(v) replaces all variables ai in the head of v by τ (ai)} insert(b, vi) {add vi to the bucket if it is not redundant} end if end for end for end for for all q ∈ body(Q) do b ← buckets(q) sortBucket(buckets,b) {MergeSort with key (#covered buckets,#views subgoals)} end for

The mapping τ relates view variables to query variables as stated in Definition 9.

The sortBucket(buckets, b, q) procedure decreasingly sorts the views of bucket b according to the number of covered subgoals. Views covering the same number of subgoals are sorted decreasingly according to their number of subgoals. Intuitively, this second sort criterion prioritizes the more selective views, reducing the size of the global schema instance. The sorting is implemented as a classical MergeSort algorithm with a complexity of O(|M| × log(|M|).

Proposition 1. The complexity of Algorithm 1 is Max(O(N × |M| × P),O(N × |M| × log(|M|)))
where N is the number of query subgoals, M is the set of views and P is the maximal number of view subgoals.

To illustrate Algorithm 1, consider the SPARQL query Q and the previously defined views v1-v5.

Algorithm 1 creates a bucket for each subgoal in Q as shown in Table 3a.

For instance, the bucket of subgoal vendor(O, V) contains v3, v4 and v5: all the views having a subgoal covering vendor(O, V). The final output after executing the sortBucket procedure is described in Table 3b.

(P,O,R,V,L,U,H) v4(P,O,R,V,L,U,H) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F) v3(P,L,O,R,V) v3(P,L,O,R,V) v3(P,L,O,R,V) v1(P,L,T,F) v5(O,V,L,C) v2(P,R,L,B,F) v1(P,L,T,F) v5(O,V,L,C) (c) Included views # Included views (k) Included views (V k) # Covered rewritings 1 v4 1 × 1 × 1 × 0 = 0 2 v4, v2 1 × 2 × 1 × 1 = 2 3 v4, v2, v3 2 × 3 × 2 × 1 = 12 4 v4, v2, v3, v1 2 × 4 × 2 × 2 = 32 5 v4, v2, v3, v1, v5 3 × 5 × 2 × 2 = 60
Views v3 and v4 cover three subgoals, but since v4 definition has more subgoals, i.e., it is more selective, v4 is placed before v3 in all the buckets.

Global Schema Instance Construction and Query Execution

Each bucket is considered as a stack of views, having on the top the view that covers more query subgoals. A global schema instance is constructed as described in Algorithm 2 by iteratively popping one view from each bucket and loading its data into the instance.

Table 3c shows how the number of covered rewritings increases as views are included into the global schema instance. Each V k in this table is a solution to the MaxCov problem, i.e., the number of covered rewritings for each V k is maximal. There are two possible options regarding query execution. Query can be executed each time a new view is included into the schema instance and partial results will be produced incrementally; or, it can be executed after including the k views. The first option prioritizes the time for obtaining the first answer, while the second one favors the total time to receive all the answers of Q over V k . The first option produces results as soon as possible; however, in case of non-monotonic queries, i.e., queries where partial results may not be part of the query answer, this query processing approach should not be applied. Among nonmonotonic queries, there are queries with modifiers like SORT BY or constraints like a FILTER that includes the negation of a bound expression. The execution of non-monotonic queries requires all the relevant views to be included in the global schema instance in order to produce the correct results. Proof. By contradiction, suppose that the set V k is not maximal in terms of the number of covered rewritings, then there is another set V k of size k that covers more rewritings than V k . By construction, V k includes the first views of each bucket, i.e., the views that cover more query subgoals. There should exist at least one view in V k that is not in V k , and vice-versa. Suppose w is the first view in

if v / ∈ V k then load v into G {only if is not redundant} A ← A ∪ exec(Q, G) {Option 1: Execute Q after each successful load} V k ← V k ∪ {v} end if end for end while A ← exec(Q, G)
V k that is not in V k (w ∈ V k ∧ w ∈ V k) , v is the first one in V k and is not in V k (v ∈ V k ∧v ∈ V k)
, and w belongs to the bucket of the query subgoal q. If v covers q, then it belongs to the bucket of q. Because V k includes the views that cover more subgoals, if v was not included in V k is because it covers less rewritings than w; thus, the contribution of v to the number of covered rewritings is inferior to the contribution of w. This generalizes to all the views in V k and not in V k ; thus, the number of rewritings covered by V k should be less than the number of rewritings covered by V k . If v covers another query subgoal q and all the query subgoals are covered at least once by views in V k ; thus, Algorithm 2 should have included it before including w and v should belong to V k .

