N

N
N

HAL

open science

SemLAV: Local-As-View Mediation for SPARQL
Queries
Gabriela Montoya, Luis Daniel Ibanez, Hala Skaf-Molli, Pascal Molli,
Maria-Esther Vidal

» To cite this version:

Gabriela Montoya, Luis Daniel Ibaniez, Hala Skaf-Molli, Pascal Molli, Maria-Esther Vidal. SemLAV:
Local-As-View Mediation for SPARQL Queries. Transactions on Large-Scale Data- and Knowledge-

Centered Systems, 2014, pp.33-58. 10.1007/978-3-642-54426-2_ 2 . hal-00841985v2

HAL Id: hal-00841985
https://nantes-universite.hal.science/hal-00841985v2

Submitted on 15 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://nantes-universite.hal.science/hal-00841985v2
https://hal.archives-ouvertes.fr

SemLAV: Local-As-View Mediation for SPARQL
Queries

Gabriela Montoya*!, Luis-Daniel Ibafiez', Hala Skaf-Molli', and Pascal Molli'
Maria-Esther Vidal?

! LINA- Nantes University. Nantes, France
{gabriela.montoya, luis.ibanez, hala.skaf,
pascal.molli}@univ-nantes.fr
2 Universidad Simén Bolivar. Caracas, Venezuela
mvidal@ldc.usb.ve

Abstract. The Local-As-View (LAV) integration approach aims at query-
ing heterogeneous data in dynamic environments. In LAV, data sources
are described as views over a global schema which is used to pose queries.
Query processing requires to generate and execute query rewritings, but
for SPARQL queries, the LAV query rewritings may not be generated or
executed in a reasonable time.

In this paper, we present SemL AV, an alternative technique to pro-
cess SPARQL queries over a LAV integration system without generating
rewritings. SemLL AV executes the query against a partial instance of the
global schema which is built on-the-fly with data from the relevant views.
The paper presents an experimental study for SemL AV, and compares
its performance with traditional LAV-based query processing techniques.
The results suggest that SemLAV scales up to SPARQL queries even over
a large number of views, while it significantly outperforms traditional so-
lutions.

Keywords: Semantic Web - Data Integration - Local-as-view - SPARQL
Query

1 Introduction

Processing queries over a set of autonomous and semantically heterogeneous data
sources is a challenging problem. Particularly, a great effort has been done by
the Semantic Web community to integrate datasets into the Linked Open Data
(LOD) cloud [1] and make these data accessible through SPARQL endpoints
which can be queried by federated query engines. However, there are still a large
number of data sources and Web APIs that are not part of the LOD cloud. As
consequence, existing federated query engines cannot be used to integrate these
data sources and Web APIs. Supporting SPARQL query processing over these
environments would extend federated query engines into the deep Web.

Two main approaches exist for data integration: data warehousing and me-
diators. In data warehousing, data are transformed and loaded into a repository;
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this approach may suffer from freshness problem [2]. In the mediator approach,
there is a global schema over which the queries are posed and views describe data
sources. Three main paradigms are proposed: Global-As-View (GAV), Local-As-
View (LAV) and Global-Local-As-View (GLAV). In GAV mediators, entities of
the global schema are described using views over the data sources, including
or updating data sources may require the modification of a large number of
views [3]. Whereas, in LAV mediators, the sources are described as views over
the global schema, adding new data sources can be easily done [3]. Finally, GLAV
is a hybrid approach that combines both LAV and GAV approaches. GAV is ap-
propriate for query processing in stable environments. A LAV mediator relies on
a query rewriter to translate a mediator query into the union of queries against
the views. Therefore, it is more suitable for environments where data sources
frequently change. Despite of its expressiveness and flexibility, LAV suffers from
well-known drawbacks: (i) existing LAV query rewriters only manage conjunctive
queries, (ii) the query rewriting problem is NP-complete for conjunctive queries,
and (iii) the number of rewritings may be exponential.

SPARQL queries exacerbate LAV limitations, even in presence of conjunc-
tions of triple patterns. For example, in a traditional database system, a LAV
mediator with 140 conjunctive views can generate 10,000 rewritings for a con-
junctive query with eight subgoals [4]. In contrast, the number of rewritings
for a SPARQL query can be much larger. SPARQL queries are commonly com-
prised of a large number of triple patterns and some may be bound to general
predicates of the RDFS or OWL vocabularies, e.g., rdf:type, owl:sameAs or
rdfs:label, which are usually used in the majority of the data sources. Addi-
tionally, queries can be comprised of several star-shaped sub-queries [5]. Finally,
a large number of variables can be projected out. All these properties impact
the complexity of the query rewriting problem, even enumerating query rewrit-
ings can be unfeasible. For example, a SPARQL query with 12 triple patterns
that comprises three star-shaped sub-queries can be rewritten using 476 views
in billions of rewritings. This problem is even more challenging considering that
statistics may be unavailable, and there are no clear criteria to rank or prune
the generated rewritings [6]. It is important to note that for conjunctive queries,
GLAV query processing tasks are at least as complex as LAV tasks [7].

In this paper, we focus on the LAV approach, and propose SemLAV, the first
scalable LAV-based approach for SPARQL query processing. Given a SPARQL
query Q on a set M of LAV views, SemL AV selects relevant views for ) and ranks
them in order to maximize query results. Next, data collected from selected views
are included into a partial instance of the global schema, where ) can be executed
whenever new data is included; and thus, SemLAV incrementally produces query
answers. Compared to a traditional LAV approach, SemLAV avoids generating
rewritings which is the main cause of the combinatorial explosion in traditional
rewriting-based approaches; SemLAV also supports the execution of SPARQL
queries. The performance of SemLLAV is no more dependent on the number of
rewritings, but it does depend on the number and size of relevant views. Space
required to temporarily include relevant views in the global schema instance



may be considerably larger than the space required to execute all the query
rewritings one by one. Nevertheless, executing the query once on the partial
instance of the global schema could produce the answers obtained by executing
all the rewritings.

To empirically evaluate the properties of SemLLAV, we conducted an exper-
imental study using the Berlin Benchmark [8] and queries and views designed
by Castillo-Espinola [9]. Results suggest that SemLAV outperforms traditional
LAV-based approaches with respect to answers produced per time unit, and
provides a scalable LAV-based solution to the problem of executing SPARQL
queries over heterogeneous and autonomous data sources.

The contributions of this paper are the following:

— Formalization of the problem of finding the set of relevant LAV views that
maximize query results; we call this problem MaxCov.

— A solution to the MaxCov problem.

— A scalable and effective LAV-based query processing engine to execute SPARQL
queries, and to produce answers incrementally.

The paper is organized as follows: Section 2 presents basic concepts, defini-
tions and a motivating example. Section 3 defines the MaxCov problem, SemL AV
query execution approach and algorithms. Section 4 reports our experimental
study. Section 5 summarizes related work. Finally, conclusions and future work
are outlined in Section 6.

2 Preliminaries

Mediators are components of the mediator-wrapper architecture [10]. They pro-
vide an uniform interface to autonomous and heterogeneous data sources. Me-
diators also rewrite an input query into queries against the data sources, and
merge data collected from the selected sources. Wrappers are software compo-
nents that solve interoperability between sources and mediators by translating
data collected from the sources into the schema and format understood by the
mediators; the schema exposed by the wrappers is part of the schema exposed
by its corresponding mediator.

The problem of processing a query @ over a set of heterogeneous data sources
corresponds to answer () using the instances of these sources. Although this
problem has been extensively studied by the Database community [11], it has
not been addressed for SPARQL queries. The following definitions are taken from
Database existing solutions. Many of them are given for conjunctive queries. A
conjunctive query has the form: Q(X) :- p1(X1), ..., pn(X,), where p; is a
predicate, X; is a list of variables and constants, Q(X) is the head of the query,
p1(X1), ..., pn(Xy) is the body of the query, and each element of the body is a
query subgoal. In a conjunctive query, distinguished variables are variables that
appear in the head, they should also appear in the body. Variables that appear
in the body, but not in the head are existential variables.



Definition 1 (LAV Integration System [12]). A LAV integration system is
a triple 1IS=< G, S, M > where G is a global schema, S is a set of sources or
source schema, and M is a set of views that map sources in S into the global
schema G.

For the rest of the paper, we assume that views in M are limited to conjunctive
queries. Both views and mediator queries are defined over predicates in G.

