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An Integrated Production and Maintenance Planning Model with 

time windows and shortage cost 
 
 

Abstract: In this paper, we tackle the problem of integrating production and 
maintenance. Production problem addresses the issue of determining the 
production lot sizes of various items. Preventive maintenance is carried out in 
time windows to restore the production line to an ‘as-good-as-new’ status, and   
when a production line fails, a minimal repair is carried out to restore it to an 
‘as-bad-as-old’ status. The resulting problem is modelled as a linear mixed-
integer program. It takes into account demand shortage and the reliability of the 
production line. Computational experiments are carried out to show the 
effectiveness of the integrated model compared to classical separate model for 
different instances, and the obtained results are analyzed in detail. 

 
Keywords: Production and maintenance planning, Time windows, Shortage cost. 

 

1. Introduction 

In the industrial environment, the relationship between production and maintenance has been 

conflictual in nature. This attitude is perpetuated by the lack of communication regarding the 

scheduling requirements of each function. Maintenance is generally a secondary process in 

companies that have production as their core business. Production management often views 

maintenance in the context of hours or days out of service and fails to realize the strategic 

importance of incorporating maintenance in the manufacturing planning. On the other hand, 

management for the maintenance function attempts to impose constraints on production that it 

deems necessary to achieve complete equipment reliability. The result is that the 

implementation of an optimal maintenance policy is constrained by the demands of 

production. 

Currently, production planning and maintenance are performed separately. For instance, 

common ERP modules include production planning module that optimizes the utilization of 

manufacturing capacity, parts, components and material resources. Maintenance module is a 

peripheral module little known in fact, it is not part of core ERP application as production 

planning, finance, HR (Human Resources) Modules. it is considered as computerized 

maintenance management system (CMMS), and it allows managing preventive and corrective 

maintenance of all material assets of the company. We notice that each of these modules is 

used independently with specific data from each service, and no coordination is implemented 

to reduce production and maintenance costs. Therefore, maintenance planning should be an 

integral part of the overall business strategy and should be coordinated and scheduled with 

manufacturing activities. So, we should consider maintenance as integral parts of the 

production plan rather than as interruptions to that plan. Any violation of the maintenance 

schedule is treated as a violation of the production plan integrity. 
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To solve this problem, we develop an integrated production planning and maintenance 

activities. This integration hedge against often avoidable failures and re-planning occurrences, 

and minimize loss of demand which is not without consequence for companies. In this area, 

we propose an integrated model of production and maintenance planning that minimizes 

production, inventory, set up, demand shortage, preventive and corrective maintenance costs. 

The particularity of our model is that preventive maintenance actions are planned in time 

windows, and demand shortage is allowed when the resource capacity is not sufficient to meet 

all demand. 

The remainder of the paper is organized as follows. In the second section a brief literature 

review is presented. In the third section, we describe separate production planning and 

maintenance problem, and we state its mathematical formulation. We illustrate our integrated 

problem in the fourth section. Computational results are showed in the fifth section, and we 

end up with conclusion and outlooks in the last section. 

2. Brief literature review  

The problem of joint planning of production and maintenance is a recent problem tackled in 

research due to its importance in the current highly competitive environment. Several 

relations exist in different ways between maintenance and production according to Budai and 

al. (2006). First of all, when planning maintenance takes into account production (e.g. Dekker 

and Van Rijn. (1996); BÄackert and Rippin. (1985); Cassady and al. (2001), Marquez and al. 

(2003). Secondly , maintenance can also be seen as a production process which needs to be 

planned, see e.g. Dijkstra and al, (1994). Shenoy and Bhadury. (1993), Rosheil and Christy 

(1996), Yan and al. (2004). Finally, the integrated models of production and maintenance 

which we are interested in our research work. 

