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Abstract: In this work, we reconstruct the gene regulation networks from the microarray
experiments data by Bayesian networks approach. We use the evolutionary algorithm for
the search-and-score based structure learning methods. The learned network is tested by
the hypothesis testing with two populations of patient data, one with treatment (drugs),
other without treatment. The answer of question "How does the treatment influence to
gene regulation?” is expected.

Keywords: Gene expression, microarray, gene regulation networks, Bayesian networks,
genetic algorithm, estimation of distribution algorithm.

1 Introduction

The inference of gene regulatory networks from high-throughput microarray data is a central
problem of biological research. There are various machine learning and statistical methods have been
proposed to reconstruct more effectively this kind of networks, such as, clustering [4], Bayesian Net-
works (BNs) [7], [3], [15], Graphical Gaussian Models [ 13]. Compared to others, BNs can solve more
effectively almost principle problems of this reconstruction: (1) The complex interactions involving
many genes usually have to be inferred from sparse and noisy data; (2) There are a massive number
of variables (over 30.000 genes), but a small number of samples (dozens experiments); (3) Computa-
tional complexity of structures and statistical significance betweens variables in learned networks. In
the other words, to have a "better” gene regulation network, we have to construct a ”better” BN from
microarray data. This is a question of BNs learning (consist of parameter and structure learning) from
high-throughput microarray experiments data. It’s the main goal of this work.

2 Methods

In the present work, we investigate an implementation of two BN structure learning methods by
the genetic algorithm and by the estimation of distribution algorithm to ProBT(®), a general-purpose
development toolkit for Bayesian modelling, inference, and learning, developed by ProBayes. Then,
we use a hypothesis testing with two populations of patient data, one with treatment (drugs), other
without treatment, to test the result of the best networks produced by the learning methods in the first
step. The answer of question "How does the treatment influence to gene regulation?” is expected.



BN are directed graphical models for representing probabilistic independence relations between
multiple interacting entities. Formally, BNs are directed acyclic graphs (DAGs - a network without
any directed cycles) modelling probabilistic dependencies among variables [2]. The graphical struc-
ture G of a BN consists of a set of nodes and a set of directed edges.

In the study of reconstruction of gene regulation networks, we use a gene to represent a node and
direct influence/interaction between genes to represent an edge. If there is an edge from node A to
another node B, then variable B depends directly on variable A (gene A regulates gene B), and A
is called a parent of B. In a BN every variable is conditionally independent of its non-descendants
given its parents (Markov condition). In the other words, the conditional distribution of a variable A
given its parents pa 4 in the graph G is P = P(A|pa ) (parameter of BN, Figure 1). With this simple
condition, can infer how well a particular network explains the observed data. For example, in the BN
below, the joint distribution decomposes nicely:

P(G1,G2,G3,G4,G5,Gg) = P(G1).P(G3).P(G2|G1).P(G4|G2).P(G5|Ga, G3)
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Figure 1. Example of a BN gene expression data

In the simplest case, a BN is specified by an expert and then, it is used to perform inference.
However, the task of defining the network is too complex for humans. So, the network structure and
the parameters of the local distributions must be learned from data. We call this task is BNs learning.

Learning a BN from data requires both identifying the model structure G (structure learning)
and identifying the corresponding set of model parameter values (parameter learning). More simply,
given a fixed structure, however, it is straightforward to estimate the parameter values.

To learn the BNs parameter, the common approach is to introduce a statistically motivated scoring
function that evaluates each network with respect to the training data, then search for the optimal
network according to this score. The most used score is BIC (Bayesian Information Criterion).

To learn the BNs structure, there are two types of methods: (1) Constraint-based methods search
a database for conditional independence relations and then, construct graphical structures called “pat-
terns” which represent a class of statistically indistinguishable directed DAGs; (2) Search-and-score
methods perform a search in the space of legal structures. Search-Scoring methods have the advantage
of being able to flexibly incorporate prior knowledge and dealing with incomplete data [6]. GA, EDA
are the Evolutionary Algorithms that are used as a effect heuristic search engine in the BNs structure
learning problem [14], [1]. After the best structure, in order to know its real biology performance, we
propose to use a hypothesis testing with two populations of patient data, one with treatment (drugs),
and other without treatment. Depending on the difference of the result of this test, we can conclude
the influence of the treatment on the regulation of the genes.



3 Discussion

Which BNs learning algorithms for inferring gene regulatory networks? Although in 2007, Nancy
Cartwright [2] devotes half of her new book, "Hunting Causes and Using Them”, to critcizing "Bayes
Net Methods—as she calls them—and what she takes to be their assumptions. All of her critical claims
are false or at best fractionally true. And in a recent work, [12] applying the various search methods to
real microarray data from an independently known gene expression regulatory network confirms their
failure. But, various researches still concentrate motivationally on this problem [8], [10], [9], [1 1], [1],
[5]. For each work, the authors propose their own effective methods to improve the accuracy of the in-
ference of gene regulation networks for a specific type of microarray experiments data. Especially, we
are interested in the work of C.Auliac [1] thesis that described perspectively an interesting advantage
of BNs structure learning by the evolutionary algorithm. The reconstruction of the gene regulation
networks by Bayesian networks will be continuously developed with the bioinformatics research.
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