Definition 2 (Sound LAV View [12]). Given IS=< G,S,M > a LAV in-
tegration system, and a view v; in M. The view v; is sound if for all instance
I(v;) of vi, and all D wvirtual database instance of G, I(v;) is contained in the
evaluation of view v; over D, i.e., I(v;) C v;(D).

Definition 3 (Query Containment and Equivalence [13]). Given two queries
Q1 and Q2 with the same number of arguments in their heads, Q1 is contained
n Q2, Q1 T Q2, if for any database instance D the answer of Q1 over D is
contained in the answer to Q2 over D, Q1(D) C Q2(D). Q1 is equivalent to Q2

if Q1 C Q2 and Q2 C Q1.

Definition 4 (Containment Mapping [13]). Given two queries Q1 and Q2,
X andY the head variables of Q1 and Q2 respectively, and ¢ a variable mapping
Jrom Q1 to Q2, ¢ is a containment mapping if Y(X) =Y and for every query

subgoal g(X;) in the body of Q1, ¥ (g9(X;)) is a subgoal of Q2.

Theorem 1 (Containment [13]). Let QI and Q2 be two conjunctive queries,
then there is a containment mapping from Q1 to Q2 if and only if Q2 C Q1.

Definition 5 (Query Unfolding [13]). Given a query Q and a query subgoal

9i(Xi), 9:(X;) € body(Q), where g; corresponds to a view: g;(Y) :=s1(Y1),...,5n(Yn),
the unfolding of g; in Q is done using a mapping T from variables in'Y to vari-
ables in X;, replacing g;(X;) by s1(7(Y1)),...,s2(7(Y)) in Q. Variables that
occur in the body of g; but not in X; are replaced by fresh (unused) variables by
mapping T.

Definition 6 (Equivalent Rewriting [11]). Let Q be a query and M =

{v1,...,0m} be a set of views definitions. The query Q' is an equivalent rewriting
of Q using M if:

— Q' refers only to views in M, and
— Q' is equivalent to Q.

Definition 7 (Maximally-Contained Rewriting [11]). Let Q be a query,
M = {vi1,..., v} be a set of views definitions, and L be a query language®. The
query Q' is a mazimally-contained rewriting of Q using M with respect to L if:

— @' is a query in L that refers only to the views in M,

3 L is a query language defined over the alphabet composed of the global and source
schema



— Q' is contained in Q, and
— there is no rewriting Q1 € L, such that Q' C Q1 C Q and Q1 is not equivalent

to Q'.

Theorem 2 (Number of Candidate Rewritings [2]). Let N, O and M be
the number of query subgoals, the mazximal number of views subgoals, and the set

of views, respectively. The number of candidate rewritings in the worst case is:
(O x |M[)N.

Theorem 3 (Complexity of Finding Rewritings [11]). The problem of
finding an equivalent rewriting is NP-complete.

Consider L in Definition 7 as the union of conjunctive queries, then view v
would be used to answer query @ if there is one conjunctive query r € Q' such
that v appears as the relation of one of r query subgoals. As Q' C Q, then r E Q.
View v is called a relevant view atom. The next definition formalizes this notion.

Definition 8 (Relevant View Atom [13]). A view atom v is relevant for a
query atom g if one of its subgoals can play the role of g in the rewriting. To do
that, several conditions must be satisfied: (1) the view subgoal should be over the
same predicate as g, and (2) if g includes a distinguished variable of the query,
then the corresponding variable in v must be a distinguished variable in the view
definition.

The concepts of relevant view and coverage have been widely used in the
literature [13, 11]; nevertheless, they have been introduced in an informal way.
The following definitions precise the properties that are assumed in this paper.

Definition 9 (Relevant Views). Let Q be a conjunctive query, M = {v1,..., v}
be a set of view definitions, and q be a query subgoal, i.e., q € body(Q). The set
of relevant views for q corresponds to the set of relevant view atoms for the query
subgoal q, i.e., RV(M,q) = {T7(v) :v € M Aw € body(v) AN (q) = T7(w) A (Vz :

x € Vars(q) A distinguished(z, Q) : distinguished(z,v))}*. The set of relevant
views for @Q corresponds to the views that are relevant for at least one query
subgoal, i.e., RV(M,Q) = {7(v) : ¢ € body(Q) ANv € M ANw € body(v) A(q) =
T(w) A (Vz : & € Vars(q) A distinguished(z, Q) : distinguished(x,v))}.

Definition 10 (Coverage). Let Q be a conjunctive query, v be a view defini-
tion, q be a query subgoal, and w be a view subgoal. The predicate covers(w,q)
holds if and only if w can play the role of q in a query rewriting.

We illustrate some of the given definitions for the LAV-based query rewriting
approach using SPARQL queries. This will provide evidence of the approach
limitations even for simple queries. In the following example, the global schema
G is defined over the Berlin Benchmark [8] vocabulary. Consider a SPARQL
query @ on G; Q has seven subgoals and returns information about products as

4 4b(q) corresponds to the application of 1 to the variables of ¢ (idem for 7(w)).



shown in Listing 1.1. Listing 1.3 presents () as a conjunctive query, where triple
patterns are represented as query subgoals.

SELECT =
WHERE {
ELECT
2X1 rdfs:label 2X2 ;HERE {*

?X1 rdfs:comment ?X3

?X1 bsbm:productPropertyTextuall ?X8
?X1 bsbm:productPropertyTextual2 ?X9
?X1 bsbm:productPropertyTextual3 ?X10
?X1 bsbm:productPropertyNumericl ?X11
?X1 bsbm:productPropertyNumeric2 ?X12

?X1 rdfs:label ?X2
?X1 rdf:type ?X3
?X1 bsbm:productFeature ?X4

Listing 1.2: SPARQL View sl

Listing 1.1: SPARQL query @

Q(X1, X2, X3, X8, X9, X10, X11, X12) :- label (X1, X2), comment (X1, X3)
productPropertyTextuall (X1, X8), productPropertyTextual2 (X1, X9),
productPropertyTextual3 (X1, X10), productPropertyNumericl (X1, X11),
productPropertyNumeric2 (X1, X12)

Listing 1.3: @ expressed as a conjunctive query

s1(X1,X2,X3,X4):-1label (X1,X2),type (X1,X3),productfeature (X1, X4)

52 (X1,X2,X3) :-type (X1,X2),productfeature (X1, X3)

s3(X1,X2,X3,X4) :-producer (X1,X2),label (X2,X3) ,publisher (X1,X2),
productfeature (X1, X4)

s4(X1,X2,X3) :-productfeature (X1,X2), label (X2,X3)

s5(X1,X2,X3,X4,X5,X6,X7) :—label (X1,X2),comment (X1,X3),producer (X1, X4),
label (X4,X5) ,publisher (X1,X4), productpropertytextuall (X1,X6),
productpropertynumericl (X1, X7)

s6(X1,X2,X3,X4,X5) :—label (X1,X2),product (X3,X1),price (X3,X4),vendor (X3,X5)

s7(X1,X2,X3,X4,X5,X6) :—label (X1,X2),reviewfor (X3,X1), reviewer (X3,X4),
name (X4,X5),title(X3,X6)

s9(X1,X2,X3,X4) :-reviewfor (X1,X2),title(X1,X3),text (X1,X4)

s10(X1,X2,X3) :~-reviewfor (X1,X2),ratingl (X1, X3)

s11(X1,X2,X3,X4,X5,X6,X7):-label (X1,X2),comment (X1,X3),producer (X1,X4),
label (X4,X5) ,publisher (X1,X4),productpropertytextual2 (X1,X6),
productpropertynumeric2 (X1,X7)

s12(X1,X2,X3,X4,X5,%X6,X7) :-label (X1, X2), comment (X1, X3), producer (X1,X4),
label (X4,X5) ,publisher (X1,X4),productpropertytextual3 (X1,X6),
productpropertynumeric3 (X1,X7)

s13(X1,X2,X3,X4,X5,X6,X7) :-label (X1,X2) ,product (X3,X1),price (X3,X4),
vendor (X3,X5) ,of ferwebpage (X3, X6) , homepage (X5, X7)

s14 (X1,X2,X3,X4,X5,X6,X7) :-label (X1, X2),product (X3,X1),price (X3,X4),
vendor (X3,X5) ,deliverydays (X3,X6),validto (X3,X7)

s15(X1,X2,X3,X4,X5,X6,X7,X8,X9) :—-product (X1,X2) ,price (X1, X3),vendor (X1,X4),
label (X4,X5),country (X4,X6),publisher (X1,X4), reviewfor (X7,X2),
reviewer (X7,X8),name (X8, X9)

Listing 1.4: Views s1-s10 from [9]

Consider M composed of 14 data sources defined as conjunctive views over
the global schema G as in Listing 1.4; the Berlin Benchmark [8] vocabulary terms
are represented as binary predicates in the conjunctive queries that define the
data sources. Source sI can be defined as in Listing 1.2; note that we have done
just a syntactic translation from this SPARQL query to the conjunctive query
presented in Listing 1.4.



