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Abstract. Local-as-view mediators allow to query semantic heterogeneous data
sources such as linked data endpoints, open data servers or any available web
service. Nevertheless, the problem of rewriting conjunctive queries on LAV me-
diators is intractable in general, and the number of rewritings can be exponential
on the size of the query. Most important, in the context of the Semantic Web
even simple conjunctive SPARQL queries can be rewritten in millions of rewrit-
ings. In this paper, we propose SemLAV, a LAV mediation technique that relies
on Semantic Web technologies to execute SPARQL queries against data sources.
SemLAV implements a polynomial view selection algorithm to choose the rele-
vant views that can answer a given SPARQL query. Additionally, SemLAV im-
plements an execution strategy for gathering data from the relevant views and
outputs a great portion of the answer in a short time. We present an experimen-
tal study for SemLAV, and compare its performance with execution strategies for
LAV rewritings. The results suggest that SemLAV scales up to SPARQL queries
and a large number of views, while it significantly outperforms existing solutions.

1 Introduction

SPARQL federation engines attempt to execute queries against federations of SPARQL
endpoints. Although the great effort done by the community to make datasets acces-
sible by SPARQL endpoints, there are still a large number of open data sources and
services that do not support the SPARQL protocol and cannot be integrated by existing
federation engines. Nevertheless, traditional data integration approaches could be used
to perform SPARQL queries over heterogeneous data sources, and thus integrate and
provide a uniform interface to SPARQL endpoints, datasets and Web services.

Local-as-view (LAV) mediation [1] is a well-known and flexible approach to per-
form data integration over heterogeneous and autonomous data sources. A LAV media-
tor relies on views to define semantic mappings between an uniform interface defined at
the mediator level, and local schemas or views that describe the integrated data sources.
A LAV mediator relies on a query rewriter to translate a mediator query into the union
of queries against the local views. LAV is suitable for environments where data sources
frequently change, and entities of different types are defined in a single source, e.g.,
an open source that publishes data about restaurants and museums in different French
cities; further, LAV can naturally integrate sources from the Web of Data [2]. However,
LAV mediation has well known severe bottlenecks: (i) existing LAV query rewriters



only manage conjunctive queries, (ii) the query rewriting problem is NP-complete for
conjunctive queries, and (iii) the number of rewritings may be exponential.

SPARQL queries exacerbate LAV limitations, even in the case of conjunctions
of triple patterns. For example, in traditional database system, a LAV mediator with
140 conjunctive views can generate 10,000 rewritings for a conjunctive query with 8
goals [3]. In contrast, the number of rewritings for a SPARQL query can be much larger.
To explain, SPARQL queries are commonly comprised of a large number of triple pat-
terns and some may be bound to general predicates of the RDFS or OWL vocabularies,
e.g., rdf:type, owl:sameAs or rdfs:label, which are usually published by the ma-
jority of the data sources. Additionally, these triple patterns can be grouped into chained
connected star-shaped sub-queries [4]. Finally, a large number of variables can be pro-
jected out. Thus all these properties impacts on the complexity of the query rewriting
problem and conduces to the explosion of the number of query rewritings. For example,
a SPARQL query with 12 triple patterns that comprises three chained star-shaped sub-
queries can be rewritten using 300 views in billions of rewritings, whenever some triple
patterns in the query are bound to general predicates. This problem is even more chal-
lenging considering that statistics may be unavailable, and there are not clear criteria to
rank or prune the generated rewritings [5].

In this paper, we propose SemLAV, the first scalable LAV-based approach for the
Semantic Web. Given a SPARQL queryQ on a set of views V , SemLAV avoids produc-
ing and executing rewritings by processing the original queryQ over the aggregation of
data gathered from relevant views. As SemLAV executes the original query, it allows:
(i) executing full SPARQL queries, (ii) avoiding the query rewriting problem which is
NP-complete, (iii) making the query execution influenced by the number of relevant
views rather than the number of rewritings.

SemLAV builds an aggregation graph composed of data from relevant views; thus
space required to build this graph may be considerably larger than the space required
to execute all the query rewritings one by one. Nevertheless, evaluating the original
query once on the aggregation graph can produce the answers obtained executing all
the rewritings. To empirically evaluate the properties of SemLAV, we conducted an ex-
perimental study using the Berlin Benchmark [6] and queries and views designed by
Castillo-Espinola [7]. Results suggest that SemLAV outperforms existing algorithms
with respect to answers produced per time unit, and provides a scalable LAV-based
solution to the problem of executing SPARQL queries over data sources. The contribu-
tions of this paper are: (i) The first scalable and effective LAV-based approach for the
Semantic Web. (ii) Formalization of the problem of finding the set of relevant views
that maximizes the number of covered rewritings (MaxCov). (iii) An optimal solution
to the MaxCov problem for views without existential variables. (iv) A LAV-based query
engine able to execute full SPARQL queries, and produce answers incrementally.

The paper is organized as follows: section 2 presents basic concepts, definitions and
a motivating example. Section 3 defines the MaxCov problem, SemLAV query execu-
tion approach and algorithms. Section 4 reports our experimental study. Section 5 sum-
marizes related work. Finally, conclusions and future work are outlined in Section 6.
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2 Preliminaries

Definition 1. An RDF LAV integration system is 3-tuple IS=<MS,S,V>, where MS is a
mediator RDF vocabulary or schema, S is a set of data sources, and V = {v1, . . . , vm}
is a set of the LAV views that define the sources in S. Views are defined as SPARQL
queries over the mediator RDF vocabulary MS. D is a virtual RDF dataset on the
mediator RDF vocabulary MS.

