
HAL Id: hal-00807671
https://nantes-universite.hal.science/hal-00807671v1

Submitted on 4 Apr 2013 (v1), last revised 17 Feb 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GUN: An Efficient Execution Strategy for Querying the
Web of Data

Gabriela Montoya, Luis-Daniel Ibanez, Hala Skaf-Molli, Pascal Molli,
Maria-Esther Vidal

To cite this version:
Gabriela Montoya, Luis-Daniel Ibanez, Hala Skaf-Molli, Pascal Molli, Maria-Esther Vidal. GUN: An
Efficient Execution Strategy for Querying the Web of Data. 24th International Conference, DEXA
2013, Prague, Czech Republic, August 26-29, 2013. Proceedings, Part I, Aug 2013, Prague, Czech
Republic. pp 180-194, �10.1007/978-3-642-40285-2_17�. �hal-00807671v1�

https://nantes-universite.hal.science/hal-00807671v1
https://hal.archives-ouvertes.fr

GUN: An Efficient Execution Strategy for
Querying the Web of Data

Gabriela Montoya1, Luis-Daniel Ibáñez1, Hala Skaf-Molli1, Pascal Molli1, and
Maria-Esther Vidal2

1 LINA– Nantes University, France
{gabriela.montoya,luis.ibanez,hala.skaf,pascal.molli}@univ-nantes.fr

2 Universidad Simón Boĺıvar, Venezuela
{mvidal}@ldc.usb.ve

Abstract. Local-As-View (LAV) mediators provide a uniform interface
to a federation of heterogeneous data sources, attempting to execute
queries against the federation. LAV mediators rely on query rewriters to
translate mediator queries into equivalent queries on the federated data
sources. The query rewriting problem in LAV mediators has shown to
be NP-complete, and there may be an exponential number of rewritings,
making unfeasible the execution or even generation of all the rewritings
for some queries. The complexity of this problem can be particularly
impacted when queries and data sources are described using SPARQL
conjunctive queries, for which millions of rewritings could be generated.
We aim at providing an efficient solution to the problem of executing LAV
SPARQL query rewritings while the gathered answer is as complete as
possible. We formulate the Result-Maximal k-Execution problem (Re-
MakE) as the problem of maximizing the query results obtained from
the execution of only k rewritings. Additionally, a novel query execution
strategy called GUN is proposed to solve the ReMakE problem. Our ex-
perimental evaluation demonstrates that GUN outperforms traditional
techniques in terms of answer completeness and execution time.

1 Introduction

Querying the Web of Data raises the issue of semantic heterogeneity between
a large number of data sources. Local-as-view (LAV) mediation [1] is a well-
known and flexible approach to perform data integration over heterogeneous
data sources. A LAV mediator relies on views to define semantic mappings be-
tween a uniform interface defined at the mediator level, and local schemas or
views that describe the integrated data sources. A LAV mediator relies on a
query rewriter to translate a mediator query into the union of queries against
the local views. Additionally, new data sources can be included into LAV medi-
ators without affecting the definition of the existing ones; thus, LAV mediators
are well suitable to integrate sources from the Web of Data [2]. Nevertheless,
the query rewriting problem has shown to be NP-complete, and the number of
rewritings can be exponential even if mediated queries and local views are con-
junctive queries [3, 4]. For example, a LAV mediator with 140 conjunctive views

can generate 10,000 rewritings for a conjunctive query with 8 goals [5]. This
query rewriting problem complexity can be exacerbated by the usage of medi-
ator queries and local views defined as SPARQL conjunctive queries. SPARQL
queries are commonly comprised of a large number of triple patterns and many of
them are defined on general predicates that can be answered by the majority of
the data sources, i.e., rdf:type or rdfs:seeAlso. Additionally, these triple
patterns can be grouped into chained connected star-shaped sub-queries [6]. Fi-
nally, a large number of variables can be projected out. Thus, the conjunction
of all these properties impacts on the complexity of the query rewriting problem
and conduces to the explosion of the number of query rewritings. For exam-
ple, a query with 12 triple patterns that comprised three chained star-shaped
sub-queries can be rewritten using 300 views in billions of rewritings, if general
predicates are used in the triple patterns. This problem is even more challenging
considering that statistics cannot be always collected from the sources, and there
are not clear criteria to rank or prune the generated rewritings [7].

Therefore, it is not realistic to generate or execute such a huge number of
rewritings, and we aim at providing an efficient solution to the problem by
just considering only k LAV SPARQL query rewritings, where k corresponds
to the first k rewritings produced by a LAV rewriter. Thus, we devised the
Result-Maximal k-Execution Problem (ReMakE) as an extension of the Query-
Rewriting-Problem (QRP) as follows: given a subset Rk of size k of a solution R

of a QRP for a query Q, the ReMakE problem is to evaluate a set of rewritings R′

containing Rk and contained in Q such that R′ is result-maximal. Furthermore,
we propose the Graph-Union execution strategy (GUN) as a solution to the
ReMakE problem. Unlike traditional techniques, GUN relies on wrappers that
populate an RDF graph that is locally managed by the execution engine. This
approach takes advantage of the relatively low cost of the RDF-Graph union
operation to construct an aggregation of the data retrieved from the views. This
approach attempts at executing the original mediator query directly on the graph
union and consequently, it may find results hidden to the k first rewritings. For a
given set of rewritings, GUN always gathers at least all the answers collected by a
traditional engine by executing the rewritings independently. If all relevant views
identified by the rewriter are in Rk, GUN guarantees to return the complete
answer without further processing of rewritings. Thus, the execution time of
GUN depends on the number of the relevant views that comprise the rewritings
in Rk, which is usually considerably lower than the total number of rewritings.