The SemLAV Properties

Given a SPARQL query Q over a global schema G, a set M of views over G, the set RV of views in M relevant for Q, a set R of conjunctive queries whose union is a maximally-contained rewriting of Q using M , and V k a solution to the MaxCov problem produced by SemLAV.

-Answer Completeness: If SemLAV executes Q over a global schema instance I that includes all the data collected from views in RV , then it produces the complete answer. SemLAV outputs the same answers as a traditional rewriting-based query processing approach:

r∈R r(I(M)) = Q(v∈RV I(v)). (3)
-Effectiveness: the Effectiveness of SemLAV is proportional to the number of covered rewritings, it is defined as:

Ef f ectiveness(V k) = |Coverage(V k , R)| |R| . (4)
For an execution constrained by time or space, V k could be smaller than RV . -Execution Time depends on |RV |: The load and execution time of SemLAV linearly depends on the size of the views included in the global schema instance.

-No memory blocking: SemLAV guarantees to obtain a complete answer when v∈RV I(v) fits into memory. If not, it is necessary to divide the set RV of relevant views into several subsets RV i , such that each subset fits into memory and for any rewriting r ∈ R all views v ∈ body(r) are contained in one of these subsets.

Experimental Evaluation

We compare the SemLAV approach with a traditional rewriting-based approach and analyze the SemLAV effectiveness, memory consumption and throughput. In order to decide which rewriting engine will be use to compare with SemLAV, we run some preliminary experiments to compare existing state-of-the-art rewriting engines. We consider GQR [START_REF] Konstantinidis | Scalable query rewriting: a graph-based approach[END_REF], MCDSAT [START_REF] Arvelo | Compilation of query-rewriting problems into tractable fragments of propositional logic[END_REF], MiniCon [START_REF] Pottinger | Minicon: A scalable algorithm for answering queries using views[END_REF], and SSDSAT [START_REF] Izquierdo | An expressive and efficient solution to the service selection problem[END_REF]. We execute these engines for 10 minutes and measure execution time and the number of rewritings generated by each engine. Additionally, we use these values to compute the throughput; throughput corresponds to number of answers obtained per second. Time is expressed in seconds; the total number of rewritings is computed for each query. Table 5 reports on all these metrics. The GQR performance is very good when the number of query rewritings is low, and it outperforms all the other engines. It also performs pretty well when the number of query rewritings is relatively low and views can cover more than a query subgoal. That is, this situation allows to speeds up the preprocessing time consumed by GQR to build the structures required to generate the query rewritings. The MCDSAT performance is good in a larger number of queries; it can produce rewritings for more queries than the other engines, particularly in queries which a large number of triple patterns and in presence of general predicates. However, MCDSAT does not outperform the others engines when they are able to produce the rewritings. This is because, there is an overhead in translating the problem into a logical theory which is solved using a SAT solver. The MiniCon performance is pretty good in general, but it only produces query rewritings when the space of rewritings is relatively small. Finally, SSDSAT is able to handle constants; however, this feature severely impacts its performance, being able to produce rewritings only for simple cases.

Hypothesis of Our Experimentations

The hypotheses of our experimentation are: -SemLAV loads the more relevant views of a query first, the SemLAV effectiveness should be considerably high and should produce more answers than the rest of the engines in the same amount of time. -SemLAV builds a global schema instance using data collected from the relevant views, SemLAV may consume more space than a traditional rewritingbased approach. -SemLAV produces results incrementally, it is able to produce answers sooner than a traditional rewriting-based approach.