Definition 2. Let IS=<MS,S,V>, I = {I(v1), . . . , I(vm)} and Q be an RDF LAV
integration system, a set of instances of the views in V and a SPARQL query expressed
in terms of MS, where an instance of a view, I(vi), is a subset of the result set of
evaluating the SPARQL query that defines the view vi over D, i.e., I(vi) ⊆ vi(D). This
means that data sources might be incomplete and have only some of the RDF triples
fromD that satisfy the view definition. The problem of computingQ over V corresponds
to answer Q using the instances of the views in V .

Although this problem has been extensively studied by the Database community [8],
it has never been addressed for SPARQL queries.

In the context of conjunctive queries, some approaches have been proposed to solve
this problem by proposing a solution to the Query Rewriting Problem using views
(QRP)[3, 9]. Thus query rewriters have been developed to rewrite a conjunctive query
over the mediator schema into query rewritings on the views [10, 11]. In general, a
query rewriter performs two steps: view selection and query rewriting. During the view
selection step, the query rewriter identifies the set of relevant views for each query sub-
goal q in the body of Q. A view v is relevant to a query subgoal q, if q is part of the
subgoals that define the view v.

Definition 3. The set of relevant views for a subgoal q ∈ body(Q) is defined as:
RV (V, q) = {v : v ∈ V ∧ covers(v, q)}, we say that view v covers subgoal q if
there exists a mapping τ from V ars(Q) → V ars(V ) such that τ(q) = g for g a view
subgoal of v.

Once relevant views are chosen, the rewriter algorithm combines these views to
produce the query rewritings.

Definition 4. A rewriting is a conjunctive query r(x̄) :- v1(x̄1), . . . , vm(x̄n) where vi ∈
V and vi is a relevant view. The body of each query rewriting contains a relevant view
that covers each subgoal of Q.

A query rewriting must be contained in Q, i.e., for all dataset D and a set of views
V over D, the result set of executing r in V is contained in the result set of executing
Q over D, i.e., r(I(v1), . . . , I(vn)) ⊆ Q(D). Existing solutions are tailored to find the
maximally-contained rewriting.

Maximally Contained Query Rewriting Problem (QRP). Given a conjunctive query
Q and a set of views V = { v1, . . . , vn } over a dataset D, QRP is to find a set of rewrit-
ings R, called the solution of the QRP, such that:
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– For all instances of the views in the bodies of all rewritings in R, the union of the
results of executing each query rewriting is contained in the result of executing Q
in D, i.e.,

⋃
r∈R r(I(v1), . . . , I(vn)) ⊆ Q(D)

– R is maximal, i.e., there is no other set R′, such that:⋃
r∈R

r(I(v1), . . . , I(vn)) ⊂
⋃
r′∈R′

r′(I(v1), . . . , I(vn)) ⊆ Q(D)

Theorem 1. Let N, M and V be the number of query subgoals, the maximal number of
views subgoals, and the set of views, the number of candidate rewritings in the worst
case is: (M × |V |)N [2].

Theorem 2. Time complexity of QRP is NP-Complete [8].

We illustrate the limitations of the LAV-based query rewriting approach for SPARQL
queries through an example. In the following example, the global schema is defined over
the Berlin Benchmark [6] vocabulary. Consider two SPARQL queriesQ1 andQ2 [7] on
our global schema; Q1 has 7 subgoals and provides different information about prod-
ucts as shown in Listing 1.1. Further, Q2 has 12 subgoals and retrieves information
about products, producers and publishers as show in Listing 1.2.

SELECT ∗
WHERE {

?X1 rdfs: label ?X2 .
?X1 rdfs:comment ?X3 .
?X1 bsbm:productPropertyTextual1 ?X8 .
?X1 bsbm:productPropertyTextual2 ?X9 .
?X1 bsbm:productPropertyTextual3 ?X10 .
?X1 bsbm:productPropertyNumeric1 ?X11 .
?X1 bsbm:productPropertyNumeric2 ?X12 .
}

Listing 1.1: SPARQL Q1

SELECT ∗
WHERE {

?X1 rdfs: label ?X2 .
?X1 rdfs:comment ?X3 .
?X1 bsbm:producer ?X4 .
?X4 rdfs: label ?X5 .
?X1 dc:publisher ?X4 .
?X1 bsbm:productFeature ?X6 .
?X6 rdfs: label ?X7 .
?X1 bsbm:productPropertyTextual1 ?X8 .
?X1 bsbm:productPropertyTextual2 ?X9 .
?X1 bsbm:productPropertyTextual3 ?X10 .
?X1 bsbm:productPropertyNumeric1 ?X11 .
?X1 bsbm:productPropertyNumeric2 ?X12 .
}

Listing 1.2: SPARQL Q2

Consider 14 data sources defined as conjunctive views over the global schema as
in Listing 1.3; the Berlin Benchmark [6] vocabulary terms are represented as binary
predicates in the conjunctive queries that define the data sources.

For instance, s1 retrieves information about product type, label and product feature.
The label predicate is a general predicate. Commonly, general predicates are part of
the definition of many data sources, and the number of rewritings of SPARQL queries
that comprise triple patterns bound to general predicates, can be very large. Thus the
general predicate rdfs:label in queries Q1 and Q2 can be mapped to views s1, s3-
s7, s11-17. To illustrate how the number of rewritings for Q1 and Q2 can be affected
by the number of data sources that publish the general predicate rdfs:label, we
use the LAV query rewriter MCDSAT3 [9]. First, if 14 data sources are considered, Q1