We compare GUN against traditional strategies in an experimental setup
using synthetic data generated using the Berlin SPARQL benchmark [8] and
views proposed by Castillo et al. [9]. We measure execution time and answer
completeness for a benchmark of queries. GUN retrieves much more results in less
time than existing engines. The amount of main memory required to maintain
a GUN graph is in general higher than the one required to execute traditional
approaches; however, improvements in execution time and results are substantial
enough to consider it a good trade-off.

2

The paper is organized as follows: Section 2 states preliminaries, while Sec-
tion 3 formalizes the ReMakE problem. Section 4 presents the GUN query ex-
ecution strategy as a solution for the ReMakE problem. Section 5 reports our
experimental study. Section 6 summarizes related work; and finally, conclusions
and future work are outlined in Section 7.

2 Preliminaries

We assume a federation of data sources is integrated using the mediator-wrapper
architecture proposed by Wiederhold [10]. Mediators provide a uniform interface
to autonomous and heterogeneous data sources; mediators also implement the
tasks of rewriting an input query into queries against the data sources, and merg-
ing data collected from the selected sources. Wrappers are software components
that solve interoperability between sources and mediators by translating data
collected from the sources into the schema and format understood by the media-
tors. Particularly, GUN-based mediators rely on wrappers able to solve resource
identification and perform the corresponding RDF transformations to conform
source data into the mediator RDF schema.

Formally, a conjunctive query Q over a database or mediator schema D has
the form Q(X̄) :- P1(X̄1), . . . , Pn(X̄n) where Q, P1, . . ., Pn are predicates name
of some finite arity and X̄, X̄1, . . ., X̄n are tuples of variables. These predicates
constitute the global schema. We define the body of the query as body(Q) =
{P1(X̄1), . . . , Pn(X̄n)}. Any non-empty subset of body(Q) is called a subgoal of
Q, singleton subgoals are called atomic subgoals. Predicates in the body stands
for relations of D, while the head Q represents the answer relation of the query
over D. We consider queries that are safe, i.e., X̄ ⊆

⋃n

i=1 X̄i, and call Q(D) the
result of executing Q over D.

In the spirit of [5], we define a view v as a safe query over D, we establish
the difference between the extension of v, denoted ext(v), and its evaluation
over D, v(D), and assume the relation ext(v) ⊆ v(D) to state two important
hypothesis: there may be data belonging to the database that is not available to
the extensions, and the extensions never hold data that is not in the database.

A rewriting of a query Q over a database D with a set of views V is a
conjunctive query r(x̄) :- v1(x̄1), . . . , vm(x̄m) where, vi ∈ V . A query rewriting
is contained in Q, if for all database D and set of views V over D, the result of
executing r in V is contained in the result of executingQ onD, i.e., r(V) ⊆ Q(D).

Maximally Contained Query Rewriting Problem (QRP). Given a con-
junctive query Q and a set of views V = { v1, . . . , vn } over a database D, QRP
is to find a set of rewritings R, called the solution of the QRP, such that:

– For all extensions of the views in the bodies of all rewritings in R, the union
of the results of executing each query rewriting in the views V is contained
in the result of executing Q in D, i.e.,

⋃
r∈R r(ext(v1), . . . , ext(vn)) ⊆ Q(D)

– R is maximal, i.e., there is no other set R′, such that:
⋃

r∈R

r(ext(v1), . . . , ext(vn)) ⊂
⋃

r′∈R′

r′(ext(v1), . . . , ext(vn)) ⊆ Q(D)

3

For a set R of rewritings, we define the set of relevant views Λ(R) = {v | v ∈
body(r) ∧ r ∈ R} as the set of views in the rewritings in R, and its execution
R(D) =

⋃
r∈R r(D). We also call ext(Λ(R)), the extension of the elements in

Λ(R).
The main drawback of existing query rewriting problem solutions for LAV [1,

5, 4, 11] is that the size of the set R can be exponential in the number of query
subgoals [3, 11]. Considering that it is not realistic to execute or generate an
enormous number of rewritings, this introduces the problem of collecting data
considering only k rewritings while obtaining an answer as complete as possible.

3 Result-Maximal k-Execution Problem (ReMakE)

In this section, we formalize the problem of obtaining the maximal set of results
from a given subset of the rewritings of a query over a set of views.

Result-Maximal k-Execution Problem (ReMakE). Given a subset Rk of
size k of a solution R of a QRP of a query Q and a set of views V over a database
D, ReMakE is to find a set of rewritings R′ over the set of views in the bodies
of the rewritings of Rk, such that:

⋃

rk∈Rk

rk(ext(Λ(Rk))) ⊆
⋃

r′∈R′

r′(ext(Λ(Rk))) ⊆ Q(D)

and that is result-maximal, i.e., that there is no another set R′′ such that:
⋃

r′∈R′

r′(ext(Λ(Rk))) ⊂
⋃

r′′∈R′′

r′′(ext(Λ(Rk))) ⊆ Q(D)

We define this problem over the extensions of the views, as they are the real
datasets where the query will be evaluated. It is important to note that the
ReMakE problem only uses the query rewritings as an input, therefore, it is
independent of the approach used to solve QRP. We also highlight that ReMakE
is independent of the format of the data inside the extensions of the views.

To illustrate the problem, consider the generic set of rewritings in Figure 1,
if we can only execute the first five rewritings, we may be missing a rewriting
comprised of some combination of the views that we have already materialized.