Experimental Configuration

The Berlin SPARQL Benchmark (BSBM) [START_REF] Bizer | The berlin sparql benchmark[END_REF] is used to generate a dataset of 10,000,736 triples using a scale factor of 28,211 products. Additionally, thirdparty queries and views are used to provide an unbiased evaluation of our approach. In our experiments, the goal is to study SemLAV as a solution to the MaxCov problem, and we compute the number of rewritings generated by three state-of-the-art query rewriters. From the 18 queries and 10 views defined in [START_REF] Castillo-Espinola | Indexing RDF data using materialized SPARQL queries[END_REF], we leave out the ones using constants (literals) because the state-of-the-art query rewriters are unable to handle constants either in the query or in the views. In total, we use 16 out of 18 queries and nine out of 10 the defined views. The query triple patterns can be grouped into chained connected star-shaped sub-queries, that have between one and twelve subgoals with only distinguished variables, i.e., queries are free of existential variable. We define five additional views to cover all the predicates in the queries. From these 14 views, we produce 476 views by horizontally partitioning each original view into 34 parts, such that each part produces 1/34 of the answers given by the original view. Queries and views are described in Tables 4a and4b. The size of the complete answer is computed by including all the views into an RDF-Store (Jena) and executing the queries against this centralized RDF dataset. Query definitions are included in Appendix A.

We implement wrappers as simple file readers. For executing rewritings, we use one named graph per subgoal as done in [START_REF] Le | Rewriting queries on sparql views[END_REF]. The Jena 2.7.47 library with main memory setup is used to store and query the graphs. The SemLAV algorithms are implemented in Java, using different threads for bucket construction, view inclusion and query execution to improve performance. The implementation is available in the project website8 .

Experimental Results

The analysis of our results focus on three main aspects: the SemLAV effectiveness, memory consumption and throughput.

To demonstrate the SemLAV effectiveness, we execute SemLAV with a timeout of 10 minutes. During this execution, the SemLAV algorithms select and include a subset of the relevant views; this set corresponds to V k as a solution to the MaxCov problem. Then, we use these views to compute the number of covered rewritings using the formula given in Section 3. Table 6 shows the number of relevant views considered by SemLAV, the covered rewritings and the achieved effectiveness. Effectiveness is greater than or equal to 0.5 (out of 1) for almost half of the queries. SemLAV maximizes the number of covered rewritings by considering views that cover more subgoals first.

The observed results confirm that the SemLAV effectiveness is considerably high. Effectiveness depends on the number of relevant views, but this number is bounded to the number of relevant views that can be stored in memory. As expected, the SemLAV approach could require more space than the traditional rewriting-based approach. SemLAV builds a global schema instance that includes all the relevant views in V k , whereas a traditional rewriting-based approach includes only the views in one rewriting at the time. Table 7 shows the maximal graph size in both approaches. SemLAV can use up to 129 times more memory than the traditional rewriting-based approach (for Q17). SemLAV can use less memory than the traditional rewriting-based approach (for Q1) for relevant views with overlapped data.

We calculate the throughput as the number of answers divided by the total execution time. For SemLAV, this time includes view selection and ranking, contacting data sources using the wrappers, including data into the global schema instance, and query execution time. For the traditional rewriting-based approach, this time includes rewriting time, instead of view selection and ranking. Table 7 shows for each query: number of answers, execution time, number of times the query is executed and throughput. Notice that SemLAV executes the query Table 7: Execution of Queries Q1, Q2, Q4-Q6, Q8-Q18 using SemLAV, MCD-SAT, GQR and MiniCon, using 20GB of RAM and a timeout of 10 minutes. It is reported the number of answers obtained, wrapper time (WT), graph creation time (GCT), plan execution time (PET), total time (TT), time of first answer (TFA), number of times original query is executed (#EQ), maximal graph size (MGS) in terms of number of triples and throughput (number of answers obtained per millisecond) The difference in the answer size and throughput is impressive, e.g., for Q1 SemLAV produces 37.3501 answers/msec, while the other approach produces up to 0.0005 answers/msec. This huge difference is caused by the differences between the complexity of the rewriting generation and the SemLAV view selection and ranking algorithm, and between the number of rewritings and number of relevant views. This makes possible to generate answers sooner. Column TFA of Table 7 shows the time for the first answer; TFA is impacted by executing the query as soon as possible, according to option 1 given in Algorithm 2. Only for query Q18 SemLAV does not produce any answer in 10 minutes. This is because the views included in the global schema instance are large (around one million triples per view) and do not contribute to the answer; consequently, almost all the execution time is spent in transferring data from the relevant views. SemLAV produces answers sooner in all the other cases. Moreover, SemLAV also achieves complete answer in 11 of 16 queries in only 10 minutes.