For instance, s1 retrieves information about product type, label and product
feature. The rdfs:label predicate is a general predicate. Commonly, general
predicates are part of the definition of many data sources, and the number of
rewritings of SPARQL queries that comprise triple patterns bound to general
predicates can be very large. The general predicate rdfs:label in query @
can be mapped to views s1, s3-s7, s11-s15.

r(x1,X2,X3,%8,X9,X10,X11,X12) :- s6(X1,X2,_0,_1,_2),
s5(x1,_3,X3,_4,_5,_6,_7), s5(X1,_8,_9,_10,_11,%8,_12),
s11(x1,_13,_14,_15,_16,%9,_17), sl2(X1,_18,_19,_20,_21,X10,_22),
s5(x1,_23,_24,_25,_26,_27,X11), s11(X1,_28,_29,_30,_31,_32,%12)

Listing 1.5: A query rewriting for Q

Listing 1.5 presents a query rewriting for @, its subgoals cover each of
the query subgoals of @, e.g., s6(X1,X2,_0,_1,2) covers the first query sub-
goal of @, label(X1,X2). ¢(label(X1,X2)) = 7(label(X1, X2)); the mapping
7 from view variables to rewriting variables is: 7(X1) = X1, 7(X2) = X2,
7(X3) = 0, 7(X4) = _1, 7(X5) = 2, and the mapping v from query variables
to rewriting variables is: ¥(Xi) = X4, for all Xi in the query head. Then, view
s6(X1, X2 0,_1,_2) is relevant for answering the first query subgoal of Q). Notice
that third, fourth and fifth projected variables of s6 correspond to existential
variables because they are not relevant to cover the first query subgoal of ) with
6.

To illustrate how the number of rewritings for @ can be affected by the
number of data sources that use the general predicate rdfs: label, we run the
LAV query rewriter MCDSAT [14].5 First, if 14 data sources are considered, Q
can be rewritten in 42 rewritings. For 28 data sources, there are 5,376 rewritings,
and 1.12743e+10 rewritings are generated for 224 sources.® With one simple
query, we can illustrate that the number of rewritings can be extremely large,
being in the worst case exponential in the number of query subgoals and views. In
addition to the problem of enumerating this large number of query rewritings, the
time needed to compute them may be excessively large. Even using reasonable
timeouts, only a small number of rewritings may be produced.

Table 1 shows the number of rewritings obtained by the state-of-the-art LAV
rewriters GQR[4], MCDSAT[14] and MiniCon[15], when 224 views are considered
for @ and timeouts are set up to 5, 10 and 20 minutes. Note that all these
rewriters are able to produce only empty results or a small number of rewritings.

In summary, even if the LAV approach constitutes a flexible approach to
integrate data from heterogeneous data sources, query rewriting and processing
tasks may be unfeasible in the context of SPARQL queries. Either the number of
query rewritings is too large to be enumerated or executed in a reasonable time.
To overcome these limitations and make feasible the LAV approach for SPARQL

® MCDSAT [14] is the only query rewriting tool publicly available that counts the
number of rewritings without enumerating all of them.

5 The 14 data sources setup is defined as in Listing 1.4, the one with 28 data sources
has two views for each of the views in Listing 1.4, and the one with 224 sources has
16 views for each of the views in Listing 1.4



Table 1: Number of rewritings obtained from the rewriters GQR, MCDSAT and
MiniCon with timeouts of 5, 10 and 20 minutes. Using 224 views and query )

Rewriter |5 minutes|10 minutes|20 minutes

GQR 0 0 0
MCDSAT| 211,125 440,308 898,766
MiniCon 0 0 0

queries, we propose a novel approach named SemLAV. SemLAV identifies and
ranks the relevant views of a query, and executes the query over the data collected
from the relevant views; thus, SemL AV is able to output a high proportion of
the answer in a short time.

3 The SemLAV Approach

SemLAV is a scalable LAV-based approach for processing SPARQL queries. It
is able to produce answers even for SPARQL queries against large integration
systems with no statistics. SemLAYV follows the traditional mediator-wrapper ar-
chitecture [10]. Schemas exposed by the mediators and wrappers are expressed
as RDF vocabularies. Given a SPARQL query @ over a global schema G and
a set of sound views M = {vq, ..., v, }, SemLAV executes the original query
@ rather than generating and executing rewritings as in traditional LAV ap-
proaches. SemLAV builds an instance of the global schema on-the-fly with data
collected from the relevant views. The relevant views are considered in an order
that enables to produce results as soon as the query @ is executed against this
instance.

Contrary to traditional wrappers which populate structures that represent
the heads of the corresponding views, SemLAV wrappers return RDF Graphs
composed of the triples that match the triple patterns in the definition of the
views. SemLAV wrappers could be more expensive in space than the traditional
ones. However, they ensure that original queries are executable even for full
SPARQL queries and they make query execution dependent on the number of
views rather than on the number of rewritings.

To illustrate the SemL AV approach, consider a SPARQL query @ with four
subgoals:

SELECT «*
WHERE {
?0ffer bsbm:vendor ?Vendor .
?Vendor rdfs:label ?Label .
?0ffer bsbm:product ?Product .
?Product bsbm:productFeature ?ProductFeature .

and a set M of five views:



vl(p,L,T,F):-label(P,L),type(P,T),productfeature(P,F)

v2(P,R,L,B,F) :-producer (P,R), label (R, L), publisher (P,B), productfeature (P, F)
v3(P,L,0,R,V):-1label (P,L),product (O,P),price (0,R),vendor (0,V)
v4(pP,0,R,V,L,U,H) : -product (O, P),price (0,R),vendor (0,V), label (V,L),

offerwebpage (0, U) , homepage (V, H)
v5(0,V,L,C):-vendor (0,V), label (V,L), country(V,C)

In the traditional LAV approach, 60 rewritings are generated and the exe-
cution of all these rewritings will produce all possible answers. However, this
is time-consuming and uses a non-negligible amount of memory to store data
collected from views present in the rewritings. In case there are not enough re-
sources to execute all these rewritings, as many rewritings as possible would be
executed. We apply a similar idea in SemL AV, if it is not possible to consider
the whole global schema instance to ensure a complete answer, then a partial
instance will be built. The partial instance will include data collected from as
many relevant views as the available resources allow.

The execution of the query over this partial schema instance will cover the
results of executing a number of rewritings. The number of rewritings covered
by the execution of @ over the partial schema instance could be exponential in
the number of views included in the instance. Therefore, the size of the set of
covered rewritings may be even greater than the number of rewritings executable
in the same amount of time.

Table 2: Impact of the different views ordering on the number of covered rewrit-
ings

# Included Order One Order Two
views (k) [Included views (V%)|# Covered|Included views (Vi)|# Covered
rewritings rewritings
1 vH 0 v4 0
2 vh, vl 0 v4, v2 2
3 vh, vl, v3 6 v4, v2, v3 12
4 vbh, vl, v3, v2 8 v4, v2, v3, vl 32
5 vh, vl, v3, v2, v4 60 vd, v2, v3, vl, vb 60

The order in which views are included in the partial global schema instance
impacts the number of covered rewritings. Consider two different orders for in-
cluding the views of the above example: v5, v1, v3, v2, v4 and v4, v2, v3, v1,
v5. Table 2 considers partial global schema instances of different sizes. For each
partial global schema instance, the included views and the number of covered
rewritings are presented. Executing @) over the growing instances corresponds to
the execution of a quite different number of rewritings. For instance, if only four
views could be included with the available resources, one order corresponds to the
execution of 32 rewritings while the another one corresponds to the execution of
only eight rewritings. If all relevant views for query @ could be included, then a



complete answer will be produced. However, the number of relevant views could
be considerably large, therefore, if we only have resources to consider k relevant
views, Vi, we should consider the ones that increase the chances of obtaining an-
swers. With no knowledge about data distribution, we can only suppose that each
rewriting has nearly the same chances of producing answers. Thus, the chances
of obtaining answers are proportional to the number of rewritings covered by
the execution of () over an instance that includes views in V.