 Several studies of integrated production planning and maintenance problem were proposed 

with different approaches, resolution methods, and modeling tools. In the literature, we find 

models developed with stochastic aspect by using such Markov chains to oversee the state of 

machine or to determine an optimal buffer level according to the production rate in order to 

establish an interdependent policy of maintenance and production. In the last decade, large 

models were stated in this context, some of them treat the control problem of a stochastic 

manufacturing system with random breakdowns, repairs and preventive maintenance. The 

objective of the control models is to find the production and the preventive maintenance rates 

of the machines so as to minimize the total cost of inventory/backlog, repair and preventive 

maintenance see e.g. Kenné and Boukas (2003), Kenné and Gharbi (2004), Gharbi and Kenné 

(2005), and Rezg and al. (2005). An extension was proposed by Charlot and al. (2007) 

considering preventive maintenance activities and differentiates two types of repairs: repairs 
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with lockout/tagout, associated with accident prevention, and repairs without lockout/tagout. 

Other research works deal with models of production systems with buffer inventory. The role 

of this buffer inventory is to satisfy demand when corrective or preventive maintenance is 

carried out. One of the earliest and basis work on this subject is Van der Duyn Schouten and 

Vanneste (1995). In their model the demand rate is constant and equal to d (units/time) and as 

long as the fixed buffer capacity (K) is not reached the installation operates at a constant rate 

of p units/time (p > d) and the excess output is stored in the buffer. When the buffer is full, 

the installation reduces its speed from p to d. Upon failure corrective maintenance starts and 

the installation becomes as good as new. The decision to start a preventive maintenance 

action is not only based on the condition of the installation, but also on the level of the buffer. 

The criterion to minimize is the average inventory level and the average number of 

backorders. Iravani and Duenyas (2002) extended the above model by assuming a stochastic 

demand and production process. Kyriakidis and Dimitrakos (2006) studied an infinite-state 

generalization of Van der Duyn Schouten and Vanneste (1995). Preventive maintenance 

actions can be regularly (after each T time periods) performed and the duration of corrective 

and preventive maintenance actions is random see e.g Chelbi and Ait KAdi(2004), and the 

possibility of imperfect production can be included in model for example Zequeria and al. 

(2004). Dhouib and al. (2008) worked on production lines composed of several serial 

machines which are subject to random operation-dependent failures when it has no 

intermediate buffers between adjacent machines. Models of preventive maintenance policy 

with control quality of products for a randomly failing production system producing 

conforming and non-conforming units can be developed e.g, Radhoui and al. (2009). The 

considered system consists of one machine designed to fulfill a constant demand. According 

to the proportion l of non-conforming units observed on each lot and compared to a threshold 

value lm, one decides to undertake or not maintenance actions on the system. 

A continuous time models with an infinite time horizon were presented such economic 

manufacturing quantity (EMQ) models with failure aspects. The study of those models is 

based on failures of production system and their impacts on the decisions of the lot sizing, see 

e.g. Groenevelt and al (1992) who consider the effects of stochastic machine breakdowns and 

corrective maintenance on economic lot sizing decisions, and propose to use the EMQ as an 

approximation to the optimal production lot size. Chung (2003) provides a better 

approximation to the optimal production lot size, Makis and Fung (1995) proposed a model 

for joint determination of the lot size, inspection interval and preventive replacement time for 

a production facility that is subject to random failure. Srinivasan and Lee (1996) considered 

an (S, s) policy, i.e. as soon as the inventory level reaches S, a preventive maintenance 

operation is initiated and the machine becomes as good as new. After the preventive 
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maintenance operation, production resumes as soon as the inventory level drops down to or 

below a prespecified value s, and the facility continues to produce items until the inventory 

level is raised back to S. If the facility breaks down during operation, it is minimally repaired 

and put back into commission. 

Unlike the above mentioned continuous time models, the discrete time models assume that 

the planning horizon is finite and divided into discrete periods for which demand is given and 

may vary between periods. A few works exist in this area, they concern aggregate production 

planning problems known as multi items capacitated lot sizing problems at which, we 

integrate decision variables modeling preventive and corrective maintenance. To our 

knowledge, the only works developed within this framework are proposed by Weinstein and 

Chung (1999), Aghezzaf and al. (2007), and Aghezzaf and Najid (2008). Weinstein and 

Chung (1999) presented a three part-model to resolve the conflicting objectives of system 

reliability and profit maximization. An aggregate production plan is first generated, and then a 

master production schedules is developed to minimize the weighted deviations from the 

specified aggregate production goals. Finally, work-center loading requirements, determined 

through rough cut capacity planning, are used to simulate equipment failures during the 

aggregate planning horizon. Aghezzaf and al. (2007) studied a production system that 

subjects to random failures. They assume that any maintenance action carried out on the 

system, in a period, reduces the system’s available production capacity during that period. 