In summary, the results show that SemLAV is effective and efficient and produces more answers sooner than a traditional rewriting-based approach. SemLAV makes the LAV approach feasible for processing SPARQL queries.

State of the Art

In recent years, several approaches have been proposed for querying the Web of Data [START_REF] Acosta | Anapsid: An adaptive query processing engine for sparql endpoints[END_REF][START_REF] Basca | Avalanche: Putting the spirit of the web back into semantic web querying[END_REF][START_REF] Harth | Data summaries for on-demand queries over linked data[END_REF][START_REF] Hartig | Zero-knowledge query planning for an iterator implementation of link traversal based query execution[END_REF][START_REF] Ladwig | Sihjoin: Querying remote and local linked data[END_REF]. Some tools address the problem of choosing the sources that can be used to execute a query [START_REF] Hartig | Zero-knowledge query planning for an iterator implementation of link traversal based query execution[END_REF][START_REF] Ladwig | Sihjoin: Querying remote and local linked data[END_REF]; others have developed techniques to adapt query processing to source availability [START_REF] Acosta | Anapsid: An adaptive query processing engine for sparql endpoints[END_REF][START_REF] Hartig | Zero-knowledge query planning for an iterator implementation of link traversal based query execution[END_REF]. Finally, frameworks to retrieve and manage Linked Data have been defined [START_REF] Basca | Avalanche: Putting the spirit of the web back into semantic web querying[END_REF][START_REF] Hartig | Zero-knowledge query planning for an iterator implementation of link traversal based query execution[END_REF], as well as strategies for decomposing SPARQL queries against federations of endpoints [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF]. All these approaches assume that queries are expressed in terms of RDF vocabularies used to describe the data in the RDF sources; thus, their main challenge is to effectively select the sources, and efficiently execute the queries on the data retrieved from the selected sources. In contrast, SemLAV attempts to integrate data sources, and relies on a global schema to describe data sources and to provide a unified interface to the users. As a consequence, in addition to collecting and processing data transferred from the selected sources, SemLAV decides which of these sources need to be contacted first, to quickly answer the query.

Three main paradigms have been proposed to integrate dissimilar data sources. In GAV mediators, entities in the global schema are semantically described using views in terms of the data sources. In consequence, including or updating data sources may require the modification of a large number of mappings [START_REF] Ullman | Information integration using logical views[END_REF]. In contrast, the LAV approach, new data sources can be easily integrated [START_REF] Ullman | Information integration using logical views[END_REF]; further, data sources that publish entities of several concepts in the global schema, can be naturally defined as LAV views. Thus, the LAV approach is best suited for applications with a stable global schema but with changing data sources; contrary, the GAV approach is more suitable for applications with stable data sources and a changing global schema. Finally, a more general approach named Global-Local-As-View (GLAV) allows the definition of mappings where views on the global schema are mapped to views of the data sources. Recently, Knoblock et al. [START_REF] Knoblock | Interactively mapping data sources into the semantic web[END_REF] and Taheriyan et al. [START_REF] Taheriyan | Rapidly integrating services into the linked data cloud[END_REF] proposed Karma, a system to semi-automatically generate source descriptions as GLAV views on a given ontology. Karma makes GLAV views a solution to consume open data as well as to integrate and populate these sources into the LOD cloud.

GLAV views are suitable not only to describe sources, but also to provide the basis for the dynamic integration of open data and Web APIs into the LOD cloud. Further, theoretical results presented by Calvanese et al. [START_REF] Calvanese | Query processing under glav mappings for relational and graph databases[END_REF] establish that for conjunctive queries against relational schemas, GLAV query processing techniques can be implemented as the combination of the resolution of the query processing tasks with respect to the LAV component of the GLAV views followed by query unfolding tasks on the GAV component. Thus, SemLAV can be easily extended to manage GLAV query processing tasks, and provides the basis to integrate existing GLAV views. Additionally, SemLAV can be used to develop SPARQL endpoints that dynamically access up-to-date data from the data sources or Web APIs defined by the generated GLAV views.