4 GUN: a solution to the ReMakE problem

In this section, we explain how to solve the ReMakE problem by taking advantage
of the relatively low cost of the RDF-Graph union. We use definitions of SPARQL
semantics of [12]:

Definition 1. The Sets I (IRI Identifiers), B (Blank Nodes), L (Literals) and
Υ (Variables) are four infinite and pairwise disjoint sets. We also define T =
I ∪B ∪L. An RDF-Triple is 3-tuple (s, p, o) ∈ (I ∪B)× I × T . An RDF-Graph
is a set of RDF-Triples.

4

r1 (x̄) :- v1 (w̄) , v2 (ȳ) , v3 (z̄)

r2 (x̄) :- v1 (w̄) , v4 (ā) , v3 (z̄)

r3 (x̄) :- v1 (w̄) , v5
(

b̄
)

, v6 (c̄)

r4 (x̄) :- v1 (w̄) , v7
(

d̄
)

, v8 (ē)

r5 (x̄) :- v1 (w̄) , v8 (ē) , v7
(

f̄
)

k = 5

...
...

...
...

rn (x̄) :- v1 (w̄) , v4 (ā) , v6 (c̄)

Fig. 1: Illustration of the Result-Maximal k-Execution problem. Some combina-
tions of views materialized during the execution of a subset of rewritings are
not considered, and they may be in the set of rewritings that are not taken in
account.

Definition 2. A mapping µ from Υ to T is a partial function µ : Υ → T . The
domain of µ, dom(µ), is the subset of Υ where µ is defined.

Definition 3. A triple pattern is a tuple t ∈ (I ∪Υ ∪L)× (I ∪Υ)× (I ∪Υ ∪L).
A Basic Graph Pattern is a finite set of triple patterns. Given a triple pattern
t, var(t) is the set of variables occurring in t, analogously, given a basic graph
pattern B, var(B) = ∪t∈Bvar(t). Given two basic graph patterns B1 and B2,
the expression B1 AND B2 is a graph pattern.

Definition 4. Given a triple pattern t and a mapping µ such that, var(t) ⊆
dom(µ), µ(t) is the triple obtained by replacing the variables in t according to
µ. Given a basic graph pattern B and a mapping µ such that var(B) ⊆ dom(µ),
then µ(B) = ∪t∈Bµ(t).

Definition 5. Two mappings µ1, µ2 are compatible (we denote µ1 q µ2) iff for
all ?X ∈ (dom(µ1)∩dom(µ2)), then µ1(?X) = µ2(?X). This is equivalent to say
that µ1 ∪ µ2 is also a mapping.

Definition 6. Let Ω1, Ω2 two sets of mappings. The join between Ω1 and Ω2 is
defined as: Ω1 ⋊⋉ Ω2 = {µ1 ∪ µ2 |µ1 ∈ Ω1 ∧ µ2 ∈ Ω2 ∧ µ1 q µ2}

Definition 7. Given an RDF-Graph G, the evaluation of a triple pattern t over
G corresponds to: [[t]]G = {µ | dom(µ) = var(t)∧µ(t) ∈ G}. The evaluation of a
basic graph pattern B over G is defined as: [[B]]G =⋊⋉t∈B [[t]]G. The evaluation
of a Graph Pattern B′ of the form (B1 AND B2) over G is as follows: [[B′]]G =
[[B1]]G ⋊⋉ [[B2]]G

We consider that our database is an RDF-Graph G. A conjunctive query over
a general database is analogous to the following query over an RDF-Graph:

Q(x) = SELECT x WHERE F (p1(x̄1)) AND . . . AND F (pn(x̄n))

5

where F is a translation function from predicates to triple patterns as defined
in [13] or a customized one. The definitions of variables, head and body are
the same. As the definitions of views and rewritings are based on the defini-
tion of query, they remain equivalent, together with the definitions of QRP and
ReMakE. We define the evaluation of a rewriting [[r(x)]]G as:

[[r(x)]]G = [[v1(x̄1), . . . , vm(x̄m)]]G = ([[pa(x̄a)]]ext(v1) ⋊⋉ · · · ⋊⋉ [[pz(x̄z)]]ext(v1))

⋊⋉ · · · ⋊⋉ ([[pα(x̄α)]]ext(vm) ⋊⋉ · · · ⋊⋉ [[pβ(x̄β)]]ext(vm))

where pa . . . pz ∈ body(v1) and pα . . . pβ ∈ body(vm). Note that this definition
captures the practical implementation of the execution, where we materialize
each call to a view (or more precisely, to its extension) and then, perform the
joins between the sub-results. Traditionally, plans like Left Linear, Right Linear
or Bushy Trees [14] are used to evaluate the rewritings over the extension of the
views present in each rewriting; but to solve the ReMakE problem, we should
ensure that any relevant combinations of obtained views are not missed, even if
these combinations are not part of the rewritings in Rk.