3 MCDSAT [9] is only one publicly available that outputs the number of rewritings without
enumerating all of them.
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can be rewritten in 42 rewritings. For 28 data sources, there are 5,376 rewritings, and
1.12743e+10 rewritings are produced for 224 sources. Because Q2 has a larger number
of triple patterns and three of them are bound to the general predicate rdfs:label,
we obtain 658,560 rewritings for 14 data sources, and similarly to Q1 if more data
sources are considered, the number of rewritings grows exponentially. For 28 sources,
MCDSAT computes 2.69746e+09 rewritings, while 1.85368e+20 rewritings are calcu-
lated for 224 views. Just with two simple queries, we can illustrate that the number of
rewritings can be extremely large, being in the worst case exponential in the number of
query subgoals and views.

s1(X1,X2,X3,X4):−label(X1,X2),type(X1,X3),productfeature(X1,X4)
s2(X1,X2,X3):−type(X1,X2),productfeature(X1,X3)
s3(X1,X2,X3,X4):−producer(X1,X2),label(X2,X3),publisher(X1,X2),productfeature(X1,X4)
s4(X1,X2,X3):−productfeature(X1,X2),label(X2,X3)
s5(X1,X2,X3,X4,X5,X6,X7):−label(X1,X2),comment(X1,X3),producer(X1,X4),label(X4,X5),publisher(X1,

X4),productpropertytextual1(X1,X6),productpropertynumeric1(X1,X7)
s6(X1,X2,X3,X4,X5):−label(X1,X2),product(X3,X1),price(X3,X4),vendor(X3,X5)
s7(X1,X2,X3,X4,X5,X6):−label(X1,X2),reviewfor(X3,X1),reviewer(X3,X4),name(X4,X5),title(X3,X6)
s9(X1,X2,X3,X4):−reviewfor(X1,X2),title(X1,X3),text(X1,X4)
s10(X1,X2,X3):−reviewfor(X1,X2),rating1(X1,X3)
s11(X1,X2,X3,X4,X5,X6,X7):−label(X1,X2),comment(X1,X3),producer(X1,X4),label(X4,X5),publisher(X1,

X4),productpropertytextual2(X1,X6),productpropertynumeric2(X1,X7)
s12(X1,X2,X3,X4,X5,X6,X7):−label(X1,X2),comment(X1,X3),producer(X1,X4),label(X4,X5),publisher(X1,

X4),productpropertytextual3(X1,X6),productpropertynumeric3(X1,X7)
s13(X1,X2,X3,X4,X5,X6,X7):−label(X1,X2),product(X3,X1),price(X3,X4),vendor(X3,X5),offerwebpage(X3,

X6),homepage(X5,X7)
s14(X1,X2,X3,X4,X5,X6,X7):−label(X1,X2),product(X3,X1),price(X3,X4),vendor(X3,X5),deliverydays(X3,

X6),validto(X3,X7)
s15(X1,X2,X3,X4,X5,X6,X7,X8,X9):−product(X1,X2),price(X1,X3),vendor(X1,X4),label(X4,X5),country(X4,

X6),publisher(X1,X4),reviewfor(X7,X2),reviewer(X7,X8),name(X8,X9)

Listing 1.3: Views s1-s10 from [7]

In addition to the problem of enumerating this large number of query rewritings, the
time needed to compute them may be excessively large. Even using reasonable time-
outs, only a small number of rewritings may be produced. Table 1 shows the number of

Query Rewriter 5 minutes 10 minutes 20 minutes
Q1 GQR 0 0 0

MCDSAT 211,125 440,308 898,766
MiniCon 0 0 0

Q2 GQR 0 0 0
MCDSAT 67,028 157,909 335,063
MiniCon 0 0 0

Table 1: Number of rewritings obtained from rewriters GQR, MCDSAT and MiniCon
with timeouts of 5, 10 and 20 minutes. Using 224 views and queries Q1 and Q2.

rewritings obtained by state-of-the-art LAV rewriters GQR[3], MCDSAT[9] and Mini-
Con[11] when 224 views are considered for queries Q1 and Q2 and timeouts are set
up to 5, 10 and 20 minutes. Note that all these engines are able to produce only empty
results or a small number of rewritings.
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Finally, because general predicates correspond to terms used to define properties of
resources of any domain, views defined in terms of these predicates do not necessar-
ily contribute to answer queries that comprise triple patterns bound to them, e.g., the
general predicate rdfs:label in view s7 is used to describe reviews and not pro-
ducers as in Q2. Thus, although all the query rewritings were computed for Q2, the
performance of the query engine would be affected by the execution of useless query
rewritings, as the ones that comprise view s7. In summary, even if the LAV approach
constitutes a flexible approach to make data from heterogeneous data sources available,
query rewriting and processing tasks may be unfeasible in the context of the Semantic
Web. Either the number of query rewritings is too large to be enumerated or executed in
a reasonable time. To overcome these limitations and make feasible the LAV approach
for the Semantic Web, we propose a novel approach that identifies a query relevant
views, and by executing the original query over the data gathered from the relevant
views, outputs a high percentage of the answer in short time.

3 The SemLAV Approach

SemLAV is a LAV approach for the Semantic Web. It considers that no statistics about
the data sources are available due to their highly dynamic nature. SemLAV follows
the traditional Mediator and Wrappers architecture [12]. Given SPARQL query Q over
a set of views V = { v1, . . . , vn } defined over a dataset D, SemLAV avoids pro-
ducing and executing rewritings by running the original query Q over the aggrega-
tion of data gathered from relevant views defined in V . In order to make the original
query executable, SemLAV needs special wrappers. Traditional wrappers return the
instantiation of the head of views, SemLAV wrappers return the instantiation of the
body of views. For example, if the relevant view s1 defined as s1(X1, X2, X3, X4) :

−label(X1, X2), type(X1, X3), productfeature(X1, X4) is part of a rewriting to be ex-
ecuted, the s1 wrapper will produce tuples with values for variables X1, X2, X3, X4
in relation s1(X1, X2, X3, X4). SemLAV wrappers will produce a graph defined by
the body of s1 with values for variables, i.e., X1 rdfs : label X2 . X1 rdf : typeX3 .
X1 bsbm : productFeatureX4. SemLAV wrappers could be more expensive in space
than traditional wrappers, especially in presence of existential variables in views. How-
ever it allows to execute full SPARQL queries and makes the query execution dependent
on the number of relevant views and no more on the number of rewritings. As stated be-
fore, in the context of SPARQL queries and the Semantic Web, the number of relevant
views is lower by an exponential factor.