Maximal Coverage Problem (MaxCov). Given an integer k > 0, a query
Q@ on a global schema G, a set M of sound views over G, and a set R of conjunctive
queries whose union is a maximally-contained rewriting of @ in M. The Maximal
Coverage Problem is to find a subset V}, of M comprised of k relevant views for
Q, Vi CMANNMv:veEV,:veRV(QM))A|Vi| =k, such that the set of
rewritings covered by Vi, Coverage(Vy, R), is maximal for all subsets of M of
size k, i.e., there is no other set of k views that can cover more rewritings than
Vie. Coverage(Vy, R) is defined as:

Coverage(Vi,,R) ={r:r € RA(¥Yp:p € body(r) : p € Vi)} (1)

The MaxCov problem has as an input a solution to the Maximally-Contained
Rewriting problem. Nevertheless, using this for building a MaxCov solution
would be unreasonable since it makes the MaxCov solution at least as expensive
as the rewriting generation. Instead of generating the rewritings, we define a
formula that estimates the number of covered rewritings when @ is executed
over a global schema instance that includes a set of views. It is the product
of the number of ways each query subgoal can be covered by the set of views.
For a query Q(X) :- p1(X1),...pn(X,) using only views in V; this formula is
expressed as:

NumberO fCoveredRewritings(Q, Vi) = II<i<n|Use(Vi, pi(X3))|,  (2)

where Use(Vi, p) = Xvev, Xwebody(v)Acovers(w,p) 1. This formula computes the ex-
act number of covered rewritings when all the view variables are distinguished;
this is because the coverage of each query subgoal by a given view can be con-
sidered in isolation. Otherwise, this expression corresponds to an upper bound
of the number of covered rewritings of @) with respect to Vj.

Consider the second proposed ordering of the views in the above example,
the numbers of views in V; that cover each query subgoal are:

two for the first query subgoal (v4 and v3),

four for the second query subgoal (v4, v2, v3 and v1),
— two for the third query subgoal (v4 and v3), and

— two for the fourth query subgoal (v2 and v1).

Thus, the number of covered rewritings is 32 (2 x 4 x 2 x 2).
Next, we detail a solution to the MaxCov problem under the assumption that
views only contain distinguished variables.
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3.1 The SemLAV Relevant View Selection and Ranking Algorithm

The relevant view selection and ranking algorithm finds the views that cover
each subgoal of a query. This algorithm creates a bucket for each query subgoal
q, where a bucket is a set of relevant views; this resembles the first step of
the Bucket algorithm[11]. Additionally, the algorithm sorts the buckets views
according to the number of covered subgoals. Hence, the views that are more
likely to contribute to the answer will be considered first. This algorithm is
defined in Algorithm 1.

Algorithm 1 The Relevant View Selection and Ranking

Input: Q : SPARQL Query; M: Set of Views defined as conjunctive queries
Output: Buckets: Predicate — List<View>

for all g € body(Q) do

buckets(q) « 0
end for
for all g € body(Q) do

b < buckets(q)

for all v € M do

for all w € body(v) do
if There are mappings 7, 1, such that ¥ (q) = 7(w) then
v; + A(v) {A(v) replaces all variables a; in the head of v by 7(a;)}
insert(b, vi) {add v; to the bucket if it is not redundant}
end if
end for

end for
end for
for all g € body(Q) do

b < buckets(q)

sortBucket(buckets,b) {MergeSort with key (#covered buckets,#views subgoals)}
end for

The mapping 7 relates view variables to query variables as stated in Defini-
tion 9.

The sortBucket(buckets, b, q) procedure decreasingly sorts the views of bucket
b according to the number of covered subgoals. Views covering the same number
of subgoals are sorted decreasingly according to their number of subgoals. In-
tuitively, this second sort criterion prioritizes the more selective views, reducing
the size of the global schema instance. The sorting is implemented as a classical
MergeSort algorithm with a complexity of O(|M] x log(|M]).

Proposition 1. The complexity of Algorithm 1 is Max(O(N x |[M] x P),O(N
X |M] x log(|M]))) where N is the number of query subgoals, M is the set of
views and P is the mazximal number of view subgoals.

To illustrate Algorithm 1, consider the SPARQL query @ and the previously
defined views v1-v5.

Algorithm 1 creates a bucket for each subgoal in @) as shown in Table 3a.

For instance, the bucket of subgoal vendor(O,V) contains v3, v4 and v5:
all the views having a subgoal covering vendor(O, V). The final output after
executing the sortBucket procedure is described in Table 3b.
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Table 3: For query Q, buckets produced by Algorithm 1 when k views have been
included. V}, is obtained by Algorithm 2 and the number of covered rewritings
(a) Unsorted buckets

vendor(O,V) label(V,L) product(O,P) productfeature(P,F)
v3(P.L,OR,V) _ |v1(P.L,T,F) v3(PLOR,V)  |vi(P.L,T,F)
v4(P,0,R,V,L,U,H)|v2(P,R,L,B,F) v4(P,0,R,V.L,U,H)|v2(P,R,L,B,F)
v5(0,V,L,C) v3(P,L,0O,R,V)
v4(P,0,R,V,L,U,H)
v5(O V,L,C)
(b) Sorted buckets
vendor(O,V) label(V,L) product(O,P) productfeature(P,F)
vA(P,0,R,V,L,U,H)|[vA(P,0,R,V,L,U,H)|v4(P,0,R,V,L,U,H) [v2(P,R,L,B,F)
WPLORY)  [v3(PLORYV)  |v3(PLORY)  |[vI(P.LT.F)
v5(0,V,L,C) v2(P,R,L,B,F)
v1(P,L,T,F)
v5(O V,L,C)

(c) Included views

# Included views (k)|Included views (Vj)|# Covered rewritings
1 v4 1x1x1x0=0
2 v4, v2 1x2x1x1=2
3 v4, v2, v3 2x3x2x1=12
4 vd, v2, v3, vl 2x4x2x2=32
5 vd, v2,v3,vl, v |3 X 5 X 2 X 2 =060

Views v3 and v4 cover three subgoals, but since v4 definition has more sub-
goals, i.e., it is more selective, v4 is placed before v3 in all the buckets.

3.2 Global Schema Instance Construction and Query Execution

Each bucket is considered as a stack of views, having on the top the view that
covers more query subgoals. A global schema instance is constructed as described
in Algorithm 2 by iteratively popping one view from each bucket and loading its
data into the instance.

Table 3c shows how the number of covered rewritings increases as views are
included into the global schema instance. Each Vj in this table is a solution
to the MaxCov problem, i.e., the number of covered rewritings for each Vj is
maximal. There are two possible options regarding query execution. Query can
be executed each time a new view is included into the schema instance and partial
results will be produced incrementally; or, it can be executed after including the
k views. The first option prioritizes the time for obtaining the first answer,
while the second one favors the total time to receive all the answers of ) over
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Vi. The first option produces results as soon as possible; however, in case of
non-monotonic queries, i.e., queries where partial results may not be part of the
query answer, this query processing approach should not be applied. Among non-
monotonic queries, there are queries with modifiers like SORT BY or constraints
like a FILTER that includes the negation of a bound expression. The execution
of non-monotonic queries requires all the relevant views to be included in the
global schema instance in order to produce the correct results.

Algorithm 2 The Global Schema Instance Construction and Query Execution

Input: Q : Query
Input: Buckets: Predicate — List<View> {The buckets are produced by Algorithm 1}
Input: k: Int
Output: A: Set<Answer>
Stacks : Predicate — Stack<View>
Vi : Set<View>
G : RDFGraph
for all p € domain(Buckets) do
Stacks(p) < toStack(Buckets(p))
end for
while (3p| : mempty(Stacks(p))) A |Vi| < k do
for all p € domain(Stacks) A mempty(Stacks(p)) do
v < pop(Stack(p))
if v ¢ Vi, then
load v into G {only if is not redundant}
A +— AUezec(Q, G) {Option 1: Execute Q after each successful load}
Vi < Vi, U {’U}
end if
end for
end while
A + exec(Q, G) {Option 2: execute before exit}

Proposition 2. Considering conjunctive queries, the time complexity of Algo-
rithm 2 in option 1 is O(k x N x I), while the time complexity is O(N x I) for
option 2. Where k is the number of relevant views included in the instance, N
the number of query subgoals, and I is the size of the constructed global schema
instance.