Empty

Final Result

⋊⋉

eee
eee

eee
eee

eee
eee

e

SS
SS

SS
SS

SS

Intermediate

Result

prod1 type t . prod1 producer p1 .
prod1 productFeature f1 .
rev1 reviewFor prod1 .
rev1 reviewer reviewer1 .
rev1 rating rat1 .
off1 product prod1 .
off1 price p1 . off1 vendor ven1

⋊⋉

offers(Offer,Vendor,de, 4)

off2 vendor ven1 .
ven1 country DE .
off2 validTo d1

kk
kk
kk
kk
kk

SS
SS

SS
SS

SS

Intermediate

Result
prod1 type t .
prod1 producer p1 .
prod1 productFeature f1 .
rev1 reviewFor prod1 .
rev1 reviewer reviewer1 .
rev1 rating rat1

⋊⋉

market(Offer,Product, 2, 3)

off1 product prod1 .
off1 price p1 .
off1 vendor ven1

kk
kk
kk
kk
kk

SS
SS

SS
SS

SS

origin(Product,t, 0, 1)

prod1 type t .
prod1 producer p1 .
prod1 productFeature f1

opinions(Review,Product, 5,Rating)

rev1 reviewFor prod1 .
rev1 reviewer reviewer1 .
rev1 rating rat1

Fig. 2: Left Linear execution of the rewriting r of queryQ. Views origin, opinions,
market and offers are loaded, but it is not possible to produce any results since
the join for Offer is empty. Prefixes are omitted to improve legibility.

Consider a query Q over a dataset generated with the Berlin Benchmark [8],
which offers information about products, their offers and users’ reviews. Q is
defined as: “Products of type t that are sold by vendors from Germany, and
their rating evaluation”.

6

Q(Product, Vendor, Rating) :- type(Product, t), product(Offer, Product), vendor(Offer,

Vendor), country(Vendor, de), reviewfor(Review, Product), rating1(Review, Rating).

Considering the following four views: i) origin: “Products’ type, producer, and
features”, ii) market: “Products’ offers, price and vendors”, iii) offers: “Offers’
vendor, countries and validity”, iv) opinions: “Products’ reviews, ratings and
reviewers”. A possible rewriting of Q is:
r(Product,Vendor,Rating) :- origin(Product,t, 0, 1), opinions(Review,Product, 5,Rating),

market(Offer,Product, 2, 3), offers(Offer,Vendor,de, 4).

Figure 2 shows the execution of the rewriting of the query Q following a
left linear execution plan. In this execution, the RDF Graphs retrieved from
the sources through the views are used to execute this rewriting. Notice that
while executing the plan some intermediate results are produced, like those cor-
responding to the evaluation of the join between origin and opinions; however,
these intermediate results are dismissed without being used to produce answers.
A pertinent solution of the ReMakE problem must take advantage of these re-
trieved data. We now define our solution to the ReMakE problem as follows:

Graph Union (GUN). Given Rk a subset of a set of rewritings R of a query
Q over a set of views V , apply Q to the union of the extensions of the views in
the bodies of the elements of Rk:

GUN(Rk) = [[Q]]⋃ ext(Λ(Rk))

Results

(Product, V endor,Rating)
(prod1,ven1,rat1)

Execution of Original Query

Graph

Aggregation

prod1 type t . prod1 producer p1 .
prod1 productFeature f1 . rev1 reviewFor prod1 .
rev1 reviewer reviewer1 . rev1 rating rat1 .
off1 product prod1 . off1 price p1 .
off1 vendor ven1 . off2 vendor ven1 .
ven1 country DE . off2 validTo d1

cccc
cccc

cccc
cccc

cccc
cccc

ccc

kk
kk
kk
kk
kk

[[[[
[[[[

[[[[
[[[[

[[[[
[[[[

[[[

SS
SS

SS
SS

SS

origin(Product,t, 0, 1)

prod1 type t .
prod1 producer p1 .
prod1 productFeature f1

opinions(Review,Product, 5,Rating)

rev1 reviewFor prod1 .
rev1 reviewer reviewer1 .
rev1 rating rat1

market(Offer,Product, 2, 3)

off1 product prod1 .
off1 price p1 .
off1 vendor ven1

offers(Offer,Vendor,de, 4)

off2 vendor ven1 .
ven1 country DE .
off2 validTo d1

Fig. 3: GUN execution of the rewriting r of query Q. Results are produced, at
the cost of building and querying over an aggregated graph. Prefixes are omitted
to improve legibility.

Figure 3 shows the execution with GUN associated with the rewriting of
query Q. For each view in the rewriting, we retrieve all its triples and put them
into an aggregate RDF-Graph. As we are using the Local-As-View approach,

7

views are expressed in terms of the global schema, and we can run the original
query and execute joins that are not considered in the rewritings, like the one
between market and offers through Vendor. Therefore, GUN takes advantage of
all retrieved data to produce an answer for the user. GUN is affordable in the
context of the Semantic Web thanks to the simplicity of the RDF data model.
Implementing the same idea in relational databases would require the creation
of the universal relation, which may have a prohibitive cost.

Proposition 1. Graph Union is a solution to the ReMakE problem, i.e.,

⋃

r∈Rk

[[r]]ext(Λ(Rk)) ⊆ [[Q]]⋃ ext(Λ(Rk)) (1)

[[Q]]⋃ ext(Λ(Rk)) ⊆ [[Q]]G (2)

And it is result-maximal.

Proof. As by construction of the views and their extensions
⋃

v∈V [[v]]G ⊆ G,
then

⋃
ext(Λ(Rk)) ⊆ G, making straightforward to see that (2) holds. For (1)

note that the set Λ(Rk) can be considered as a set of views over the graph⋃
Λ(Rk), then by the containment property, each member of Rk is contained in

Q. As we are applying the original query Q, it is clear that there is no rewriting
that can return more results than Q, meaning that GUN is maximal.

4.1 GUN’s Properties

In this section, we state some properties of GUN. Given a query Q and a set of
views V on a database D, let VR the set of relevant views, R the set of rewritings
of Q over V , and Rk a subset of R.

