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Abstract

In semantic web applications where query ini-
tiators and information providers do not neces-
sarily share the same ontology, semantic interop-
erability generally relies on ontology matching or
schema mappings. Information exchange is then
not only enabled by the established correspon-
dences (the “shared” parts of the ontologies) but,
in some sense, limited to them. Then, how the
“unshared” parts can also contribute to and im-
prove information exchange ? In this paper, we ad-
dress this question by considering a system where
documents and queries are represented by seman-
tic vectors. We propose a specific query expansion
step at the query initiator’s side and a query inter-
pretation step at the document provider’s. Through
these steps, unshared concepts contribute to evalu-
ate the relevance of documents wrt. a given query.
Our experiments show an important improvement
of retrieval relevance when concepts of documents
and queries are not shared. Even if the concepts of
the initial query are not shared by the document
provider, our method still ensures 90% of the pre-
cision and recall obtained when the concepts are
shared.

1. Introduction

In semantic web applications where query ini-
tiators and information providers do not neces-

sarily share the same ontology, semantic inter-
operability generally relies on ontology matching
or schema mappings. Several works in this do-
main focus on what (i.e. the concepts and rela-
tions) the peers share [9, 18]. This is quite impor-
tant because, obviously if nothing is shared be-
tween the ontologies of two peers, there is a little
chance for them to understand the meaning of the
information exchanged. However, no matter how
the shared part is obtained (through consensus or
mapping), there might be concepts (and relations)
that are not consensual, and thus not shared. The
question is then to know whether the unshared
parts can still be useful for information exchange.

In this paper, we focus on semantic interoper-
ability and information exchange between a query
initiator p1 and a document provider p2, which
use different ontologies but share some common
concepts. The problem we address is to find docu-
ments which are relevant to a given query although
the documents and the query may be both rep-
resented with concepts that are not shared. This
problem is very important because in semantic
web applications with high numbers of partici-
pants, the ontology (or ontologies) is rarely en-
tirely shared. Most often, participants agree on
some part of a reference ontology to exchange in-
formation and internally, keep working with their
own ontology [18, 21].

We represent documents and queries by seman-
tic vectors [24], a model based on the vector space
model [1] using concepts instead of terms. Al-
though there exist other, richer representations



(conceptual graphs for example), semantic vec-
tors are a common way to represent unstruc-
tured documents in information retrieval. Each
concept of the ontology is weighted according to
its representiveness of the document. The same
is done for the query. The resulting vector rep-
resents the document (respectively, the query) in
the n-dimensional space formed by the n concepts
of the ontology. Then the relevance of a document
with respect to a query corresponds to the prox-
imity of the vectors in the space.

In order to improve information exchange be-
yond the “shared part” of the ontologies, we pro-
mote both query expansion (at the query initia-
tor’s side) and query interpretation (at the docu-
ment provider’s side). Query expansion may con-
tribute to weight linked shared concepts, thus im-
proving the document provider’s understanding of
the query. Similarly, by interpreting an expanded
query with respect to its own ontology (i.e. by
weighting additional concepts of its own ontology),
the document provider may find additional related
documents for the query initiator that would not
be found by only using the matching concepts in
the query and the documents. Although the basic
idea of query expansion and interpretation is sim-
ple, query interpretation is very difficult because
it requires to precisely weight additional concepts
given some weighted shared ones, while the whole
space (i.e. the ontology) and similarity measures
change.

In this context, our contributions are the follow-
ing. First, we propose a specific query expansion
method. Its property is to keep separate the re-
sults of the propagation from each central concept
of the query, thus limiting the noise due to in-
accurate expansion. Second, given this expansion,
we define the relevance of a document. Its main,
original characteristic is to require the document
vector to be requalified with respect to the ex-
panded query, the result being called image of the
document. Third, a main contribution is the def-
inition of query interpretation which enables the
expanded query to be expressed with respect to
the provider’s ontology. Finally, we provide two
series of experiments. In the first one, with a sin-
gle shared ontology, we verify that our query ex-

pansion and relevance calculus show results which
are comparable to the standard query expansion
ones [23, 13]. In the second experiment, we intro-
duce unshared concepts and we still find up 90%
of the documents that would be selected if all the
central concepts were shared. To the best of our
knowledge, the problem of improving information
exchange by using the unshared concepts of differ-
ent ontologies has not been addressed before. Our
proposal is a first, encouraging solution.

This paper is organized as follows. Section 2
gives preliminary definitions. Section 3 presents
our query expansion method and the image based
relevance of a document. For simplicity, we assume
a context of shared ontology. This assumption is
relaxed after in Section 4, where we consider the
case where the query initiator and the document
provider use different ontologies and present the
query interpretation. Section 5 discusses the ex-
periments and their results. The two last sections
are respectively devoted to related work and con-
clusion.

2. Preliminary Definitions

2.1. Semantic vectors

In the vector space model [1], documents and
queries in natural language are represented as vec-
tors of keywords (terms). If there are n keywords,
each document is represented by a vector in the
n−dimensional space. Relevance of a document
can then been calculated by comparing the devi-
ation of angles between the document vector and
the original query vector. An approach based on
semantic vectors [24, 11] uses the same kind of
multi-dimensional linear space except that it no
longer considers keywords but concepts of an on-
tology: the content of each document (respectively
query) is abstracted to a semantic vector by char-
acterizing it according to each concept. The more
a given document is related to a given concept, the
higher is the value of the concept in the semantic
vector of the document. Notice that, although the
experiments are conducted with text documents
and natural language queries, the approach is very
general and can be used whenever queries and doc-



uments can be represented by semantic vectors.