Proposition 3. Algorithm 2 finds a solution to the MaxzCov problem.

Proof. By contradiction, suppose that the set Vj is not maximal in terms of the
number of covered rewritings, then there is another set V/ of size k that covers
more rewritings than Vj. By construction, Vj includes the first views of each
bucket, i.e., the views that cover more query subgoals. There should exist at
least one view in Vj, that is not in V}/, and vice-versa. Suppose w is the first view
in Vi, that isnot in V) (w € Viy Aw & V}) , v is the first one in V} and is not in Vj
(v e Vinv & V), and w belongs to the bucket of the query subgoal ¢. If v covers
q, then it belongs to the bucket of ¢q. Because Vj includes the views that cover
more subgoals, if v was not included in Vj is because it covers less rewritings
than w; thus, the contribution of v to the number of covered rewritings is inferior
to the contribution of w. This generalizes to all the views in V; and not in V;
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thus, the number of rewritings covered by V) should be less than the number of
rewritings covered by Vj. If v covers another query subgoal ¢ and all the query
subgoals are covered at least once by views in Vj; thus, Algorithm 2 should have
included it before including w and v should belong to Vj.

3.3 The SemLAV Properties

Given a SPARQL query @ over a global schema G, a set M of views over G,
the set RV of views in M relevant for @, a set R of conjunctive queries whose
union is a maximally-contained rewriting of @) using M, and Vj a solution to
the MaxCov problem produced by SemLAV.

— Answer Completeness: If SemL AV executes @ over a global schema instance
I that includes all the data collected from views in RV, then it produces
the complete answer. SemLAV outputs the same answers as a traditional
rewriting-based query processing approach:

Urtamn) = 1(). 3)

reR vERV

— Effectiveness: the Effectiveness of SemLAV is proportional to the number of
covered rewritings, it is defined as:

_ |Coverage(Vy, R)|

Ef fectiveness(Vy) = Rl . (4)

For an execution constrained by time or space, Vi could be smaller than RV .

— Execution Time depends on |RV|: The load and execution time of SemLAV
linearly depends on the size of the views included in the global schema in-
stance.

— No memory blocking: SemLLAV guarantees to obtain a complete answer when
Uyery 1(v) fits into memory. If not, it is necessary to divide the set RV
of relevant views into several subsets RV;, such that each subset fits into
memory and for any rewriting r € R all views v € body(r) are contained in
one of these subsets.

4 Experimental Evaluation

We compare the SemLAV approach with a traditional rewriting-based approach
and analyze the SemLAV effectiveness, memory consumption and throughput. In
order to decide which rewriting engine will be use to compare with SemLAV, we
run some preliminary experiments to compare existing state-of-the-art rewriting
engines. We consider GQR [4], MCDSAT [14], MiniCon [15], and SSDSAT [16].
We execute these engines for 10 minutes and measure execution time and the
number of rewritings generated by each engine. Additionally, we use these val-
ues to compute the throughput; throughput corresponds to number of answers
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Table 4: Queries and their answer size, number of subgoals, and views size

(a) Query information (b) Views size
Query|Answer Size|# Subgoals Views Size
Ql | 6.68E407 5 V1-V34 201,250
Q2 | 5.99E405 12 V35-V68 | 153,523
Q4 | 2.87TE+02 2 V69-V102 53,370
Q5 | 5.64E405 4 V103-V136| 26,572
Q6 | 1.97E4-05 3 V137-V170 5,402
Q8 | 5.64E405 3 V171-V204| 66,047
Q9 | 2.82E+404 1 V205-V238| 40,146
Q10 | 2.99E+06 3 V239-V272| 113,756
Q11 | 2.99E+06 2 V273-V306| 24,891
Q12 | 5.99E+05 4 V307-V340, 11,594
Q13 | 5.99E+05 2 V341-V374 5,402
Q14 | 5.64E+05 3 V375-V408 5,402
Q15 | 2.82E+05 5 V409-V442| 78,594
Q16 | 2.82E+05 3 V443-V476| 99,237
Q17 | 1.97E+05 2 V477-V510(1,087,281
Q18 | 5.64E+05 4

obtained per second. Time is expressed in seconds; the total number of rewrit-
ings is computed for each query. Table 5 reports on all these metrics. The GQR
performance is very good when the number of query rewritings is low, and it
outperforms all the other engines. It also performs pretty well when the number
of query rewritings is relatively low and views can cover more than a query sub-
goal. That is, this situation allows to speeds up the preprocessing time consumed
by GQR to build the structures required to generate the query rewritings. The
MCDSAT performance is good in a larger number of queries; it can produce
rewritings for more queries than the other engines, particularly in queries which
a large number of triple patterns and in presence of general predicates. However,
MCDSAT does not outperform the others engines when they are able to produce
the rewritings. This is because, there is an overhead in translating the problem
into a logical theory which is solved using a SAT solver. The MiniCon perfor-
mance is pretty good in general, but it only produces query rewritings when
the space of rewritings is relatively small. Finally, SSDSAT is able to handle
constants; however, this feature severely impacts its performance, being able to
produce rewritings only for simple cases.

4.1 Hypothesis of Our Experimentations

The hypotheses of our experimentation are:
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Table 5: Comparison of state-of-the-art LAV rewriting engines for 16 queries
without existential variables and nine (plus five) views defined in [9]. The five
additional views allows to cover all the queries subgoals

Query Metric GQR |[MCDSAT|MiniCon|SSDSAT|Total Number of Rewritings
Q1 Execution Time (secs) 600.00 | 600.00 | 600.00 | 600.00
Number of Rewritings 0 247,304 0 0 2.04E+10
Throughput (answers/sec)| 0.00 412.17 0.00 0.00
Q2 Execution Time (secs) 600.00 600.00 600.00 | 600.00
Number of Rewritings 0 0 0 0 1.57E+24
Throughput (answers/sec)| 0.00 0.00 0.00 0.00
Q4 Execution Time (secs) 25.71 84.20 5.47 600.00
Number of Rewritings 16,184 16,184 16,184 0 1.62E404
Throughput (answers/sec)| 629.38 | 192.22 |2,957.60| 0.00
Q5 Execution Time (secs) 600.00 | 600.00 600.00 | 600.00
Number of Rewritings 0 513,629 0 0 T7.48E+07
Throughput (answers/sec)| 0.00 856.05 0.00 0.00
Q6 Execution Time (secs) 600.00 | 251.51 | 430.10 | 600.00
Number of Rewritings 0 314,432 | 314,432 0 3.14E405
Throughput (answers/sec)| 0.00 1,250.18 | 731.07 0.00
Q8 Execution Time (secs) 555.49 | 191.69 142.63 | 600.00
Number of Rewritings |157,216| 157,216 | 157,216 0 1.57E405
Throughput (answers/sec)| 283.02 | 820.16 |1,102.30| 0.00
Q9 Execution Time (secs) 0.88 32.24 0.34 49.83
Number of Rewritings 34 34 34 34 3.40E+01
Throughput (answers/sec)| 38.51 1.05 101.49 0.68
Q10 Execution Time (secs) 600.00 | 600.00 600.00 | 600.00
Number of Rewritings 0 656,140 0 0 4.40E406
Throughput (answers/sec)| 0.00 | 1,093.57 0.00 0.00
Q11 Execution Time (secs) 12.99 67.03 2.06 600.00
Number of Rewritings 9,248 9,248 9,248 0 9.25E+403
Throughput (answers/sec)| 712.15 | 137.96 |4,487.14| 0.00
Q12 Execution Time (secs) 600.00 | 600.00 | 600.00 | 600.00
Number of Rewritings 0 440,059 0 0 1.50E4-09
Throughput (answers/sec)| 0.00 733.43 0.00 0.00
Q13 Execution Time (secs) 600.00 98.43 22.40 600.00
Number of Rewritings 0 64,736 64,736 0 6.47TE+404
Throughput (answers/sec)| 0.00 657.69 |2,890.52| 0.00
Q14 Execution Time (secs) 600.00 | 600.00 | 600.00 | 600.00
Number of Rewritings 0 913,807 0 0 2.52E4-06
Throughput (answers/sec)| 0.00 1,523.01 0.00 0.00
Q15 Execution Time (secs) 600.00 | 600.00 | 600.00 | 600.00
Number of Rewritings 0 308,903 0 0 2.04E+10
Throughput (answers/sec)| 0.00 514.84 0.00 0.00
Q16 Execution Time (secs) 600.00 | 233.47 | 380.81 | 600.00
Number of Rewritings 0 314,432 | 314,432 0 3.14E405
Throughput (answers/sec)| 0.00 | 1,346.81 | 825.68 0.00
Q17 Execution Time (secs) 3.97 67.25 1.29 600.00
Number of Rewritings 4,624 4,624 4,624 0 4.62E+03
Throughput (answers/sec)|1,165.62| 68.76 |3,576.18| 0.00
Q18 Execution Time (secs) 600.00 | 600.00 | 600.00 | 600.00
Number of Rewritings 0 463,754 0 0 1.20E+09
Throughput (answers/sec)| 0.00 772.92 0.00 0.00
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— SemLAV loads the more relevant views of a query first, the SemLAV effec-
tiveness should be considerably high and should produce more answers than
the rest of the engines in the same amount of time.