If all relevant views for query Q can be aggregated, SemLAV produces complete
answers. However, the number of relevant views could be considerably large. If we
only have resources to consider k relevant views, Vk, we should consider the ones that
increase the chance of obtaining answers. We define the chance of obtaining answers is
proportional to the number of rewritings that Vk covers, i.e., the number of rewritings
that only use views present in Vk. Moreover, the order in which views are aggregated has
an impact in answers’ generation time, then the views should be considered accordingly
to their chance of producing answers.
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Maximal Coverage Problem (MaxCov). Given k > 0, Q a query defined for dataset
D, V a set of views over dataset D, R solution of QRP for Q and V . Let Vk be subset
of V of relevant views for Q of size k. Find Vk, such that the set of rewritings covered
by Vk, MaxCov(Vk, R), is maximal for all subsets of V of size k. MaxCov(Vk, R) is
defined as:

MaxCov(Vk, R) = {r : r ∈ R ∧ (∀p : p ∈ body(r) : p ∈ Vk)}

Let Q be Q(X̄) :- p1(X̄1), . . . pn(X̄n), the number of rewritings covered by Vk in
the worst case is: |MaxCov(Vk, R)| = |RV (Vk, p1)| × . . . |RV (Vk, pn)|, with RV as
stated in Definition 3, RV (Vk, pi) = {v : v ∈ Vk ∧ covers(v, pi)}.

This corresponds to the number of combinations that could be generated by the Vk
relevant views, with one view per query subgoal. And it coincides with the number
of rewriting for queries without existential variables. Let Rk ⊆ R be the subset of
rewritings covered by Vk, the following expression holds:

Q(I(Vk)) =
⋃
r∈Rk

r(I(Vr)) ⊆ Q(D)

The execution of the original query over the union of the relevant views Vk is equiv-
alent to the execution of the rewritings r ∈ Rk over the instance of views in r. This is
contained in the execution of the original query over the dataset D. If MaxCov(Vk, R)
is equal to R then the complete answer will be generated.

For the rest of the paper, we consider that views contain only distinguished vari-
ables, which correspond to the worst case in terms of number of rewritings. This as-
sumption allow us to compute the number of covered rewritings for Q using only views
in Vk as |RV (Vk, p1)| × |RV (Vk, p2)| . . . |RV (Vk, pn)|. Otherwise, this formula is just
an upper bound.

3.1 SemLAV Relevant Views Selection and Ranking

The relevant views selection and ranking algorithm finds the views that can cover each
of the query subgoals. This algorithm is similar to the first step of Bucket algorithm[8].
It creates a bucket for each query subgoal q. The main difference is that our algorithm
sorts the Buckets’ views according to the number of subgoals they cover. Hence, the
views that are more likely to contribute to the answer will be considered first. The view
selection and ranking algorithm is defined in Algorithm 1.

The mapping τ relates the variables in a predicate of a view to the variables in a
subgoal of Q, it corresponds to the identity mapping4 for query variables and a valid
transformation for query constants. Let upper case letters be variables and lower case
be constants, if the query contains p1(X,Y ), p1(Y,W ) and p1(W, z), and some view
v1(A,B,C) contains p1(A,B), then v1(A,B,C) and v1(A, z, C) should be included
in the buckets. Since the buckets will not be used to generate rewritings there is not need
to consider v1(X,Y, 0) and v1(Y,W, 1) as a rewriting algorithm could do. If such a
mapping exists between a predicate in a view v and a subgoal q of Q, we can add the

4 The identity mapping Id, is defined as Id(X) = X, for all values of X.
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Algorithm 1 Relevant views selection and ranking
Require: Q : SPARQL Query
Require: V : Set of Views defined as conjunctive queries
Ensure: Buckets: Predicate→ List<View>

for all q ∈ body(Q) do
buckets(q)←∅

end for
for all q ∈ body(Q) do
b← buckets(q)
for all v ∈ V do

for all w ∈ body(v) do
Let τ be a mapping from V ars(w) to V ars(w)

⋃
Constants

if τ exists then
vi ← λ(v) {λ(v) replaces all variables ai in the head of v by τ(ai)}
insert(b, vi) {add vi to the bucket if is not redundant}

end if
end for

end for
end for
for all q ∈ body(Q) do
b← buckets(q)
sortBucket(buckets, b, q)

end for

view result of applying τ to the variables in the head of v (represented in the algorithm
by the λ function) to the subgoal bucket if it is not redundant. That is, the bucket does
not contain an occurrence of this view whose instantiation contains the instantiation of
v, e.g., if the view v(X,Y ) with X and Y variables is already in the bucket, the view
v(X, c) with c constant will not be added as it is contained in v(X,Y ).

The sortBucket(buckets, b, q) procedure sorts decreasingly the views of bucket b
by the number of subgoals they cover. Views covering the same number of subgoals
are sorted increasingly according to their number of subgoals. Intuitively, this second
sort criteria prioritizes the more selective views, reducing the size of the loaded dataset.
The sorting is implemented as a classical MergeSort algorithm with a complexity of
O(|V | × log(|V |).