– Answer Completeness: If GUN is performed over Rk with Λ(Rk) = Λ(R),
then GUN will produce the complete query answer i.e., Λ(Rk) = Λ(R) ⇒
GUN(Rk) = Q(D). By definition of QRP, only the relevant views contribute
to the answer, therefore, if GUN’s aggregation graph contains all the relevant
views, then we can ensure that GUN will produce the complete answer.

– Effectiveness: We define the Effectiveness of GUN for a given Rk as:

GUNEffect(Rk) =
|GUN (Rk)| − |

⋃
rk∈Rk

rk(ext(Λ(Rk)))|

|Q(D)| − |
⋃

rk∈Rk
rk(ext(Λ(Rk)))|

intuitively, GUN has more effectiveness if it finds answers that are not found
by the execution of

⋃
rk∈Rk

rk(ext(Λ(Rk))). We say that GUN is effective
for a given Rk if GUNEffect(Rk) > 0
If |Q(D)| − |

⋃
rk∈Rk

rk(ext(Λ(Rk)))| = 0, then, the effectiveness is defined
to be 0. Note that effectiveness and answer completeness are related by the
following relation:

⋃

rk∈Rk

rk(ext(Λ(Rk))) ⊂ Q(D) ⇒ (GUNEffect(Rk) = 1 ≡ GUN (Rk) = Q(D))

8

Query Answer Size # rewritings # of RV
Q1 3.33E+07 1.61E+09 260
Q2 2.99E+05 6.37E+21 260
Q3 2.03E+05 3.52E+24 280
Q4 1.42E+02 6.02E+03 240
Q5 2.82E+05 1.30E+07 240
Q6 9.84E+04 1.22E+05 100
Q7 1.12E+05 1.15E+12 180
Q8 2.82E+05 4.08E+04 100
Q9 1.41E+04 2.00E+01 20
Q10 1.49E+06 9.76E+05 260
Q11 1.49E+06 3.24E+03 80
Q12 2.99E+05 2.37E+08 260
Q13 2.99E+05 2.41E+04 260
Q14 2.82E+05 8.08E+05 180
Q15 1.41E+05 4.64E+09 280
Q16 1.41E+05 8.36E+04 100
Q17 9.84E+04 2.02E+03 100
Q18 2.82E+05 3.12E+08 240

(a) Query information

Views Size
V1-V20 147,327
V21-V40 133,992
V41-V60 41,463
V61-V80 22,410
V81-V100 4,515
V101-V120 53,131
V121-V140 32,511
V141-V160 90,873
V161-V180 21,138
V181-V200 9,836
V201-V220 4,515
V221-V240 4,515
V241-V260 67,364
V261-V280 81,313
V281-V300 840,470

(b) Views size

Table 1: Queries and their answer size, number of rewritings, number of relevant
views (RV) and views size.

When the execution of Rk does not produce the complete answer, then,
GUN’s effectiveness for Rk equals to one iff GUN produces complete answers.

– Execution Time Independency of k: the execution time of GUN does not
depend on the number of rewritings executed (k). It depends on the number
of relevant views present in Rk. Execution time is the elapsed time between
the generation of Rk rewritings and their execution time. This includes the
time required to obtain the data from the wrappers, the time required to
add the obtained data to the graph and the time required to execute the
query plan on the graph.

– Non-blocking: GUN solves the ReMakE problem under the assumption that⋃
Λ(Rk) fits in memory. If not, GUN can only approximate it, for example,

by splitting Rk into disjoint Rk1
and Rk2

such that
⋃
Λ(Rk1

) and
⋃
Λ(Rk2

)
fit in memory. Then, execute GUN (Rk1

), clear the memory, and execute
GUN (Rk2). Therefore, GUN is a non-blocking execution strategy i.e., run-
ning out of memory will not prevent GUN to execute at the expense of
non-maximality of the answer, as the combined effectiveness of GUN (Rk1

)
and GUN (Rk2

) is in general less than this of GUN (Rk).

5 Experimental Evaluation

To setup the experimental evaluation, we used the Berlin SPARQL Benchmark
(BSBM) [8] to generate a dataset of 5,000,251 triples, using a scale factor of
14,091 products. We used the 18 queries and the 10 views proposed in [9]. These
queries are very challenging for a query rewriter since their triple patterns can
be grouped into chained connected star-shaped sub-queries, that have between
1 and 13 subgoals, with only distinguished variables.

We defined 5 additional views to cover all the predicates in the queries. From
these 15 views, we produced 300 views by horizontally partitioning each original

9

view into 20 parts, such that each part produces 1/20 of the answers given by
the original view. Queries and views information is shown in Tables 1a and 1b.
The size of the complete answer was computed by loading all the views into a
persistent RDF-Store (Jena-TDB) and executing the queries over it. The number
of rewritings was obtained using the models counting feature of the SSDSAT [15]
rewriter.

As we can see in Table 1a, the number of rewritings may be huge, making
unfeasible their full execution. Furthermore, the time to generate the rewritings
is not negligible, and in some cases (Q2, Q3 and Q7) SSDSAT could not generate
them after 72 hours. We chose to compute 500 rewritings, as this was the best
compromise we could find between number of rewritings and generation time.
Additionally, we do not have any statistics about the sources to select the best
rewritings or to shrink the set of relevant views. Q1 execution reached a timeout
of 48 hours.

Some general predicates like rdf:label are present in the most of the views;
therefore, the queries that have a triple pattern with these predicates will have
a large number of relevant views, but not all of these views will contribute to
the answer. The size of a view corresponds to the number of triples that can
be accessed through that view. Detailed information about the definition of the
queries and views can be found in the project website 3.