The problem of rewriting a query into queries on the data sources is a relevant problem in integration systems [START_REF] Levy | Querying heterogeneous information sources using source descriptions[END_REF]. A great effort has been made to provide solutions able to produce query rewritings in the least time possible and to scale up to a large number of views. Several approaches have been defined, e.g., MCD-SAT [START_REF] Arvelo | Compilation of query-rewriting problems into tractable fragments of propositional logic[END_REF], GQR [START_REF] Konstantinidis | Scalable query rewriting: a graph-based approach[END_REF], Bucket Algorithm [START_REF] Levy | Querying heterogeneous information sources using source descriptions[END_REF], and MiniCon [START_REF] Halevy | Answering queries using views: A survey[END_REF]. Recently, Le et al, [START_REF] Le | Rewriting queries on sparql views[END_REF] propose a solution to identify and combine GAV SPARQL views that rewrite SPARQL queries against a global vocabulary, and Izquierdo et al [START_REF] Izquierdo | An expressive and efficient solution to the service selection problem[END_REF] extend the MCDSAT rewriter with preferences to identify the combination of semantic services that rewrite a user request. Recently, Montoya et al propose GUN [START_REF] Montoya | Gun: An efficient execution strategy for querying the web of data[END_REF], a strategy to maximize the number of answers obtained from a given set of k rewritings; GUN aggregates the data obtained from the relevant views present in those k rewritings and executes the query over it. Even if GUN could maximize the number of obtained answers, it would still depend on query rewritings as input, and has no criteria to order the relevant views.

We address this problem and propose SemLAV, a query processing technique for RDF store architectures that provides a uniform interface to data sources that have been defined using the LAV paradigm [START_REF] Levy | Answering queries using views[END_REF]. SemLAV gets rid of the query rewriter, and focuses on selecting relevant views for each subgoal of the query. Moreover, SemLAV decides which relevant views will be contacted first, and includes the retrieved data into a global schema instance where the query is executed. At the cost of memory consumption, SemLAV is able to quickly produce answers first, and compute a more complete answer when the rest of the engines fail. Since the number of valid query rewritings can be exponential in the number of views, providing an effective and efficient semantic data management technique as SemLAV is a relevant contribution to the implementation of integration systems, and provides the basis for feasible and dynamic semantic integration architectures in the Web of Data.

An alternative approach for data integration is Data Warehousing [START_REF] Theodoratos | Data warehouse configuration[END_REF], where data is retrieved from the sources and stored in a repository. In this context, query optimization relies on materialized views that allows to speed up the execution time. Selecting the best set of views to be materialized is a complex problem that has been deeply studied in the literature [START_REF] Castillo-Espinola | Indexing RDF data using materialized SPARQL queries[END_REF][START_REF] Gupta | Selection of views to materialize in a data warehouse[END_REF][START_REF] Chirkova | A formal perspective on the view selection problem[END_REF][START_REF] Karloff | On the complexity of the view-selection problem[END_REF][START_REF] Goasdoué | View selection in semantic web databases[END_REF]. Commonly approaches attempt to select this set of views according to an expected workload and available resources. Recently, Castillo-Espinola [START_REF] Castillo-Espinola | Indexing RDF data using materialized SPARQL queries[END_REF] propose an approach where materialized views correspond to indexes for SPARQL queries that allow to speed up query execution time. Although these approaches may considerably improve performance in average, only queries that can be rewritten using the materialized views will be benefited. Further, the cost of the view maintainability process can be very high if data frequently changes and it needs to be kept up-to-date to ensure answer correctness.

SemLAV also relies on view definitions, but views are temporally included in the global schema instance during query execution; thus, data is always up-todate. Furthermore, the number of views to be considered is not limited. The only limitation depends on the physical resources available to perform a particular query. Nevertheless, it is important to highlight that the number of relevant views for answering one query is, in the general case, considerably smaller than the total number of views in the integration system.