Proposition 1. The complexity of Algorithm 1 isMax(O(N×|V |×M), O(N×|V |×
log(|V |)) where N is the number of query subgoals, V the set of views and M the maxi-
mal number of view subgoals.

To illustrate Algorithm 1, consider a query with 4 subgoals:
Q(O,V,L,P,F) :- vendor(O, V), label(V,L), product(O,P), productfeature(P,F)
and 5 data sources:

v1(P,L,T,F):−label(P,L),type(P,T),productfeature(P,F)
v2(P,R,L,B,F):−producer(P,R),label(R,L),publisher(P,B),productfeature(P,F)
v3(P,L,O,R,V):−label(P,L),product(O,P),price(O,R),vendor(O,V)
v4(P,O,R,V,L,U,H):−product(O,P),price(O,R),vendor(O,V),label(V,L),offerwebpage(O,U),homepage(V,H)
v5(O,V,L,C):−vendor(O,V),label(V,L),country(V,C)

Algorithm 1 creates a bucket for each subgoal in Q as shown in Table 2a.
For instance, the bucket of subgoal vendor(O, V ) contains v3, v4 and v5: all the

views having a subgoal covering vendor(O, V ). The final output after executing the
sortBucket procedure is described in Table 2b.
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vendor(O, V) label(V, L) product(O, P) productfeature(P, F)
v3(P, L, O, R, V) v1(P, L, T, F) v3(P, L, O, R, V) v1(P, L, T, F)
v4(P, O, R, V, L, U, H) v2(P, R,L, B, F) v4(P, O, R, V, L, U, H) v2(P, R,L, B, F)
v5(O,V,L,C) v3(P, L, O, R, V)

v4(P, O, R, V, L, U, H)
v5(O, V, L, C)

(a) Unsorted buckets

vendor(O, V) label(V, L) product(O, P) productfeature(P, F)
v4(P, O, R, V, L, U, H) v4(P, O, R, V, L, U, H) v4(P, O, R, V, L, U, H) v2(P, R,L, B, F)
v3(P, L, O, R, V) v3(P, L, O, R, V) v3(P, L, O, R, V) v1(P, L, T, F)
v5(O,V,L,C) v2(P, R,L, B, F)

v1(P, L, T, F)
v5(O, V, L, C)

(b) Sorted buckets

# Included views (k) Included views (Vk) # Covered rewritings
1 v4 1 × 1 × 1 × 0 = 0
2 v4, v2 1 × 2 × 1 × 1 = 2
3 v4, v2, v3 2 × 3 × 2 × 1 = 12
4 v4, v2, v3, v1 2 × 4 × 2 × 2 = 32
5 v4, v2, v3, v1, v5 3 × 5 × 2 × 2 = 60

(c) Included views
Table 2: For query Q, buckets produced by Algorithm 1, and included views when
including only k views as done by Algorithm 2 and their number of covered rewritings.

The v4 and v3 views cover three subgoals, but since v4 definition has more sub-
goals, i.e., it is more selective, v4 is in first place in buckets that contain it. The next
step is to use these views to build the dataset for executing Q.

3.2 Dataset Construction and Query Execution

Once the views have been selected and ranked according to their coverage, they are
included in a dataset as described in Algorithm 2. Each bucket is considered as a stack
of views, having on the top the view that covers more query subgoals. The dataset is
constructed by iteratively popping one view from each bucket and aggregating it in a
dataset.

Table 2c shows the included views as the number of included views increases. All
Vk shown is a solution to the MaxCov problem, i.e., the number of covered rewritings
is maximal. There are two options regarding when the query is executed: one, execute it
each time a new view is included in a dataset; two, execute it at the end of the execution.
The first option corresponds to a setup where we prioritize the time for obtaining the
first answer; the second one prioritizes the total time to get all the answers of Q over
Vk.

Proposition 2. The complexity of Algorithm 2 is O(k× V I), where k is the number of
included views and V I is the size of the largest view instance.

Proposition 3. Algorithm 2 finds a solution to the MaxCov problem.
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Algorithm 2 Dataset Construction and Query Evaluation
Require: Q : Query
Require: Buckets: Predicate→ List<View> {The buckets are produced by Algorithm 1}
Require: k : Int
Ensure: A: Set<Answer>
Stacks : Predicate→ Stack<View>
Vk : Set<View>
G : RDFGraph
for all p ∈ domain(Buckets) do
Stacks(p)← toStack(Buckets(p))

end for
while (∃p| : ¬empty(Stacks(p))) ∧ |Vk| < k do

for all p ∈ domain(Stacks) do
v ← pop(Stack(p))
if v /∈ Vk then

load v into G {only if is not redundant}
A← A ∪ exec(Q,G) {Option 1: Execute Q after each successful load}
Vk ← Vk ∪ {v}

end if
end for

end while
A← exec(Q,G){Option 2: execute before exit}

Proof. By contradiction, suppose the constructed set Vk is not maximal in terms of
covered rewritings, then there is another set V ′k of size k that covers more rewritings
than Vk, let r be one of the rewritings that V ′k covers and Vk does not. r should include
a view that does not belong to Vk, and since this view was not included then it should
cover the same or less subgoals than the included views. If it covers the same number of
query subgoals, then it does not contribute to cover more rewritings because to include
it, another view that covers the same or more subgoals should be not considered, then it
does not appears in r. If it covers less query subgoals, then including it instead of any
included view decreases the number of covered subgoals, then V ′k does not cover more
rewritings than Vk.

3.3 SemLAV’s Properties

We state some properties of SemLAV and compare it with rewriting based approaches.
Given a SPARQL query Q, a set of views V on a dataset D, RV the set of relevant
views for Q and R a solution to the QRP of Q over V .