We implemented wrappers as simple file readers. For executing rewritings,
we used one named graph per subgoal as done in [16]. The Jena 2.7.4 4 library
with main memory setup was used to store and query the graphs. We used the
Left Linear Plans implemented by Jena as a representative of traditional query
execution techniques.

5.1 Experimental Results

The analysis of our results focus on four aspects: answer completeness, effective-
ness, execution time and non-blocking as defined in section 4.1.

Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18
CA GUN 281 45 >500 381 20 21 29 36 21 >500 20 21 21 56

Jena 281 >500 >500 383 20 141 119 >500 320 >500 >500 >500 40 >500

GUN’s k=80 0 1 0.0016 0 1 1 1 1 0.0476 1 1 0 1
Effectiveness k=160 0 1 0.0002 0 0 0 1 1 0.0451 1 1 0 1

k=320 0 1 0.0018 0 0 0 1 0 0.0406 1 1 0 1
k=500 0 1 0.0024 0 0 0 1 0 0.0382 1 1 0 1

Table 2: Values of k for obtaining the Complete Answers (CA) for queries Q4-
Q6, Q8-Q18; using GUN and Jena. GUN’s Effectiveness for different values of
k. Effectiveness for Q9 is not reported here since it only has 20 rewritings.

3 https://sites.google.com/site/graphunion/
4 http://jena.apache.org/

10

Query Execution Time
K=80 K=160 K=320 K=500

Q4 GUN 39 39 63 73
Jena 167 293 48,943 49,721

Q5 GUN 377 400 400 400
Jena 1,155 2,302 3,848 5,935

Q6 GUN 336 337 338 339
Jena 398 798 1,610 2,516

Q8 GUN 41 47 58 64
Jena 190 377 751 1,278

Q10 GUN 132 132 132 132
Jena 2,214 5,941 119,137 251,641

Q11 GUN 121 121 121 121
Jena 1,906 3,707 9,985 16,939

Q12 GUN 28 28 28 28
Jena 79 146 288 475

Q13 GUN 71 203 478 522
Jena 146 352 734 2,034

Q14 GUN 328 395 395 395
Jena 439 842 1,657 2,485

Q15 GUN 358 358 358 358
Jena 1,207 3,000 5,812 9,160

Q16 GUN 35 35 35 35
Jena 119 283 596 972

Q17 GUN 69 345 345 345
Jena 168 965 2,450 4,029

Q18 GUN 324 414 415 415
Jena 1,149 2,413 4,355 6,808

(a) Execution Time for GUN and Jena

Query ET and # of RV
k=80 k=160 k=320 k=500

Q4 GUN 39 39 63 73
RV 23 25 31 38

Q5 GUN 377 400 400 400
RV 80 100 100 100

Q6 GUN 336 337 338 339
RV 62 63 66 69

Q8 GUN 41 47 58 64
RV 24 28 36 40

Q10 GUN 132 132 132 132
RV 79 80 80 80

Q11 GUN 121 121 121 121
RV 79 80 80 80

Q12 GUN 28 28 28 28
RV 80 80 80 80

Q13 GUN 71 203 478 522
RV 61 123 240 260

Q14 GUN 328 395 395 395
RV 81 101 101 101

Q15 GUN 358 358 358 358
RV 60 60 60 60

Q16 GUN 35 35 35 35
RV 40 40 40 40

Q17 GUN 69 345 345 345
RV 41 100 100 100

Q18 GUN 324 414 415 415
RV 80 100 100 100

(b) Execution Time and Number of
Relevant Views for GUN

Table 3: Execution Time (ET) for GUN and Jena. Impact of Number of Relevant
Views (RV) over Execution Time in GUN.

To study the answer completeness of GUN, we executed the GUN and Jena
strategies over Rk rewritings, we counted the number of rewritings to have the
complete answer. Table 2 shows that GUN is able to achieve the complete answer
for 12 queries whereas Jena is able to do so only for 6 queries. For queries Q9,
Q11, Q13 and Q17, GUN produced complete answers because at the reported
k, Λ(Rk) = Λ(R). For the rest of the queries, the non aggregated relevant views
did not contribute to produce more results. Detailed information about the ratio
of relevant views for each Rk can be found in the project’s website.

To demonstrate the effectiveness of GUN, we executed the GUN and Jena
strategies over Rk with k ∈ {80, 160, 320, 500}, counted the number of answers
and computed the effectiveness. Table 2 shows that GUN has effectiveness 1 for
k = 80 for half of the queries, moreover, in 5 of these 7 queries, the maximum
effectiveness remains even after Jena executes 500 rewritings. In 4 cases, GUN is
not effective because Jena already found the complete answer for this value of k.
Finally, in Q6 and Q14, GUN found more results than Jena. Effectiveness values
are not monotonic, since they can increase when considering a rewriting that
contains a view that contributes to produce results in GUN and not in Jena.
However, they can decrease after executing a rewriting that does not add new
views to GUN, but produces results for Jena.

Regarding the execution time, we want to: 1) demonstrate that GUN ex-
ecution time does not depend on k, but on |Λ(Rk)|, and 2) compare GUN’s

11

execution time with Jena’s. Table 3a shows total execution time, the detailed
values of the execution time are available in the project website. For all queries
GUN has better execution time, and for all but Q6 with k = 80, is more than
twice faster. When k = 500, the difference is dramatic, varying from almost 4
times faster (Q13) to 680 times faster (Q4). Table 3b shows total execution time
and number of loaded views for GUN. Execution time grows linearly in |Λ(Rk)|,
this is particularly visible in Q4 and Q13.