Conclusions and Future Work

In this paper, we presented SemLAV, a Local-As-View mediation technique that allows to perform SPARQL queries over views without facing problems of NP-completeness, exponential number of rewritings or restriction to conjunctive SPARQL queries. This is obtained at the price of including relevant views into a global schema instance which is space consuming. However, we demonstrated that, even if only a subset of relevant views is included, we obtain more results than traditional rewriting-based techniques. Chances of producing results are higher, if the number of covered rewritings is maximized as defined in the MaxCov problem. We proved that our ranking strategy maximizes the number of covered rewritings.

SemLAV opens a new way to execute SPARQL queries for LAV mediators that is tractable. As perspectives, the performance of SemLAV can be greatly improved by parallelizing views inclusion. Currently, SemLAV includes views sequentially due to Jena restrictions. If views were included in parallel, time to get first results would be greatly improved. Additionally, the strategy of producing results as soon as possible, can deteriorate the overall throughput. If users want to improve overall throughput, then the query should be executed once after all the views in V k have been included. It could be also interesting to design an execution strategy where SemLAV would execute under constrained space. In this case, the problem would be to find the minimum set of relevant views that would fit in the available space and produce the maximal number of answers. All these problems will be part of our future works.

 ,L,O,R,V) v1(P,L,T,F) v3(P,L,O,R,V) v1(P,L,T,F) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F) v5(O,V,L,C) v3(P,L,O,R,V) v4(P,O,R,V,L,U,H) v5(O,V,L,C)

{Option 2 :Proposition 3 .

 23 execute before exit} Proposition 2. Considering conjunctive queries, the time complexity of Algorithm 2 in option 1 is O(k × N × I), while the time complexity is O(N × I) for option 2. Where k is the number of relevant views included in the instance, N the number of query subgoals, and I is the size of the constructed global schema instance. Algorithm 2 finds a solution to the MaxCov problem.

 vocabulary. Consider a SPARQL query Q on G; Q has seven subgoals and returns information about products as shown in Listing 1.1. Listing 1.3 presents Q as a conjunctive query, where triple patterns are represented as query subgoals.

	SELECT *	
	WHERE { ?X1 rdfs:label ?X2 . ?X1 rdfs:comment ?X3 . ?X1 bsbm:productPropertyTextual1 ?X8 . ?X1 bsbm:productPropertyTextual2 ?X9 . ?X1 bsbm:productPropertyTextual3 ?X10 . ?X1 bsbm:productPropertyNumeric1 ?X11 . ?X1 bsbm:productPropertyNumeric2 ?X12 .	SELECT * WHERE { ?X1 rdfs:label ?X2 . ?X1 rdf:type ?X3 . ?X1 bsbm:productFeature ?X4 . }
	}	
		Listing 1.2: SPARQL View s1
	Listing 1.1: SPARQL query Q	
	Q(X1, X2, X3, X8, X9, X10, X11, X12) :-label(X1, X2), comment(X1, X3),
	productPropertyTextual1(X1, X8), productPropertyTextual2(X1, X9),
	productPropertyTextual3(X1, X10), productPropertyNumeric1(X1, X11),
	productPropertyNumeric2(X1, X12)	

Table 1 :

 1 Number of rewritings obtained from the rewriters GQR, MCDSAT and MiniCon with timeouts of 5, 10 and 20 minutes. Using 224 views and query Q

	Rewriter 5 minutes 10 minutes 20 minutes
	GQR	0	0	0
	MCDSAT 211,125	440,308	898,766
	MiniCon	0	0	0

Table 2 :

 2 Impact of the different views ordering on the number of covered rewritings

	# Included	Order One		Order Two	
	views (k) Included views (V k) # Covered Included views (V k) # Covered
		rewritings	rewritings
	1	v5	0	v4	0
	2	v5, v1	0	v4, v2	2
	3	v5, v1, v3	6	v4, v2, v3	12
	4	v5, v1, v3, v2	8	v4, v2, v3, v1	32
	5	v5, v1, v3, v2, v4	60	v4, v2, v3, v1, v5	60

Table 3 :

 3 For query Q, buckets produced by Algorithm 1 when k views have been included. V k is obtained by Algorithm 2 and the number of covered rewritings