The objective is to find an integrated lot-sizing and preventive maintenance strategy of the 

system that satisfies the demand for all items over the entire horizon without backlogging, and 

which minimizes the expected sum of production and maintenance costs. An extension of the 

above work is treated by Aghezzaf and Najid (2008). They developed models which take into 

consideration the parameters of reliability of the system and consider parallel production 

lines. Our motivation by this paper is to provide an extension of these models to a more 

complete and more flexible model in relation to the date of preventive maintenance tasks. The 

aim of our study is to establish a joint production and maintenance planning problem at the 

tactical level to minimize the total costs associated with production and maintenance. Before 

describing our problem, we will define both of aggregate production and maintenance 

planning. 

3. Statement of the separate problem 

3.1 Maintenance problem 

Throughout their operational life, complex industrial systems are subject to corrective 

operations and preventive maintenances to keep them in working order. Preventive 

maintenance is a schedule of planned maintenance actions aimed at the prevention of 
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breakdowns and failures. The primary goal of preventive maintenance is to prevent equipment 

failure before it actually occurs. Corrective maintenance is defined as maintenance work 

which involves the repair or replacement of components which have failed or broken down. 

Maintenance problem is to answer the question: when do we perform preventive maintenance 

task, ie, what is the periodicity of preventive maintenance?  

Several policies have been proposed to address this issue, the readers can refer to Wang 

(2002) for a detailed review of these policies. Initially, in our policy the preventive 

maintenance actions are performed at fixed time intervals k  (k=1, 2 …), and corrective 

maintenance actions are carried out at failures occurs. Then, we have to determine the optimal 

length of preventive maintenance period  which minimizes the expected maintenance cost 

per unit time (example, see figure 1). 

Parameters:  

        : Preventive maintenance cost. 

         : Corrective maintenance cost. 

     :  Preventive maintenance period (periodicity). 

     : Optimal preventive maintenance period. 

     : Failure rate function. 

 : Number of preventive maintenance during the horizon. 

: Expected number of failures during . 

 

: Expected corrective maintenance cost between [t1, t2] 

 

:  Expected maintenance cost for a period t. 

 

: Expected cost per unit time of maintenance Gertsbakh, (2000). 

 

: Expected total cost of maintenance throughout a finite time horizon. 

[Insert figure 1 here] 
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We consider in this paper a finite time horizon of length T. Once, the length of preventive 

maintenance period is known, we compute the expected total maintenance cost 

throughout the horizon which is based on the expected maintenance cost per preventive 

maintenance period  and ( ) (example, see figure 2)1.  

[Insert figure 2 here] 

The mathematical formulation of the expected total maintenance cost throughout the 

horizon is given below: 

 

We implement an algorithm to compute preventive maintenance period and all the costs 

described above including the calculation of the expected total maintenance cost CT in a 

finite horizon. This cost is important to compare a separate study of the problem with our 

integrated one in computational results in the following section. The algorithm is stated as 

follows:  

Algorithm 

Initialization:  

Parameters of the used failure distribution;  

Preventive maintenance cost;  

Corrective maintenance cost;  

Main program: 

    for t = 1: to Number_period do  

          Computation of expected number of failures in each period t (NB(t)).  

          Computation of expected maintenance (preventive and corrective) cost in each 

period t ( ).  

         Computation of expected maintenance cost per unit time in each period t 

(equation (1)).  

    End for  

Determination of the optimal result . 

Computation of expected maintenance cost per preventive maintenance period 

  

                                                 

1
 Note that if  CT will dependent only on . 
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Computation of expected total maintenance cost throughout the horizon (equation (2) 

or (3)) 

3.2 Aggregate production planning 

A production plan establishes resource requirements to perform processing from raw material 

to finished products, in order to satisfy customers in the most efficient and most economical 

possible way. In other words, decisions to produce are made in the best report between the 

financial objective and the one of customer satisfaction.  