– Answer Completeness: If SemLAV executes Q over a dataset instance Di that in-
cludes all data gathered from views in RV , then it will produce the complete an-
swer, i.e., SemLAV will produce the same answers as rewriting based approaches:⋃
r∈R r(I(V )) = Q(

⋃
v∈RV I(v)).

– Effectiveness: We define the Effectiveness of SemLAV as:
Effectiveness(Vk) = |MaxCov(Vk,R)|

|R| .
Where Vk corresponds to the set of relevant views included in the dataset instance
Di. For an execution constrained by time or space, Vk could be smaller than RV .

– Execution Time depends on |RV |: The load and execution time of SemLAV linearly
depends on the size of the views loaded into the aggregation graph.

10



Query Answer Size # Subgoals
Q1 6.68E+07 5
Q2 5.99E+05 12
Q4 2.87E+02 2
Q5 5.64E+05 4
Q6 1.97E+05 3
Q8 5.64E+05 3
Q9 2.82E+04 1

Q10 2.99E+06 3
Q11 2.99E+06 2
Q12 5.99E+05 4
Q13 5.99E+05 2
Q14 5.64E+05 3
Q15 2.82E+05 5
Q16 2.82E+05 3
Q17 1.97E+05 2
Q18 5.64E+05 4

(a) Query size

Views Size
V1-V34 201,250

V35-V68 153,523
V69-V102 53,370

V103-V136 26,572
V137-V170 5,402
V171-V204 66,047
V205-V238 40,146
V239-V272 113,756
V273-V306 24,891
V307-V340 11,594
V341-V374 5,402
V375-V408 5,402
V409-V442 78,594
V443-V476 99,237
V477-V510 1,087,281

(b) Views size

Table 3: Queries and their answer size and number of subgoals, and views size.

– No memory blocking: SemLAV guarantees to obtain complete answer when
⋃
v∈RV I(v)

fits in memory. If not, it is necessary to divide this set of relevant views RV into
several subsets RV i such that each subset fits into the memory and that for any
r ∈ R all views v ∈ body(r) are contained in one RV i. It is possible to obtain an
approximate solution, following an heuristic that considers only a subset of RV is.

4 Experimental Evaluation

We compare SemLAV approach with rewriting based approaches and analyse SemLAV’s
effectiveness, memory consumption and throughput. We report results with MCDSAT
rewriter since it has better performance in terms of number of rewritings generated
per time unit for the considered setup5. We evaluate only conjunctive queries because
MCDSAT is limited to these queries.

4.1 Experimental setup

We used the Berlin SPARQL Benchmark (BSBM) [6] to generate a dataset of 10,000,736
triples using a scale factor of 28,211 products. We used a third part queries and views
to have no biased evaluation of our approach. We used the 16 of 18 queries and the 9
of 10 views defined in [7] that do not use constants because MCDSAT does not handle
constants. Queries triple patterns can be grouped into chained connected star-shaped
sub-queries, that have between 1 and 12 subgoals, with only distinguished variables.
We defined 5 additional views to cover all the predicates in the queries. From these 14
views, we produced 476 views by horizontally partitioning each original view into 34
parts, such that each part produces 1/34 of the answers given by the original view.

5 Rewriting generation results with different rewriters are available in the project website:
https://sites.google.com/site/semanticlav/
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Query Included Views # Relevant Views # Rws covered # Rewritings Effectiveness
Q1 28 408 1.61E+06 2.04E+10 0.000079
Q2 194 408 2.05E+23 1.57E+24 0.130135
Q4 56 374 1.90E+03 1.62E+04 0.117647
Q5 52 374 3.13E+06 7.48E+07 0.041770
Q6 44 136 2.13E+04 3.14E+05 0.067728
Q8 81 136 9.36E+04 1.57E+05 0.595588
Q9 34 34 3.40E+01 3.40E+01 1.000000
Q10 80 408 2.60E+05 4.40E+06 0.059045
Q11 77 136 5.24E+03 9.25E+03 0.566176
Q12 232 408 7.06E+08 1.50E+09 0.471565
Q13 126 408 1.30E+04 6.47E+04 0.200754
Q14 46 272 1.22E+04 2.52E+06 0.004837
Q15 70 442 5.12E+08 2.04E+10 0.025144
Q16 82 136 1.90E+05 3.14E+05 0.602941
Q17 56 136 1.90E+03 4.62E+03 0.411765
Q18 23 374 2.80E+05 1.20E+09 0.000234

Table 4: SemLAV’s Effectiveness. For 10 minutes of execution, we report the number
of relevant views included in the dataset, the number of covered rewritings and the
achieved effectiveness. Also values for total number of views and rewritings are shown.

Queries and views information is shown in Tables 3a and 3b. The size of the com-
plete answer was computed by loading all the views into a RDF-Store (Jena) and exe-
cuting the queries over it.

We implemented wrappers as simple file readers. For executing rewritings, we used
one named graph per subgoal as done in [13]. The Jena 2.7.4 6 library with main mem-
ory setup was used to store and query the graphs. SemLAV algorithms were imple-
mented in Java, using different threads for bucket construction, view inclusion and
query execution to improve performance.

4.2 Experimental Results

The analysis of our results focus on three main aspects: SemLAV’s effectiveness, mem-
ory consumption and throughput.

To demonstrate SemLAV’s effectiveness, we executed SemLAV with a timeout of
10 minutes. During this execution SemLAV algorithms selected and included a subset
of relevant views, this set corresponds to Vk as solution to the MaxCov problem. Then,
we use these views to calculate the number of covered rewritings using the formula
given in section 3. Table 4 shows the number of relevant views considered by SemLAV,
the covered rewritings and the effectiveness achieved. The achieved effectiveness is
greater or equal than 0.5 out of 1 for some queries. The set of gathered relevant views
covers a large number of rewritings, i.e., all the rewritings using only views in this set.
SemLAV strategy of considering views that cover more subgoals first maximizes the
number of covered rewritings.

