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This is a research project combining :

Bioinformatics, Machine learning and Statistics

The main goal of this presentation is to introduce in general :
a machine learning approach for bioinformatics
m That is Bayesian networks (BN) for gene regulatory
network (GRN) reconstruction
m in order to infer the differentiation of the cytokine
implication in different experimental conditions
an evolutionary algorithm (EA) for BN structure learning
m Estimation of Distribution Algorithm (EDA)
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Introduction Machine learning for C

M Context
What do the biologists need?

dGrap!

m Found IL-15 in recent years [Arena et al. 2000]

m This cytokine plays a critical role in the immune system

m It has the similar action to the others cytokines in this
system

4

— How is the implication of IL-15 in the different
experiments?
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M| Context

dGrap!

What can the bioinformaticians respond?

Bioinformatics & Machine Learning

m Microarray allows to measure simultaneously the
expression level of thousands of genes

= Gene regulatory networks (GRNs) allow to achieve the
regulation of gene expression

m There are various machine learning methods proposed
to reconstruct the GRNs

m Bayesian networks (BNs) can solve major problems of
this reconstruction

— How can we use the BNs to infer the implication of
IL-15 in the different experiments?
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M Problems & Solutions

dGrap!
"If there aren't any problems, we have only the solution”

Problem: Data

m Heterogeneous and noisy

m A massive number of variables (over 25.000 genes)

m But a small number of samples (dozen experiments)

y

Solution: Data

m Public database : to increase the number of samples

® Normalization : to normalize heterogeneous data

m Bayesian networks : to deal with noisy data, the
massive number of variables
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Outline

Machine learning for GRN reconstruction
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15

Machine learning aproaches Basion

) Networks
for the reconstruction of the GRNs 1]

Clustering [MacQueen, 1967]
Boolean Networks [Kauffman, 1969]

Bayesian Networks

m Using BNs to Analyze Expression Data
[Freidman et al., 2000]

m Inferring Subnetworks from Expression Profiles
[Pe'er et al., 2001]

m Our approach : Using a set of BNs to infer the
differential study of the cytokine in different
experimental conditions
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M| Bayesian networks
Using BNs to Analyze Expression Data [Freidman et al., 2000]

Architecture of system proposed by Freidman et al., 2

S.Cerevisiae Cell-Cycle data by spellman (1998)
3 categories :
-1,0and 1
Sparse
Candidate
Bayesian Network Structure Learning Lo
Feature Analysis Order relation
Feature Estimation cipprcach

Open problems:

Continuous data, discretization method, temporal expression
data, causal patterns, biological knowledge
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15

Bayesian networks -

Networks
EDA

Inferring Subnetworks from Expression Profiles [Pe'er et al., 2001

Architecture of system proposed by Pe'er et al., 2001

S.Cerevisiae Perturbation data by Hughes et al (2000)

select a
threshold

ts(=0.75) of
significant
confidence with
¥ activation and
Subnetwork Analysis
Subnetwork Estimation Bootstrap
Approach

inhibition
constraints

Open problems:

Latent factors that interact with several observed genes,
biological knowledge
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JosiM| Bayesian networks
Our approach

Microarray data (GEO) data

3 categories:
-1, 0and1
Discretization

Bayesian Network Structure Learning

7 Markov relation)

R Order relation,

Networks Analysis O Activation/
constrants

Inhibition
Networks Estimation

Open problems:

More detail in ” Future Works” section
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eEi Bayesian networks
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EA for BN struture learning
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BN structure learning

Different approaches

Different approaches to learn the structure of BNs

m From an expert

m Constraint-based: find in the data for conditional
independence relations, then construct graphical
structures for these relations

m Search-Scoring : search in the space of legal structures
for the BNs that maximize the score

m Evolutionary Algorithm:
— Genetic Algorithm (GA)
— Estimation of Distribution Algorithm (EDA)
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M| Evolutionary Algorithm
l E[Il

and its representative EDA (Estimation of Distribution Algorithm

EA : What and why?
m "EA is a subset of evolutionary computation, a
population-based heuristic optimization algorithm”

m EA allow to maintain a set of interesting solutions

EDA : What and why?

m "EDA is an outgrowth of genetic algorithm. In EDA a
population may be approximated with a probability
distribution and new candidate solutions can be
obtained by sampling this distribution”

m EDA allows to maintain a set of interesting solutions

with the good probabilistic distributions
— This could be useful for a statistic test after )
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EDA & GA : Case study for BN structure learning

I Initial Population I I Initial Population | — Binary chromosome for each candidate

—>y For BENs - Connectivity Binary String
I Evaluation I | Evaluation |
¥ k7 Fitness function
I Selection I I Selection I For ENs — Scoring function (BIC, BDe...)

Open problem
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Other Names of EDA :

— PMBGAs (Probabilistic Model Building Genetic Algorithms )
— DEAs (Distribution Estimation Algorithms )
— IDEAs (lterated Density Estimation Algorithms )

EDA is categorised into three group

1. Univariate EDA
— PBIL (Population Based Incremental Leaming) [Baluja, 1994]
— UMDA (Univariate Marginal Distribution Algorithm) [MGhlenbein et al., 1994]
— cGA (Compact Genetic Algorithm) [Hariket et al., 1998]

2. Bivariate EDA
— MMIC (Mutual Information Maximization for Input Clustering) [Bonet et al., 1997]
— COMIT (Combining Optimizers with Mutual Information Trees) [Baluja, 1997]
— BMDA (Bivariate Marginal Distribution Algorithm) [Pelikan et al., 1999]
3. Multivariate EDA
ECGA (Extended Compact Genetic Algorithm) [Harik, 1999]
— EBNA (Estimation of Bayesian Networks Algorithm) [Etxeberria et al., 1999]
— FDA (Factorized Distribution Algorithm) [Mihlenbein et al., 1999]
— LFDA (Learning Factorized Distribution Algorithm) [MUhlenbein et al., 1999]
— BOA (Bayesian Optimization Algorithm) [Pelikan et al., 2000]
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Conclusion and Future Works
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M| Conclusions and Future Works Bayesian

! Networks
Conclusions EDA

Conclusions :

m The goal of this work is differential analysis :
BNs reconstruct GRNs
EAs maintain a set of good BNs
Comparison the obtained BNs in different experiments

4

m Theory : Which type of EDA can be used? May the
statistic test be a good approach?

m Implementation : A module of BN structure learning by
EA with ProBT(C) and EO library (Evolving Objects)

m Experimentation : Test this module with GEO (Gene
Expression Omnibus) data
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Each possible candidate of BNs is represented by an nxn
connectivity string Cj
1 if j is a parent of z,
] Z{ 0 otherwise.

For each chromosome, we represent an individual of the
population by the string :
C11C21...Ch1 C12C22...Ch2 ... C1pCop...Chn

do &5

: [¢ 3
010 001 000 010 001 100
(a) (b)
v
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1oem) Appendix

June 08,2009

meai ) Example of a simple EDA for the BN structure learning
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