The basis of our work is the multi items capacitated lot sizing problems which are the main 

production planning problems with setups between production lots. Because of these setups, it 

is often too costly to produce a given product in every period. On the other hand, generating 

fewer setups by producing large quantities to satisfy future demands results in high inventory 

holding costs. Thus, the objective is to determine the periods where production should take 

place, and the quantities to be produced, in order to satisfy demand while minimizing 

production, setup and inventory holding costs. Other costs might also be considered, 

examples are backorder cost, backlogging cost, shortage cost etc. In our work, we will 

consider shortage cost. To our knowledge, there are few works that deal with lots sizing 

problems with demand shortage. Sandbothe and Thompson (1990) and Aksen and al. (2003) 

addressed a single item lot sizing problem with constant capacity and shortage cost. Absi and 

kedad (2008) dealt with a multi item capacitated lot sizing problem with shortage cost, and an 

extension to a multi-item capacitated lot-sizing problem with setup times , safety stock and 

demand shortage Absi and kedad (2009). For more information about multi items capacitated 

lot sizing problems, the reader can refer to a detailed review presented by Karimi and al. 

(2003).  

Let define the parameters and the mathematical formulation of the multi items 

capacitated lot sizing problem with demand shortage denoted (MCLSP-SC) below: 

Index:  

P          : set of item. 

T          : set of period. 

i           : Items. 

t           : Periods. 

Model parameters:  

         : Demand of item i to satisfy during period t. 

          : Set-up cost of producing one unit of item i in period t. 

         : Fixed cost of producing one unit of item i period t. 

Page 8 of 24

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

         : Variable cost of holding one unit of item i by the end of period t. 

        : Unit cost for requirements not met regarding demand for item i in period t. 

          : Processing time for each item i. 

     : Capacity consumed by preventive maintenance action in period t. 

(t)      : Capacity consumed by corrective maintenance action in period t. 

       : Vector of N (Number of period) elements contains the expected number of failures 

NB(t) in each period t of horizon if we don’t perform any preventive maintenance action 

(figure 5). 

 

K (t)     : Available capacity in period t.  

 

=   

Decision variables:  

         : Binary set up variable of item i in period t.  

        : Quantity of item i produced in period t. 

        : Inventory of item i at the end of period t. 

        : Demand shortage for item i in period t.  

          : Binary preventive maintenance variable. 

 

MCLSP-SC:  

             

Subject to: 
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The objective function (4) minimizes the sum of the set up, holding, production, demand 

shortage costs over the whole N-period horizon. Constraint (5) is the inventory balance 

equation. Constraint (6) is the capacity constraint where preventive maintenance actions and 

expected number of breakdowns in each period are known. Constraint (7) relates the 

continuous production variables to the binary setup variables. Constraint (8) expresses that 

quantity lost of item i in period t must be less than demand of item  in period t. The 

constraints (9) and (10) express non-negativity and integrality constraints. 

The multi items capacitated lot sizing problem often has been studied in literature. Solution 

methods of the problem can be classified into three main categories. The first is exact 

methods e.g Barany et al. (1984), Eppen and Martin (1987), the second category is common-

sense or specialized heuristics e.g Maes and Van Wassenhove (1988), Kirca and Kokten 

(1994,) Karni and Roll (1982) and the third category belong to mathematical programming-

based heuristics e.g. Thizy and Van Wassenhove (1985), Trigeiro(1987), Diaby et al. (1992). 

There are few references dealing with lot-sizing problems with shortage costs. . Absi and 

kedad (2008) used inequalities within a branch-and-cut framework to find near optimal 

solutions, and Absi and kedad (2009) developed a Lagrangian relaxation of the capacity 

constraints to obtain lower and upper bounds for their problem. To the best of our knowledge, 

there are the first papers that deal with shortage costs for the multi-item capacitated lot-sizing 

problem. 

Let the total cost of maintenance and production in the separate study, it will 

be the sum of expected total cost of maintenance throughout a finite time horizon CT 

(determined in section 3.1) and the optimal cost obtained from MCLSP-SC model . 