The observed results confirms that SemLAV effectiveness is considerably high. Ef-
fectiveness depends on the number of relevant views considered, but this number is
bounded to the number of relevant views that can be stored in memory. As expected
the SemLAV approach could require more space than the rewriting based approach.
SemLAV builds an aggregation dataset that includes all relevant views, whereas a query

6 http://jena.apache.org/
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Query Approach Answer Time (msecs) #EQ MGS Throughput
Size % WT GCT PET TT TFA (answers / sec)

Q1 SemLAV 22,246,301 33 52,256 9,195 542,987 604,286 5,902 15 801,627 36.8142
MCDSAT 317 0 12,504 62 311,662 600,680 289,030 810,409 0.0005

Q2 SemLAV 590,000 98 177,020 30,676 392,439 600,656 260,333 66 1,040,373 0.9823
MCDSAT 0 0 0 0 0 600,000 >600,000 0 0.0000

Q4 SemLAV 287 100 560,677 70,965 301 632,062 115,906 31 3,412,246 0.0005
MCDSAT 0 0 155,351 174 189,524 612,940 >600,000 279,896 0.0000

Q5 SemLAV 564,220 100 523,084 65,333 44,102 632,809 116,037 28 3,396,134 0.8916
MCDSAT 0 0 405,759 344 25,687 602,473 >600,000 424,431 0.0000

Q6 SemLAV 118,258 59 547,763 62,896 13,291 625,173 43,306 24 2,931,316 0.1892
MCDSAT 5,776 2 403,348 811 56,610 601,086 100,452 91,900 0.0096

Q8 SemLAV 564,220 100 428,745 66,383 132,373 627,612 5,393 42 4,489,016 0.8990
MCDSAT 16,595 2 402,012 449 66,506 601,117 107,382 256,382 0.0276

Q9 SemLAV 28,211 100 2,938 697 1,338 5,107 1,235 18 169,839 5.5240
MCDSAT 28,211 100 3,310 124 1,314 37,069 32,774 5,417 0.7610

Q10 SemLAV 2,993,175 100 171,013 25,337 404,418 600,989 8,065 43 824,834 4.9804
MCDSAT 228,349 7 9,572 46 256,702 448,288 191,471 603,768 0.5094

Q11 SemLAV 2,993,175 100 195,950 27,442 377,255 601,042 8,352 43 816,308 4.9800
MCDSAT 1,907,730 63 91,753 96 264,353 420,335 71,618 402,513 4.5386

Q12 SemLAV 598,635 100 234,632 39,574 328,225 602,828 3,068 119 1,036,395 0.9930
MCDSAT 0 0 424,818 325 15,730 601,307 >600,000 509,271 0.0000

Q13 SemLAV 598,635 100 488,922 67,080 78,313 634,433 157,221 67 3,527,436 0.9436
MCDSAT 0 0 248,692 193 142,694 607,291 >600,000 402,531 0.0000

Q14 SemLAV 344,885 61 544,919 58,563 32,752 636,387 29,201 24 2,921,646 0.5419
MCDSAT 10,308 1 397,880 425 62,664 624,110 130,015 1,206,146 0.0165

Q15 SemLAV 282,110 100 471,609 63,548 109,762 645,172 2,911 37 3,255,223 0.4373
MCDSAT 8,298 2 89,588 183 175,862 625,689 204,674 361,882 0.0133

Q16 SemLAV 282,110 100 407,107 53,611 187,986 648,826 2,531 46 3,356,755 0.4348
MCDSAT 8,298 2 437,477 747 33,289 600,928 100,343 74,682 0.0138

Q17 SemLAV 197,112 100 547,255 67,857 28,783 644,090 1,504 32 3,002,144 0.3060
MCDSAT 150,736 76 431,549 1,587 52,683 600,374 67,644 23,192 0.2511

Q18 SemLAV 0 0 582,334 65,083 3,543 651,094 >600,000 12 2,806,533 0.0000
MCDSAT 0 0 255,801 256 101,093 602,413 >600,000 411,901 0.0000

Table 5: Execution of Queries Q1, Q2, Q4-Q6, Q8-Q18 using SemLAV and MCDSAT,
using 20GB of RAM and a timeout of 10 minutes. It is reported the number of answers
obtained, wrapper time (WT), graph creation time (GCT), plan execution time (PET),
total time (TT) and time of first answer (TFA), number of times original query is exe-
cuted (#EQ), maximal graph size (MGS) in terms of number of triples and throughput
(number of answers obtained per millisecond).

rewriter approach includes only the views in a rewriting. Table 5 shows the maximal
graph size in both approaches. SemLAV can use up to 129 times more memory than
the rewriting based approach (for Q17), but it is also possible that SemLAV uses less
memory than the rewriting based approach (for Q1) for sources with overlapped data.
This additional memory enhances SemLAV’s performance in terms of throughput.

We calculated the throughput as the number of answers divided by the total execu-
tion time. For SemLAV, this time includes view selection and ranking, contacting data
sources using the wrappers, loading data into the aggregated graph, and plan execu-
tion time. For MCDSAT, this time includes rewriting time, instead of view selection
and ranking. Table 5 shows the queries’ execution time, number of answers, throughput
and number of times original queries are executed. Notice that we execute the original
queries if a new relevant view has been included and the executing thread is active.