— SemLAV builds a global schema instance using data collected from the rele-
vant views, SemLAV may consume more space than a traditional rewriting-
based approach.

— SemLAV produces results incrementally, it is able to produce answers sooner
than a traditional rewriting-based approach.

4.2 Experimental Configuration

The Berlin SPARQL Benchmark (BSBM) [8] is used to generate a dataset of
10,000,736 triples using a scale factor of 28,211 products. Additionally, third-
party queries and views are used to provide an unbiased evaluation of our ap-
proach. In our experiments, the goal is to study SemLAV as a solution to the
MaxCov problem, and we compute the number of rewritings generated by three
state-of-the-art query rewriters. From the 18 queries and 10 views defined in [9],
we leave out the ones using constants (literals) because the state-of-the-art query
rewriters are unable to handle constants either in the query or in the views. In
total, we use 16 out of 18 queries and nine out of 10 the defined views. The query
triple patterns can be grouped into chained connected star-shaped sub-queries,
that have between one and twelve subgoals with only distinguished variables,
i.e., queries are free of existential variable. We define five additional views to
cover all the predicates in the queries. From these 14 views, we produce 476
views by horizontally partitioning each original view into 34 parts, such that
each part produces 1/34 of the answers given by the original view.

Queries and views are described in Tables 4a and 4b. The size of the complete
answer is computed by including all the views into an RDF-Store (Jena) and
executing the queries against this centralized RDF dataset. Query definitions
are included in Appendix A.

We implement wrappers as simple file readers. For executing rewritings, we
use one named graph per subgoal as done in [17]. The Jena 2.7.47 library with
main memory setup is used to store and query the graphs. The SemLAV algo-
rithms are implemented in Java, using different threads for bucket construction,
view inclusion and query execution to improve performance. The implementation
is available in the project website 8.

4.3 Experimental Results

The analysis of our results focus on three main aspects: the SemLAV effective-
ness, memory consumption and throughput.

To demonstrate the SemLAV effectiveness, we execute SemLAV with a time-
out of 10 minutes. During this execution, the SemLAV algorithms select and

" http://jena.apache.org/
8 https://sites.google.com/site/semanticlav/
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Table 6: The SemLAV Effectiveness. For 10 minutes of execution, we report the
number of relevant views included in the global schema instance, the number of
covered rewritings and the achieved effectiveness. Also values for total number
of views and rewritings are shown

Query|Included Views|# Relevant Views|# Covered rewritings|# Rewritings|Effectiveness
Q1 30 408 2.28E+406 2.04E+10 0.000112
Q2 194 408 2.05E423 1.57TE+24 0.130135
Q4 156 374 8.77E+403 1.62E+04 0.542017
Q5 52 374 3.13E4-06 7.48E+407 0.041770
Q6 44 136 2.13E+04 3.14E+05 0.067728
Q8 81 136 9.36E+04 1.57E405 0.595588
Q9 34 34 3.40E4-01 3.40E+01 1.000000
Q10 88 408 3.20E4-05 4.40E+06 0.072766
Q11 77 136 5.24E403 9.25E+03 0.566176
Q12 238 408 7.70E+408 1.50E+4-09 0.514286
Q13 245 408 4.26E+04 6.47TE+04 0.657563
Q14 46 272 1.22E4-04 2.52E4-06 0.004837
Q15 70 442 5.12E4-08 2.04E+10 0.025144
Q16 82 136 1.90E+05 3.14E+05 0.602941
Q17 56 136 1.90E+4-03 4.62E+03 0.411765
Q18 23 374 2.80E+05 1.20E4-09 0.000234

include a subset of the relevant views; this set corresponds to Vi as a solution
to the MaxCov problem. Then, we use these views to compute the number of
covered rewritings using the formula given in Section 3. Table 6 shows the num-
ber of relevant views considered by SemLAV, the covered rewritings and the
achieved effectiveness. Effectiveness is greater than or equal to 0.5 (out of 1) for
almost half of the queries. SemLAV maximizes the number of covered rewritings
by considering views that cover more subgoals first.

The observed results confirm that the SemLAV effectiveness is considerably
high. Effectiveness depends on the number of relevant views, but this number
is bounded to the number of relevant views that can be stored in memory. As
expected, the SemLLAV approach could require more space than the traditional
rewriting-based approach. SemLAV builds a global schema instance that includes
all the relevant views in Vi, whereas a traditional rewriting-based approach in-
cludes only the views in one rewriting at the time. Table 7 shows the maximal
graph size in both approaches. SemLAV can use up to 129 times more mem-
ory than the traditional rewriting-based approach (for Q17). SemLAV can use
less memory than the traditional rewriting-based approach (for Q1) for relevant
views with overlapped data.

We calculate the throughput as the number of answers divided by the total
execution time. For SemLAV, this time includes view selection and ranking, con-
tacting data sources using the wrappers, including data into the global schema
instance, and query execution time. For the traditional rewriting-based approach,
this time includes rewriting time, instead of view selection and ranking. Table
7 shows for each query: number of answers, execution time, number of times
the query is executed and throughput. Notice that SemLLAV executes the query
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Table 7: Execution of Queries Q1, Q2, Q4-Q6, Q8-Q18 using SemLAV, MCD-
SAT, GQR and MiniCon, using 20GB of RAM and a timeout of 10 minutes. It
is reported the number of answers obtained, wrapper time (WT), graph creation
time (GCT), plan execution time (PET), total time (TT), time of first answer
(TFA), number of times original query is executed (#EQ), maximal graph size
(MGS) in terms of number of triples and throughput (number of answers ob-
tained per millisecond)