 

4. Integrated production planning and maintenance problem 

Consider a planning horizon H of length  covering N periods of fixed length , 

and a set of item  to be produced on a capacitated production line. During each 

period , a demand  of item  should be satisfied. Items are produced on a 

production line with known capacities given in unit time, and processing time expressed in 

unit time per item. Furthermore, we allow demand shortage unfulfilled due to insufficient 

capacity, and we will assign a high unit cost for each item lost in each period. 

If in separate study the optimal length of preventive maintenance period is  . It 

means that preventive maintenance tasks are performed periodically in the beginning of 

period’s t =1, +1, 2 +1, 3 +1, +1…Our aim is not to plan these preventive 

maintenance actions at the beginning of those periods, but to plan them in time windows 
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. In other words, a preventive maintenance task will be 

performed at the earliest in the beginning of the period  or at the latest in the 

beginning of the period , and will complete within the period in which it 

started, with , 

and k is chosen to avoid the overlaps between time windows, so: 

 

Moreover, we assume that each preventive or corrective maintenance action carried out on the 

production line consumes capacity units, at the beginning of the planning horizon the 

production line is in «as good as new (AGAN), the production line is considered here as a 

complex system and the failure rate is an overall rate of the whole line. When a preventive 

maintenance is carried out, the production line is restored to AGAN status and when a 

production line fails, a minimal repair is carried out to restore it to “as bad as old” (ABAO) 

status. Finally we assume that the expected failures increase with elapsed time since the last 

preventive maintenance. Figure 3 shows an example of integrated production planning and 

maintenance. 

[Insert figure 3 here] 

The proposal mathematical program models the problem of determining optimal 

integrated production and maintenance plan in a production system. Indeed, the model 

determines the optimal production plan and optimal date of preventive maintenance 

actions taking into account the reliability of the production line, knowing that the 

failure rate increases from the last preventive maintenance task. The mathematical 

formulation of our problem denoted (MCLSP-TW-SC) is below. We keep the same 

parameters as in Section 3.2, and we add a new binary decision variable  . 

 
 

The variable  must equal one when the last preventive maintenance was occurred in period 

j, and we are now in period t. To ensure this, we define  as:  

 

This is a nonlinear expression, but can be solved by introducing the following three linear 

constraints below: 
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MCLSP-TW-SC:  

             

                               

Subject to: 

             

              

                                                                                                                       

  

               

                

              

           

 

 

         

              

            

 

The objective function (11) minimizes the sum of the set up, holding, production, demand 

shortage, and maintenance (preventive and corrective) costs over the whole N-period horizon. 

Constraint (12) is the inventory balance equation. Constraint (13) is the capacity constraint 
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that considers preventive and corrective maintenance. Constraint (14) relates the continuous 

production variables to the binary setup variables. Constraint (15) expresses that quantity lost 

of item i in period t must be less than demand of item  in period t. The constraint (16) 

ensures that one maintenance is carried out in the interval . The 

constraint (17) ensures that two preventive maintenance actions cannot be carried out 

successively. Constraints (18)-(20) force the decision variable  to 0 or 1. The constraints 

(21) and (22) express non-negativity and integrality constraints. 

[Insert figure 4, 5 here] 

It is time now to define how we calculate cost and capacity  consumed when a 

preventive maintenance action is planned. From Figure 4, we observe that if a preventive 

maintenance is performed at a given period t, the maintenance cost in this period t is the sum 

of preventive and corrective maintenance costs. The corrective maintenance cost in period t is 

the expected number of failures in that period t multiplied by the cost of one corrective 

maintenance action. Notice that if no preventive maintenance action was performed, the 

maintenance cost in period t is the corrective maintenance cost. The same reasoning can be 

applied for the capacity consumed by maintenance actions in a given period t when 

preventive maintenance or not was carried out. Let be the expression of maintenance cost and 

capacity consumed by maintenance action in a given period t: 

 

 

If preventive maintenance is planned at any period t, the failure rate is renewed. So the 

expected number of failures in this period t is the first element of vector NB which is NB(1). 

This justifies equations (23), and (24). 