 Algorithm 2 The Global Schema Instance Construction and Query Execution

	Input: Q : Query
	Input: Buckets: Predicate → List<View> {The buckets are produced by Algorithm 1}
	Input: k : Int
	Output: A: Set<Answer>
	Stacks : Predicate → Stack<View>
	V k : Set<View>
	G : RDFGraph
	for all p ∈ domain(Buckets) do
	Stacks(p) ← toStack(Buckets(p))
	end for
	while (∃p| : ¬empty(Stacks(p))) ∧ |V

k | < k do for all p ∈ domain(Stacks) ∧ ¬empty(Stacks(p)) do v ← pop(Stack(p))

Table 4 :

 4 Queries and their answer size, number of subgoals, and views size

	(a) Query information	(b) Views size
	Query Answer Size # Subgoals	Views	Size
	Q1	6.68E+07	5	V1-V34	201,250
	Q2	5.99E+05	12	V35-V68	153,523
	Q4	2.87E+02	2	V69-V102	53,370
	Q5	5.64E+05	4	V103-V136	26,572
	Q6	1.97E+05	3	V137-V170	5,402
	Q8	5.64E+05	3	V171-V204	66,047
	Q9	2.82E+04	1	V205-V238	40,146
	Q10 2.99E+06	3	V239-V272 113,756
	Q11 2.99E+06	2	V273-V306	24,891
	Q12 5.99E+05	4	V307-V340	11,594
	Q13 5.99E+05	2	V341-V374	5,402
	Q14 5.64E+05	3	V375-V408	5,402
	Q15 2.82E+05	5	V409-V442	78,594
	Q16 2.82E+05	3	V443-V476	99,237
	Q17 1.97E+05	2	V477-V510 1,087,281
	Q18 5.64E+05	4		

Table 5 :

 5 Comparison of state-of-the-art LAV rewriting engines for 16 queries without existential variables and nine (plus five) views defined in[START_REF] Castillo-Espinola | Indexing RDF data using materialized SPARQL queries[END_REF]. The five additional views allows to cover all the queries subgoals

	Query	Metric	GQR MCDSAT MiniCon SSDSAT Total Number of Rewritings
	Q1	Execution Time (secs)	600.00	600.00	600.00	600.00
		Number of Rewritings	0	247,304	0	0	2.04E+10
		Throughput (answers/sec) 0.00	412.17	0.00	0.00
	Q2	Execution Time (secs)	600.00	600.00	600.00	600.00
		Number of Rewritings	0	0	0	0	1.57E+24
		Throughput (answers/sec) 0.00	0.00	0.00	0.00
	Q4	Execution Time (secs)	25.71	84.20	5.47	600.00
		Number of Rewritings	16,184	16,184	16,184	0	1.62E+04
		Throughput (answers/sec) 629.38	192.22 2,957.60	0.00
	Q5	Execution Time (secs)	600.00	600.00	600.00	600.00
		Number of Rewritings	0	513,629	0	0	7.48E+07
		Throughput (answers/sec) 0.00	856.05	0.00	0.00
	Q6	Execution Time (secs)	600.00	251.51	430.10	600.00
		Number of Rewritings	0	314,432 314,432	0	3.14E+05
		Throughput (answers/sec) 0.00	1,250.18 731.07	0.00
	Q8	Execution Time (secs)	555.49	191.69	142.63	600.00
		Number of Rewritings	157,216 157,216 157,216	0	1.57E+05
		Throughput (answers/sec) 283.02	820.16 1,102.30	0.00
	Q9	Execution Time (secs)	0.88	32.24	0.34	49.83
		Number of Rewritings	34	34	34	34	3.40E+01
		Throughput (answers/sec) 38.51	1.05	101.49	0.68
	Q10	Execution Time (secs)	600.00	600.00	600.00	600.00
		Number of Rewritings	0	656,140	0	0	4.40E+06
		Throughput (answers/sec) 0.00	1,093.57	0.00	0.00
	Q11	Execution Time (secs)	12.99	67.03	2.06	600.00
		Number of Rewritings	9,248	9,248	9,248	0	9.25E+03
		Throughput (answers/sec) 712.15	137.96 4,487.14	0.00
	Q12	Execution Time (secs)	600.00	600.00	600.00	600.00
		Number of Rewritings	0	440,059	0	0	1.50E+09
		Throughput (answers/sec) 0.00	733.43	0.00	0.00
	Q13	Execution Time (secs)	600.00	98.43	22.40	600.00
		Number of Rewritings	0	64,736	64,736	0	6.47E+04
		Throughput (answers/sec) 0.00	657.69 2,890.52	0.00
	Q14	Execution Time (secs)	600.00	600.00	600.00	600.00
		Number of Rewritings	0	913,807	0	0	2.52E+06
		Throughput (answers/sec) 0.00	1,523.01	0.00	0.00
	Q15	Execution Time (secs)	600.00	600.00	600.00	600.00
		Number of Rewritings	0	308,903	0	0	2.04E+10
		Throughput (answers/sec) 0.00	514.84	0.00	0.00
	Q16	Execution Time (secs)	600.00	233.47	380.81	600.00
		Number of Rewritings	0	314,432 314,432	0	3.14E+05
		Throughput (answers/sec) 0.00	1,346.81 825.68	0.00
	Q17	Execution Time (secs)	3.97	67.25	1.29	600.00
		Number of Rewritings	4,624	4,624	4,624	0	4.62E+03
		Throughput (answers/sec) 1,165.62	68.76	3,576.18	0.00
	Q18	Execution Time (secs)	600.00	600.00	600.00	600.00
		Number of Rewritings	0	463,754	0	0	1.20E+09
		Throughput (answers/sec) 0.00	772.92	0.00	0.00