If we compare the times detailed in section 4.1, we notice that the dominating
time is the wrapper time. GUN loads views into the aggregated graph only once,
whereas Jena reloads them for each executed rewriting. Note that if we try to
cache the views in Jena to avoid reloading, it would consume more memory
and could consume even more memory than GUN if the views have overlapped
information, as it is the case in our setup.

Query Maximal Graph Size Maximal Graph Size Maximal Graph Size Maximal Graph Size
k=80 k=160 k=320 k=500

GUN Jena GUN Jena GUN Jena GUN Jena
Q4 1,201,671 148,739 1,208,714 148,739 1,753,969 907,775 1,878,666 907,775
Q5 1,993,617 907,905 2,275,437 907,923 2,275,437 907,923 2,275,437 907,923
Q6 1,578,294 850,376 1,583,212 850,376 1,597,964 850,376 1,612,716 850,376
Q8 1,479,686 148,725 1,536,050 148,745 1,648,778 148,745 1,705,142 230,045
Q10 422,269 294,678 422,269 294,678 422,269 442,052 422,269 442,052
Q11 422,268 294,701 422,269 294,701 422,269 294,748 422,269 294,748
Q12 439,946 83,260 439,946 83,260 439,946 83,260 439,946 83,276
Q13 1,713,056 862,917 2,277,638 862,962 2,923,233 862,962 2,923,233 862,962
Q14 2,095,418 912,422 2,279,248 926,356 2,279,248 935,825 2,279,248 935,825
Q15 1,568,458 905,450 1,568,458 905,529 1,568,458 905,529 1,568,458 905,529
Q16 584,792 53,678 584,792 63,411 584,792 63,411 584,792 74,802
Q17 1,496,262 850,331 1,807,718 850,376 1,807,718 850,376 1,807,718 850,376
Q18 2,175,448 907,916 2,275,437 921,840 2,275,437 921,840 2,275,437 921,859

Table 4: Maximum number of triples loaded by a rewriting in Rk in Jena. The
number of triples of the aggregated graph of GUN.

Finally, we analyzed GUN’s and Jena’s memory consumption to demonstrate
that in spite of complex queries and many relevant views: 1) GUN is not blocking,
and 2) to compare memory used by GUN with respect to Jena. For GUN, we
count the number of triples of the aggregated graph. For Jena, we report an upper
bound, that is, the maximum number of triples loaded for executing a rewriting
in Rk. Table 4 summarizes the results. Neither GUN nor Jena consumes all the
available memory (8GB). GUN needs to load more triples than Jena, varying
from less than twice to 12 times more, in all cases except for Q10 with k ≥ 320.
GUN’s aggregation is in general larger than the sum of the named graphs of the
most memory-consuming rewriting in Rk.

In summary, GUN is effective with better execution time at the cost of higher
memory consumption. However, in our experimentation GUN never exhausts the
available memory in spite of the challenging setup. This makes it a very appealing
solution for the ReMakE problem.

12

6 Related Work

In recent years, several approaches have been proposed for querying the Web of
Data [17–21]. Some tools address the problem of choosing the sources that can
be used to execute a query [20, 21]; others have developed techniques to adapt
query processing to source availability [17, 20]. Finally, frameworks to retrieve
and manage Linked Data have been defined [18, 20], as well as strategies for
decomposing SPARQL queries against federations of endpoints [7]. All these
approaches assume that queries are expressed in terms of RDF vocabularies used
to describe the data in the RDF sources; their main challenge is to effectively
select the sources, and efficiently execute the queries on the data retrieved from
the selected sources. In contrast our approach attempts to semantically integrate
data sources, and relies on a global vocabulary to describe data sources and
provide a unified interface to the users. Thus, in addition to efficiently gather
and process the data transferred from the selected sources, it decides which of
the rewritings of the original query need to execute to efficiently and effectively
produce the query answer.

Two main paradigms have been proposed to define the data sources in inte-
gration systems. The LAV approach is commonly used because it permits the
scalability of the system as new data sources become available [22]. Under LAV,
the appearance of a new source only causes the addition of a new mapping de-
scribing the source in terms of the concepts in the RDF global vocabulary. Under
GAV, on the other hand, entities in the RDF global vocabulary are semantically
described using views in terms of the data sources. Thus, the extension or mod-
ification of the global vocabulary is an easy task in GAV as it only involves the
addition or local modification of few descriptions [22]. Therefore, the LAV ap-
proach is best suited for applications with a stable RDF global vocabulary but
with changing data sources whereas the GAV approach is best suited for appli-
cations with stable data sources and a changing vocabulary. Given the nature of
the Semantic Web, we rely on the LAV approach to describe the data sources
in terms of a global and unified RDF vocabulary, and assume that the global
vocabulary of concepts is stable while data sources may constantly pop up or
disappear from the Web.

The problem of rewriting a global query into queries on the data sources is
one relevant problem in integration systems [23], and several approaches have
been defined to efficiently enumerate the query rewritings and to scale when a
large number of views exists (e.g., MCDSAT [4], GQR [5], Bucket Algorithm [23],
MiniCon [11]). Recently, Le et al, [16] propose a solution to identify and combine
GAV SPARQL views that rewrite SPARQL queries against a global vocabulary,
and Izquierdo et al [15] extends the MCDSAT with preferences to identify the
combination of semantic services that rewrite a user request. A great effort has
been made to provide solutions able to produce query writings in the least time
possible, however, to the best of our knowledge, the problem of executing the
query rewritings against the selected sources still remains open.