Query|Approach Answer Time (msecs) #BQ[ MGS Throughput
Size T | WT [GCT [ PET TT TFA (answers / msec)
Q1 | SemLAV |22,660,216| 33| 45,434| 8,322|547,310|606,697 6,370| 15 810,638 37.3501
MCDSAT 200 0| 13,688 202(299,546(609,381| 309,952 810,409 0.0005
GQR o| o 0 0 0[600,415|>600,000 0 0.0000
MiniCon ol o 0 0 0[600,136|>600,000 0 0.0000
Q2 | SemLAV 590,000| 98|177,020|30,676|392,439]600,656| 260,333 66 |1,040,373 0.9823
MCDSAT o| of 15,519 105| 7,058|681,246|>600,000 848,276 0.0000
GQR o| o 0 0 0[654,483|>600,000 0 0.0000
MiniCon ol o 0 0 0[600,054|>600,000 0 0.0000
Q4 | SemLAV 287[100(555,528(73,771 327(660,938| 104,501| 47 |3,659,707 0.0004
MCDSAT 0| 0|154,451| 371|181,387|601,590|>600,000 279,896 0.0000
GQR 0| o0|557,125| 1,181| 11,784|600,665|>600,000 84,046 0.0000
MiniCon 0| o0]|413,871] 650| 91,136|601,750|>600,000 177,838 0.0000
Q5 | SemLAV 564,220]100|523,084|65,333| 44,102|632,809| 116,037| 28 |3,396,134 0.8916
MCDSAT 0| 0|398,517| 384| 26,287|601,731|>600,000 424,431 0.0000
GQR of o 0 0 0[600,481|>600,000 0 0.0000
MiniCon ol o 0 0 0[600,132|>600,000 0 0.0000
Q6 | SemLAV 118,258| 59|547,763|62,896| 13,291|625,173| 43,306| 24 |2,931,316 0.1892
MCDSAT 5,776| 2|401,026| 1,029| 55,684|601,678| 105,752 91,900 0.0096
GQR o| o 0 0 0[600,510|>600,000 0 0.0000
MiniCon 3,697| 1|193,817| 248| 51,300|637,514| 418,169 2,184,680 0.0058
Q8 | SemLAV 564,220|100|428,745|66,383|132,373|627,612 5,393 42 |4,489,016 0.8990
MCDSAT 16,595 2[403,133| 576| 65,935[603,297| 113,211 256,382 0.0275
GQR 1,706 0[330,065| 194| 31,587|607,594| 272,737 1,264,385 0.0028
MiniCon 467| 0[198,384| 349|271,398|616,114| 166,776 1,265,295 0.0008
Q9 | SemLAV 28,211|100| 2,038| 697| 1,338| 5,107 1,235] 18 169,839 5.5240
MCDSAT 28,211|100| 5,609| 445| 1,643| 41,505 34,392 5,417 0.6797
GQR 28,211| 100| 3,310 132| 1,281| 5,709 1,435 5,417 4.9415
MiniCon 28,211|100| 3,086| 129| 1,362| 5,004 862 5,417 5.6377
Q10 | SemLAV | 2,993,175|100|161,047|25,659|417,234|607,841 9,810| 44 869,340 4.9243
MCDSAT| 332,488 11| 19,801 67(383,421(600,000| 207,191 603,769 0.5541
GQR of o 0 0 0/600,639|>600,000 0 0.0000
MiniCon ol o 0 0 0[600,138(>600,000 0 0.0000
Q1L | SemLAV | 2,993,175|100|195,950|27,442|377,255|601,042 8,352| 43 816,308 4.9800
MCDSAT| 1,943,141| 64|141,876| 389(|391,852/600,000| 72,939 402,528 3.2386
GQR 1,442,134| 48|248,275| 689(340,937|600,000| 14,435 307,089 2.4036
MiniCon | 1,956,539 65|217,321| 415(385,019|605,021 6,832 402,539 3.2338
Q12 | SemLAV 598,635|100(258,097 |41,062|303,023 609,509 5,784 121 |1,041,369 0.9822
MCDSAT 0| 0|424,369| 498| 15,271|607,408|>600,000 509,271 0.0000
GQR ol o 0 0 0[600,418 0 0.0000
MiniCon o| o 0 0 0[600,189|>600,000 0 0.0000
Q13 | SemLAV 598,635|100|452,288|65,043|126,345|671,893| 183,844| 124 |3,509,975 0.8910
MCDSAT 0| 0|250,542| 312|141,728(610,452|>600,000 402,531 0.0000
GQR o| o] 36,563| 344| 19,757|600,376|>600,000 31,948 0.0000
MiniCon 0| 0/143,879] 625|219,882|605,727|>600,000 206,689 0.0000
Q14 | SemLAV 344,885| 61|544,919|58,563| 32,752|636,387| 29,201| 24 |2,921,646 0.5419
MCDSAT 10,308 1(382,674| 587| 63,689(614,123| 133,200 1,206,075 0.0168
GQR o| o 0 0 0[600,714|>600,000 0 0.0000
MiniCon ol o 0 0 0[600,319|>600,000 0 0.0000
Q15 | SemLAV 282,110|100(471,609|63,548]109,762|645,172 2,911| 37 |3,255,223 0.4373
MCDSAT 8,298| 2| 90,061| 271|168,041|622,474| 217,445 361,882 0.0133
GQR of o 0 0 0[819,679|>600,000 0 0.0000
MiniCon o| o 0 0 0[600,171|>600,000 0 0.0000
Q16 | SemLAV 282,110|100(407,107 53,611 187,986 | 648,826 2,5631| 46 3,356,755 0.4348
MCDSAT 8,208| 2(437,590| 852| 32,015|601,584| 103,641 74,682 0.0138
GQR 1| o] 26,460 79 94)619,761| 619,702 1,136,305 0.0000
MiniCon 252 0[110,366] 181[122,022|603,821| 400,416 1,151,769 0.0004
Q17 | SemLAV 197,112|100(547,255|67,857| 28,783 644,090 1,504 32 3,002,144 0.3060
MCDSAT| 156,533| 79|412,525| 1,727| 60,858/600,067| 70,476 23,192 0.2609
GQR 45,037| 22|245,953| 177|350,406/600,000| 27,178 1,098,117 0.0751
MiniCon 5,779| 2[262,608| 361[334,810(600,001| 26,952 1,099,508 0.0096
Q18 | SemLAV 0| 0]582,334|65,083| 3,543|651,094|>600,000| 12 |2,806,533 0.0000
MCDSAT 0| 0|256,304| 257|100,820|607,091|>600,000 411,901 0.0000
GQR o| o 0 0 0[600,791|>600,000 0 0.0000
MiniCon ) 0 0 0]600,186| >600,000 0 0.0000
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whenever a new relevant view has been included in the global schema instance
and the query execution thread is active.

The difference in the answer size and throughput is impressive, e.g., for Q1
SemLAV produces 37.3501 answers/msec, while the other approach produces up
to 0.0005 answers/msec. This huge difference is caused by the differences between
the complexity of the rewriting generation and the SemLAV view selection and
ranking algorithm, and between the number of rewritings and number of relevant
views. This makes possible to generate answers sooner. Column TFA of Table 7
shows the time for the first answer; TFA is impacted by executing the query as
soon as possible, according to option 1 given in Algorithm 2. Only for query Q18
SemLAV does not produce any answer in 10 minutes. This is because the views
included in the global schema instance are large (around one million triples
per view) and do not contribute to the answer; consequently, almost all the
execution time is spent in transferring data from the relevant views. SemLAV
produces answers sooner in all the other cases. Moreover, SemL AV also achieves
complete answer in 11 of 16 queries in only 10 minutes.

In summary, the results show that SemLAV is effective and efficient and pro-
duces more answers sooner than a traditional rewriting-based approach. SemLAV
makes the LAV approach feasible for processing SPARQL queries.

5 State of the Art

In recent years, several approaches have been proposed for querying the Web of
Data [18-22]. Some tools address the problem of choosing the sources that can
be used to execute a query [21,22]; others have developed techniques to adapt
query processing to source availability [18,21]. Finally, frameworks to retrieve
and manage Linked Data have been defined [19, 21], as well as strategies for de-
composing SPARQL queries against federations of endpoints [6]. All these ap-
proaches assume that queries are expressed in terms of RDF vocabularies used to
describe the data in the RDF sources; thus, their main challenge is to effectively
select the sources, and efficiently execute the queries on the data retrieved from
the selected sources. In contrast, SemLAV attempts to integrate data sources,
and relies on a global schema to describe data sources and to provide a unified
interface to the users. As a consequence, in addition to collecting and process-
ing data transferred from the selected sources, SemLAV decides which of these
sources need to be contacted first, to quickly answer the query.

Three main paradigms have been proposed to integrate dissimilar data sources.
In GAV mediators, entities in the global schema are semantically described using
views in terms of the data sources. In consequence, including or updating data
sources may require the modification of a large number of mappings [3]. In con-
trast, the LAV approach, new data sources can be easily integrated [3]; further,
data sources that publish entities of several concepts in the global schema, can
be naturally defined as LAV views. Thus, the LAV approach is best suited for ap-
plications with a stable global schema but with changing data sources; contrary,
the GAV approach is more suitable for applications with stable data sources and
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a changing global schema. Finally, a more general approach named Global-Local-
As-View (GLAV) allows the definition of mappings where views on the global
schema are mapped to views of the data sources. Recently, Knoblock et al. [23]
and Taheriyan et al. [24] proposed Karma, a system to semi-automatically gener-
ate source descriptions as GLAV views on a given ontology. Karma makes GLAV
views a solution to consume open data as well as to integrate and populate these
sources into the LOD cloud.

GLAV views are suitable not only to describe sources, but also to provide
the basis for the dynamic integration of open data and Web APIs into the LOD
cloud. Further, theoretical results presented by Calvanese et al.[7] establish that
for conjunctive queries against relational schemas, GLAV query processing tech-
niques can be implemented as the combination of the resolution of the query
processing tasks with respect to the LAV component of the GLAV views fol-
lowed by query unfolding tasks on the GAV component. Thus, SemLAV can
be easily extended to manage GLAV query processing tasks, and provides the
basis to integrate existing GLAV views. Additionally, SemLAV can be used to
develop SPARQL endpoints that dynamically access up-to-date data from the
data sources or Web APIs defined by the generated GLAV views.