Table 6 :

 6 The SemLAV Effectiveness. For 10 minutes of execution, we report the number of relevant views included in the global schema instance, the number of covered rewritings and the achieved effectiveness. Also values for total number of views and rewritings are shown

	Query Included Views # Relevant Views # Covered rewritings # Rewritings Effectiveness
	Q1	30	408	2.28E+06	2.04E+10	0.000112
	Q2	194	408	2.05E+23	1.57E+24	0.130135
	Q4	156	374	8.77E+03	1.62E+04	0.542017
	Q5	52	374	3.13E+06	7.48E+07	0.041770
	Q6	44	136	2.13E+04	3.14E+05	0.067728
	Q8	81	136	9.36E+04	1.57E+05	0.595588
	Q9	34	34	3.40E+01	3.40E+01	1.000000
	Q10	88	408	3.20E+05	4.40E+06	0.072766
	Q11	77	136	5.24E+03	9.25E+03	0.566176
	Q12	238	408	7.70E+08	1.50E+09	0.514286
	Q13	245	408	4.26E+04	6.47E+04	0.657563
	Q14	46	272	1.22E+04	2.52E+06	0.004837
	Q15	70	442	5.12E+08	2.04E+10	0.025144
	Q16	82	136	1.90E+05	3.14E+05	0.602941
	Q17	56	136	1.90E+03	4.62E+03	0.411765
	Q18	23	374	2.80E+05	1.20E+09	0.000234

L is a query language defined over the alphabet composed of the global and source schema

ψ(q) corresponds to the application of ψ to the variables of q (idem for τ (w)).

MCDSAT [14] is the only query rewriting tool publicly available that counts the number of rewritings without enumerating all of them.

The 14 data sources setup is defined as in Listing 1.4, the one with 28 data sources has two views for each of the views in Listing 1.4, and the one with 224 sources has 16 views for each of the views in Listing 1.4

http://jena.apache.org/

https://sites.google.com/site/semanticlav/

Acknowledgments. We thank C. Li for providing his MiniCon code, and J. L. Ambite and G. Konstantinidis for sharing the GQR code for the evaluation. This work is partially supported by the French National Research agency (ANR) through the KolFlow project (code: ANR-10-CONTINT-025), part of the CON-TINT research program, and by USB-DID.

A Queries

In our experimental study, we evaluate the SPARQL queries proposed by Castillo-Espinola [START_REF] Castillo-Espinola | Indexing RDF data using materialized SPARQL queries[END_REF]. We only consider the SPARQL queries without constants or literals due to limitations of state-of-the-art rewriters.