We address this problem and propose GUN, a query processing technique for
RDF store architectures that provide a uniform interface to data sources that

13

have been defined using the LAV paradigm [1]. GUN assumes that the query
rewriting problem has been solved using an off-the-shell query rewriter (e.g., [15,
5]), which may produce a large number of query rewritings. GUN implements a
query processing strategy able to execute a reduced number of query rewritings
of and generate a more complete answer than the rest of the engines in less time,
as it was observed in our experimental results.

Since the number of valid query rewritings can be exponential in the num-
ber of sources, providing an effective and efficient semantic data management
technique to reduce the number of query rewritings executed is a relevant con-
tribution to the implementation of integration systems, and provides the basis
for feasible semantic integration architectures in the Web of Data.

7 Conclusion and Future Work

Performing complex queries on different data sources raises the severe issue of
semantic heterogeneity. Local-as-View mediators is one of the main approaches
to solve it. However, the high number of rewritings needed to be executed rep-
resents a severe bottleneck. We proposed the ReMakE problem, that consists
in maximizing the number of results obtained by considering only k rewritings
(Rk). We also proposed GUN, a solution to this problem, it uses the RDF data
model and takes advantage of the low cost of graph union operation.

Compared to state-of-the-art approaches, GUN provides an alternative way
to improve performance at the execution engine level rather than at the rewriter
level. This makes GUN usable with any LAV rewriter guaranteeing to achieve
greater or equal answer completeness for the same Rk. Our experiments demon-
strate that GUN gain is real, i.e., its effectiveness is equal to one for 57% of the
queries for the values of k until 80. It remains equal to one for 38% of the queries
for the values of k until 500.

Furthermore, GUN consumes considerably less execution time than Jena in
all the cases; the difference in execution time is tremendous, up to 681 times.
However, this improvement in effectiveness and execution time comes with an
additional memory consumption cost of up to 12 times.

This work opens new perspectives to improve LAV approach for the Semantic
Web. We would like to measure the effectiveness degradation when executing on
low-memory setups, and include some heuristics to minimize it. As GUN creates
materialized views for processing rewritings, we plan to evaluate the impact on
the effectiveness and the execution time when performing inference tasks on the
graph union. As GUN is mostly dependent on the ratio of views in rewritings
divided by the number of relevant views, an interesting perspective is to modify
rewriters to optimize the number of views in the first k rewritings.

References

1. Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using
views. In: Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, PODS’95. (1995) 95–104

14

2. Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M., Senellart, P.: Web data
management. Cambridge University Press (2011)

3. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized
views. In: Seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Princi-
ples of database systems, PODS’98. (1998) 254–263

4. Arvelo, Y., Bonet, B., Vidal, M.E.: Compilation of query-rewriting problems into
tractable fragments of propositional logic. In: AAAI. (2006) 225–230

5. Konstantinidis, G., Ambite, J.L.: Scalable query rewriting: a graph-based ap-
proach. In: SIGMOD. (2011) 97–108

6. Vidal, M.E., Ruckhaus, E., Lampo, T., Martinez, A., Sierra, J., Polleres, A.: Effi-
ciently Joining Group Patterns in SPARQL Queries. In: ESWC. (2010)

7. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: Optimization
techniques for federated query processing on linked data. In: ISWC. (2011) 601–616

8. Bizer, C., Shultz, A.: The berlin sparql benchmark. International Journal on
Semantic Web and Information Systems 5 (2009) 1–24

9. Castillo-Espinola, R.: Indexing RDF data using materialized SPARQL queries.
PhD thesis, Humboldt-Universität zu Berlin (2012)

10. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE
Computer 25 (1992) 38–49

11. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10
(2001) 270–294

12. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of sparql. ACM
Transactions on Database Systems (TODS) 34 (2009)

13. Baget, J.F., Croitoru, M., Gutierrez, A., Leclère, M., Mugnier, M.L.: Translations
between rdf(s) and conceptual graphs. In: ICCS. (2010) 28–41

14. Chaudhuri, S.: An overview of query optimization in relational systems. In: Sev-
enteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, PODS’98. (1998) 34–43

15. Izquierdo, D., Vidal, M.E., Bonet, B.: An expressive and efficient solution to the
service selection problem. In: ESWC. (2010) 386–401

16. Le, W., Duan, S., Kementsietsidis, A., Li, F., Wang, M.: Rewriting queries on
sparql views. In: WWW, ACM (2011) 655–664

17. Acosta, M., Vidal, M.E., Lampo, T., Castillo, J., Ruckhaus, E.: Anapsid: An
adaptive query processing engine for sparql endpoints. In: ISWC (1). (2011) 18–34

18. Basca, C., Bernstein, A.: Avalanche: Putting the Spirit of the Web back into
Semantic Web Querying. In: SSWS. (2010) 64–79

19. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data
summaries for on-demand queries over linked data. In: WWW. (2010) 411–420

20. Hartig, O.: Zero-knowledge query planning for an iterator implementation of link
traversal based query execution. In: ESWC. (2011) 154–169

21. Ladwig, G., Tran, T.: Sihjoin: Querying remote and local linked data. In: ESWC.
(2011) 139–153

22. Ullman, J.D.: Information integration using logical views. Theoretical Computer
Science 239 (2000) 189–210

23. Levy, A., Rajaraman, A., Ordille, J.: Querying heterogeneous information sources
using source descriptions. In: VLDB. (1996) 251–262

15