The difference in answers’ size and throughput is impressive, i.e., for Q1 SemLAV
produces 36,831 answers/sec, while the other approach produces 0 answers/sec. The
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reasons of this huge difference most likely are the difference in complexity of the rewrit-
ing generation and SemLAV’s view selection and ranking, and the difference between
the number of rewritings and number of relevant views. This makes possible to gener-
ate more answers sooner. Column TFA of Table 5 shows the time of first answer, only
for query Q18 SemLAV does not produce any answer in 10 minutes because the views
included in the dataset are big (around 1 million triples per view) but not contributing
to results. Consequently, most execution time is spent in data transferring from sources.
In all the other cases SemLAV produces answers sooner, this value also is impacted by
executing the original query as often as possible, according to option 1 given in Algo-
rithm 2. Moreover, SemLAV also achieved complete answer in 11 of 16 queries in only
10 minutes.

In summary, the results show that SemLAV is effective and efficient and produces
more answers sooner than the traditional LAV query rewriting approaches. SemLAV
makes LAV approach feasible for the Semantic Web.

5 State of the art

In recent years, several approaches have been proposed for querying the Web of Data [14–
18]. Some tools address the problem of choosing the sources that can be used to execute
a query [17, 18]; others have developed techniques to adapt query processing to source
availability [14, 17]. Finally, frameworks to retrieve and manage Linked Data have been
defined [15, 17], as well as strategies for decomposing SPARQL queries against federa-
tions of endpoints [5]. All these approaches assume that queries are expressed in terms
of RDF vocabularies used to describe the data in the RDF sources; thus their main chal-
lenge is to effectively select the sources, and efficiently execute the queries on the data
retrieved from the selected sources. In contrast our approach attempts to semantically
integrate data sources, and relies on a global vocabulary to describe data sources and
provide a unified interface to the users. As a consequence, in addition to collecting and
processing data transferred from the selected sources, it decides which of these sources
need to be contacted first, to quickly answer the query.

Two main paradigms have been proposed to integrate dissimilar data sources. In
GAV mediators, entities in the RDF global vocabulary are semantically described using
views in terms of the data sources. In consequence, including or updating data sources
may require the modification of a large number of mappings [19]. In contrast, the LAV
approach, new data sources can be easily integrated [19]; further, data sources that pub-
lish entities of several concepts in the RDF global vocabulary, can be naturally defined
as LAV views. Thus the LAV approach is best suited for applications with a stable RDF
global vocabulary but with changing data sources whereas the GAV approach is best
suited for applications with stable data sources and a changing vocabulary. Given the
nature of the Semantic Web, we rely on the LAV approach to describe data sources as
views over a global RDF vocabulary, and assume that the global vocabulary of concepts
is stable while data sources may constantly pop up or disappear from the Web.

The problem of rewriting a global query into queries on the data sources is one
relevant problem in integration systems [10], and several approaches have been de-
fined to efficiently enumerate the query rewritings and to scale when a large number of

14



views exists (e.g., MCDSAT [9], GQR [3], Bucket Algorithm [10], MiniCon [8]). Re-
cently, Le et al, [13] propose a solution to identify and combine GAV SPARQL views
that rewrite SPARQL queries against a global vocabulary, and Izquierdo et al [20] ex-
tends the MCDSAT with preferences to identify the combination of semantic services
that rewrite a user request. A great effort has been made to provide solutions able to
produce query rewritings in the least time possible. Recently, Montoya et al propose
GUN [21], an strategy to maximize the number of answers obtained from a given set
of k rewritings, GUN aggregates the data obtained from the relevant views present in
those k rewritings and executes the original query over it. Even if GUN maximizes the
number of answers obtained, it still depends on query rewritings as input, and has no
criteria to select the order in which views are aggregated.

We address this problem and propose SemLAV, a query processing technique for
RDF store architectures that provide a uniform interface to data sources that have been
defined using the LAV paradigm [1]. SemLAV gets rid of the query rewriters, and
focuses on selecting relevant views for each subgoal of the input query. Moreover,
SemLAV decides which relevant sources will be contacted first, and gathers the re-
trieved data into an aggregated graph where the input query is executed. At the cost of
memory consumption, SemLAV is able to quickly produce first answers, and compute
a more complete answer when the rest of the engines fail. Since the number of valid
query rewritings can be exponential in the number of sources, providing an effective
and efficient semantic data management technique as SemLAV is a relevant contribu-
tion to the implementation of integration systems, and provides the basis for feasible
semantic integration architectures in the Web of Data.

6 Conclusions and Future Work

In this paper, we presented SemLAV, a local-as-view mediation technique that allows
to perform SPARQL queries over views without facing problems of NP-completeness,
exponential number of rewritings or restriction to conjunctive SPARQL queries. This
is obtained at the price of aggregating relevant views, which is space consuming. How-
ever, we demonstrated that, even if only a subset of relevant views is aggregated, as
it covers an exponential number of rewritings, we obtain more results than traditional
techniques.The chance of getting results is higher if the number of covered rewritings
is maximized as defined in the MaxCov problem. We demonstrated that our ranking
strategy maximized the number of covered rewritings.

SemLAV opens a new way to execute queries for LAV mediators that is tractable
in the context of SPARQL queries. As perspectives, the performance of SemLAV can
be greatly improved by parallelizing views aggregation. Currently, SemLAV load views
sequentially due to Jena restriction. If views are loaded in parallel, time to get first re-
sults may be greatly improved. Additionally, the strategy of producing results as soon as
possible, can degrade overall throughput. If the user wants to improve overall through-
put, then the original query should be executed once after all views in Vk have been
loaded. It can be also interesting to design an execution strategy where SemLAV ex-
ecutes under constrained space. In this case, the problem is to find the minimum set
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of relevant views that fits in the available space and produces the maximal number of
answers.
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