If we eliminate constraints (16)-(20), our problem is reduced to a separate study of multi 

capacitated lot sizing problem with shortage cost (MCLSP-SC) where preventive 

maintenance periodicity and expected number of breakdowns in each period are known. 

Then, we can assimilate the (MCLSP-TW-SC) to one with set-up time (MCLSP-SC-ST) 

which is NP hard Absi and kedad (2008). 

5. Computational results 

In this section, we discuss the results of some computational experiments carried out to test 

our integrated model. The tests aim to compare our integrated model to separate one. Remind 

that the separate model is the study done in section 3.1 and 3.2. We created five sets of 

randomly generated instances. We consider a following planning horizon composed of T 
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production periods of fixed length  to produce a set of items on production line each 

with an available capacity. The production, set-up, and holding costs are respectively 10, 25, 

and 5. Four parameters are considered for the analysis: 

 Problem dimension: The problem dimensions represented by the number of products N and 

the number of periods T. We use three different combinations 

( )  

Production capacity utilization: The capacity required, in each period, is then computed as if 

lot-for-lot solutions were implemented. The capacity is then obtained by dividing the later 

result by the target average utilization of capacity . The factor  is set to 0.85, 0.95 and 1.1 

corresponding respectively to situations with moderately loose, tight and too tight capacity 

constraints. 

Demand pattern: the demand of each product at each period is generated randomly from the 

interval [20,100].  

Shortage cost: the shortage cost is fixed for all products for all periods. It is generated 

randomly from the interval [50,100]. 

All problem tests are generated with Weibull distribution of production line. Let be and 

respectively its probability density and failure rate functions: The shape and the scale 

parameters are respectively and .  

 

 

[Insert table 1 here] 

Table 1 shows the expected number of failures as a function of system’s age. The cost of 

preventive maintenance action is set to , and the cost of minimal repair action is 

given by . The capacity lost, when a preventive maintenance task and minimal repair 

action are carried out, is respectively , and . 

[Insert figure 6 here] 

[Insert figure 7 here] 

[Insert figure 8 here] 

Figures 6, 7, and 8 show the expected total cost of maintenance strategy as a function of the 

preventive replacement cycle T. We illustrate optimal preventive maintenance cycle and the 
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total expected cost of maintenance for whole planning horizon associated to the optimal cycle 

in table 2. 

[Insert table 2 here] 

We got a periodicity n = 3 periods ( ), and k=1. So, we can say that the time 

windows are [3p, 3p+2] with p = 1... .  We will show computational results in the 

tables 3–5 obtained for each set of instances. All tests were run on a Pentium 4 (3 GHz) with 

1 Gb of RAM. We used standard MIP software (XpressMP) with the solver default settings. 

[Insert table 3 here] 

[Insert table 4 here] 

[Insert table 5 here] 

To assess the quality of our model solved by XpressMP, we considered four parameters: 

number of products, number of periods, shortage cost, and capacity tightness. For both series 

of results, we provide:  

• #BestSol: it can be instances that could be solved to optimality (*value) and the 

computational times vary from 0.15 seconds to 5 minutes, or instances which the best 

integer solution (value) is got after 20 min of computations.  

• Gab (%): for the instances that could not be solved to optimality, the average relative 

gap value obtained between the best integer solution and the best lower bound. 

• C1:  total cost of separate problem. 

• C2: total cost of integrated problem. 

Now, we compare the results obtained with separated and integrated models. The results 

show, when capacity is moderately loose, the separate problem gives better result for some 

instances and same results for others, the reason is that the problem is considered as 

uncapacitated lot sizing problem. Notice that all instances are solved to optimality, the 

computational time varies from 0.15 seconds to 10 seconds for all instances. When capacity is 

tight, the integrated problem provides better or same results. The computational times vary 

from 2 minutes to 5 minutes to solve to optimality for all instances with (N, T) = (3, 12), see 

tables 3, 4 and 5, and instances with (N, T) = (6, 18) in separate case when shortage cost 

equals to 65 and 75, see table 3 and 4. When the capacity is too tight, for all instances the 

integrated problem gives better results. The computational times vary from 1 to 3 minutes to 

solve to optimality for all instances with (N, T) = (3, 12) (tables 3, 4 and 5).  
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As a conclusion, the integrated model gives better solution than the separate model for 

different shortage cost and when the capacity is too tight. 