The problem of rewriting a query into queries on the data sources is a rele-
vant problem in integration systems [25]. A great effort has been made to provide
solutions able to produce query rewritings in the least time possible and to scale
up to a large number of views. Several approaches have been defined, e.g., MCD-
SAT [14], GQR [4], Bucket Algorithm [25], and MiniCon [11]. Recently, Le et
al, [17] propose a solution to identify and combine GAV SPARQL views that
rewrite SPARQL queries against a global vocabulary, and Izquierdo et al [16]
extend the MCDSAT rewriter with preferences to identify the combination of
semantic services that rewrite a user request. Recently, Montoya et al propose
GUN [26], a strategy to maximize the number of answers obtained from a given
set of k rewritings; GUN aggregates the data obtained from the relevant views
present in those k rewritings and executes the query over it. Even if GUN could
maximize the number of obtained answers, it would still depend on query rewrit-
ings as input, and has no criteria to order the relevant views.

We address this problem and propose SemLAV, a query processing technique
for RDF store architectures that provides a uniform interface to data sources
that have been defined using the LAV paradigm [27]. SemLAV gets rid of the
query rewriter, and focuses on selecting relevant views for each subgoal of the
query. Moreover, SemLLAV decides which relevant views will be contacted first,
and includes the retrieved data into a global schema instance where the query
is executed. At the cost of memory consumption, SemLAV is able to quickly
produce answers first, and compute a more complete answer when the rest of
the engines fail. Since the number of valid query rewritings can be exponential
in the number of views, providing an effective and efficient semantic data man-
agement technique as SemLAV is a relevant contribution to the implementation
of integration systems, and provides the basis for feasible and dynamic semantic
integration architectures in the Web of Data.
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An alternative approach for data integration is Data Warehousing [28], where
data is retrieved from the sources and stored in a repository. In this context,
query optimization relies on materialized views that allows to speed up the ex-
ecution time. Selecting the best set of views to be materialized is a complex
problem that has been deeply studied in the literature [9,29-32]. Commonly
approaches attempt to select this set of views according to an expected work-
load and available resources. Recently, Castillo-Espinola [9] propose an approach
where materialized views correspond to indexes for SPARQL queries that allow
to speed up query execution time. Although these approaches may considerably
improve performance in average, only queries that can be rewritten using the
materialized views will be benefited. Further, the cost of the view maintainabil-
ity process can be very high if data frequently changes and it needs to be kept
up-to-date to ensure answer correctness.

SemLAV also relies on view definitions, but views are temporally included in
the global schema instance during query execution; thus, data is always up-to-
date. Furthermore, the number of views to be considered is not limited. The only
limitation depends on the physical resources available to perform a particular
query. Nevertheless, it is important to highlight that the number of relevant
views for answering one query is, in the general case, considerably smaller than
the total number of views in the integration system.

6 Conclusions and Future Work

In this paper, we presented SemL AV, a Local-As-View mediation technique
that allows to perform SPARQL queries over views without facing problems
of NP-completeness, exponential number of rewritings or restriction to conjunc-
tive SPARQL queries. This is obtained at the price of including relevant views
into a global schema instance which is space consuming. However, we demon-
strated that, even if only a subset of relevant views is included, we obtain more
results than traditional rewriting-based techniques. Chances of producing results
are higher, if the number of covered rewritings is maximized as defined in the
MaxCov problem. We proved that our ranking strategy maximizes the number
of covered rewritings.

SemL AV opens a new way to execute SPARQL queries for LAV mediators
that is tractable. As perspectives, the performance of SemLAV can be greatly
improved by parallelizing views inclusion. Currently, SemLAV includes views se-
quentially due to Jena restrictions. If views were included in parallel, time to get
first results would be greatly improved. Additionally, the strategy of producing
results as soon as possible, can deteriorate the overall throughput. If users want
to improve overall throughput, then the query should be executed once after all
the views in Vi have been included. It could be also interesting to design an
execution strategy where SemLLAV would execute under constrained space. In
this case, the problem would be to find the minimum set of relevant views that
would fit in the available space and produce the maximal number of answers.
All these problems will be part of our future works.
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A Queries

In our experimental study, we evaluate the SPARQL queries proposed by Castillo-
Espinola [9]. We only consider the SPARQL queries without constants or literals
due to limitations of state-of-the-art rewriters.

SELECT x*
WHERE {
?X1 rdfs:label ?X2 .
?X1 rdfs:comment ?X3 .
?X1 bsbm:producer ?X4 .
?X4 rdfs:label 7?X5 .
?X1 dc:publisher 7X4 .
?X1 bsbm:productFeature ?X6 .
?X6 rdfs:label ?X7 .
?X1 bsbm:productPropertyTextuall ?7X8 .
?X1 bsbm:productPropertyTextual2 ?7X9 .
} ?X1 bsbm:productPropertyTextual3 ?7X10 .
. . ?X1 bsbm:productPropertyNumericl ?X11 .
LlStlng 1.6: Q]. ?X1 bsbm:productPropertyNumeric2 ?X12 .

SELECT =
WHERE {
?7X1 rdfs:label ?X2 .
?X1 rdf:type ?7X3 .
?X1 bsbm:productFeature 7X4 .
?X1 bsbm:productFeature 7X5 .
?X1 bsbm:productPropertyNumericl ?X6 .

Listing 1.7: Q2

SELECT %
SELECT * WHERE {
WHERE { ?X1 bsbm:vendor ?X2 .
?X1 rdfs:label ?X2 . ?X1 bsbm: offerWebpage ?X3 .
?X1 foaf:homepage ?X3 . ?X2 rdfs:label ?X4 .
} ?X2 foaf:homepage ?X5 .
}

Listing 1.8: Q4 Listing 1.9: Q5

SELECT = SELECT =*
WHERE { WHERE {
?X1 bsbm:reviewFor ?X2 . ?X1 bsbm:offerWebpage 7X2 .
?X1 rev:reviewer 7X3 . ?X1 bsbm:price ?7X3 .
?7X1 bsbm:ratingl 7X4 . 7X1 bsbm:deliveryDays 7X4 .
} }
Listing 1.10: Q6 Listing 1.11: Q8
SELECT =
SELECT WHERE {
?X1 rdfs:label ?7X2 .
WHERE {
7X1 bsbm: productPropertyNumericl 7X2 X1 rdf:type 7X3 .
: : : : ?X1 bsbm:productFeature ?X4 .
’ }
Listing 1.12: Q9 Listing 1.13: Q10
SELECT =
SELECT WHERE {
WHERE { ?X1 bsbm:producer ?X2 .
?X1 rdf:type 7X2 . 7X2 rdfs:label 7X3 .
?X1 bsbm:productFeature 7X3 . ?X1 dc:publisher 7X2 .
3 ?X1 bsbm:productFeature ?X4 .
}

Listing 1.14: Q11 Listing 1.15: Q12
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SELECT *
WHERE {

?X1 bsbm:productFeature ?X2 .

?X2 rdfs:label ?X3 .

}
Listing 1.16: Q13
SELECT *
WHERE {
?7X1 rdfs:label ?X2 .
?X3 bsbm:reviewFor ?X1 .
?X3 rev:reviewer 7X4 .
?X4 foaf:name 7X5 .
?X3 dc:title 7X6 .
}
Listing 1.18: Q15
SELECT
WHERE {
?X1 bsbm:reviewFor ?X2 .
?X1 bsbm:ratingl ?X3 .
}

Listing 1.20: Q17

26

SELECT =

WHERE {
?X1 bsbm:producer ?X2 .
?X3 bsbm:product ?X1 .
?X3 bsbm:vendor ?X4 .

}
Listing 1.17: Q14
SELECT x*
WHERE {
?X1 bsbm:reviewFor ?X2 .
?X1 dc:title ?X3 .
?X1 rev:text ?X4 .
}
Listing 1.19: Q16
SELECT =
WHERE {
?X1 bsbm:product 7X2 .
?7X2 rdfs:label ?X3 .
?X1 bsbm:vendor ?X4 .
?7X1 bsbm:price 7X5 .
}

Listing 1.21: Q18