6. Conclusion  

A joint production and maintenance planning model for a production system subject to 

random failures has been proposed. This model takes, explicitly, into account the reliability 

parameters of the system and its capacity in the development of the optimal production and 

maintenance planning. Time windows are added to reduce demand shortage in period of high 

demand and to give more flexibility to preventive maintenance actions. The computational 

results show the effectiveness of our model in a more practical and realistic case when the 

capacity is too tight, which means that the capacity is not sufficient to meet all demands. The 

Optimization solver Xpress MP can solve to optimality problem with small instances, and for 

larger ones we observe that it is enable to solve them to optimality, in particular when 

capacity is too tight. Therefore, we think about solving problem with large instances using 

relaxation method, and meta-heuristic in future. 
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Figure 2: Expected maintenance cost per preventive maintenance period. 
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Figure 1: Expected maintenance cost per unit time of the system. 
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Figure 4: Expected number of failures according to preventive maintenance actions 

 

Figure 5: Expected number of failures without preventive maintenance actions. 
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Figure 6: Average maintenance cost per unit time with T=12 
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maintenance periodicity 
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3  3 3  

Expected total cost of 

maintenance 57.0318 85.5477 114.0635 
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0.9532 

1.4220 

1.9845 

2.6407 

3.3907 

4.2345 
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7.3282 

8.5470 

9.8595 

11.2657 

12.7657 

14.3595 

16.0470 

17.8282 

19.7032 

21.6720 

23.7345 

25.8907 

Figure 8: Average maintenance cost per unit time with T=24 

Cost per 

unit time 

t 

Table 1: Expected number of failures of the system for T= 12, 24. 

Table 2: Expected total cost of maintenance of the system for T= 12, 18, 24. 
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Item Period  Total 

cost 

Shortage cost  = 65 

Capacity tightness  

Moderately loose                                        Tight                                     Too tight 

   #BestSol      Gap (%)                     #BestSol       Gap (%)          #BestSol        Gap (%) 

3 12 C1 

C2 

*22527            0                               *24265            0                    *40822              0 

*22621             0                              *22436            0                    *39071              0 

6 18 C1 

C2 

*62367             0                              *79652            0                      129797             0.017 

*62367             0                               79652             0.15                 129687             0.09 

12 24 C1 

C2 

*174927           0                              220042            0.04                 346727             0.04 

*175012           0                              219977            0.12                 346697             0.1 

 

 

 

 
Item Period  Total  

cost 

 

Shortage cost  = 75 

Capacity tightness  

Moderately loose                                   Tight                                         Too tight 

   #BestSol     Gap (%)                      #BestSol      Gap (%)             #BestSol     Gap (%) 

3 12 C1 

C2 

*23447              0                              *24982           0                      *47802            0 

*23541              0                              *23046           0                      *46784            0 

6 18 C1 

C2 

*67297              0                              *84652           0                       136222           0.035 

*67297              0                                84652           0.11                   135911          0.21 

12 24 C1 

C2 

*173227             0                             217387           0.02                   371422          0.03 

*173312             0                             217387           0                        370986          0.1 

 

 

 

 
Table 5: Summary solution with shortage cost equals to 95. 

 

Item Period  Total 

cost 

Shortage cost  = 95 

Capacity tightness  

Moderately loose                                       Tight                                            Too tight 

   #BestSol     Gap (%)                         #BestSol      Gap (%)          #BestSol     Gap (%) 

3 12 C1 

C2 

*22947          0                                  *28092           0                      *51647            0 

*23041          0                                  *26145           0                      *48231            0 

6 18 C1 

C2 

* 64097         0                                    86132           0.03                   160427          0.025 

*64097          0                                    86132           0.1                     160034          0.23 

12 24 C1 

C2 

*172737        0                                    223212         0.025                 428437          0.05  

*172822        0                                    223212         0.1                     427724          0.16 

Table 3: Summary solution with shortage cost equals to 65. 

Table 4: Summary solution with shortage cost equals to 75. 
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