Obviously, the approach relies on the use of an
ontology. It is in no case the point of the paper to
discuss what an ontology is [7]. We simply define
an ontology as a set of concepts together with a set
of relations between those concepts. In this paper,
the illustrations and the experiments use an ontol-
ogy where the only relation considered is an is-a
relation (specialization link). However, this does
not restrict the generality of our relevance calcu-
lus. Indeed, the presence of several relations only
affects the definition of the similarity of a concept
with respect to another. In the rest of the paper,
we assume the existence of an ontology Ω, CΩ be-
ing its set of concepts.

Definition 1 A semantic vector −→vΩ is an appli-
cation defined on the set of concepts CΩ of the on-
tology:

∀c ∈ CΩ,−→vΩ : c→ [0, 1]

Without loss of generality, we consider real val-
ues in the interval [0, 1]. Reference to the ontol-
ogy will be omitted whenever there is no ambigu-
ity. Usually, the concepts of the semantic vector
(i.e. those of the ontology) are also called the di-
mensions of the vector. For example, let us con-
sider an ontology where CΩ = {c1, c2, c3}, and a
document characterized across these three dimen-
sions by the semantic vector −→v with −→v [c1] = 0.2,
−→v [c2] = 0.7,−→v [c3] = 0. The meaning is that the
document is related to concept c1 (but probably c1

is not central), strongly related to concept c2, and
not related to concept c3. The vector has two non-
null dimensions, which we will also call weighted
concepts. A popular way to compute the relevance
of a document is to use the cosine-based proximity
of the document and query vectors (respectively

|
−→
d | and |−→q |) in the space, as in the following for-

mula where |
−→
d | represents the norm of

−→
d :

cos(
−→
d ,−→q ) =

−→
d · −→q

|
−→
d | × |−→q |

2.2. Similarity and propagation

Query expansion is generally used to find addi-
tional relevant documents. In a semantic vectors
setting, the problem can be expressed as follows:
given the weighted concepts of a semantic vector,
how should we weight those initially unweighted
concepts which seem linked to the weighted ones
? In other words, given some weighted concept c1,
called central concept, how should we propagate its
weight on the other linked concepts ? An intuitive
solution is to consider that the more similar to c1

an unweighted concept is, the more the propaga-
tion should weight it. Similarity of some concept
wrt some central concept c1 can be represented as
a function which values each concept of the on-
tology according to its similarity degree with c1.
Instead of considering the function, we consider
the induced ordering of the concepts of CΩ.

Definition 2 Let c be a concept of Ω. simc: CΩ →
[0, 1], is a similarity function iff simc(c) = 1 and
0 ≤ simc(cj) < 1 for all cj 6= c in CΩ.

Definition 3 (Propagation function) Let c be
a concept of Ω valued by v; and let simc

be a similarity function. A function Pfc :
[0..1] 7→ [0..1]
simc(c

′) → Pfc(simc(c
′))

is a propagation function from c iff

• Pfc(simc(c)) = v, and

• ∀ck, cl ∈ CΩ simc(ck) ≤ simc(cl)⇒
Pfc(simc(ck)) ≤ Pfc(simc(cl))

2.3. Example of propagation function
(fig 1)

In practice, we have tested several types of func-
tions to be used in our query expansion method. A
class of propagation functions from c which works
fine is inspired by the membership functions used
in fuzzy logic [26]. It is defined by three parameters
v (weight of the central concept), l1 (length of the
interval where concepts have the same weight : v)
and l2 (length of the interval where concepts have
non zero weight) such that:



Pfc(x) = fv,l1,l2(x) =

v if x ≥ l1
v

l1−l2
x + l2×v

l1−l2
if l1 > x > l2

0 if l2 ≥ x

1 D e c r e a s i n g s i m i l a r i t yW ei gh t
C 5 C 6C 40 , 8 5 0 , 7 0 , 30 , 40 , 6C 2

1

Figure 1: Example of a propagation function
f1,0.7,0.4 with central concept c2 .

3. Query expansion and Image based

relevance

In this section we present our method to com-
pute the relevance of a document wrt a query.
For the sake of simplicity, we assume that the
query initiator and the document provider use the
same ontology. Notice however, they can still dif-
fer on the similarity measures and the propagation
functions. Our method has two main steps. The
first one is query expansion, which general aim is
to weight relevant concepts that are not initially
shared by the query and document vectors. The
second one is a relevance computation, which uses
the image of the document vector.

3.1. Query expansion

In the case of a single ontology, query expansion
can be carried out by the query initiator or by the
document provider. To our view, the query initia-
tor side might be better because it knows better
what it is looking for. However, processing expan-
sion at the provider’s, would just amount support-

ing the provider’s point of view on similarity and
propagation rather than the query initiator’s one.

To our knowledge, most propagation methods
propagate the weight of each weighted concept in
the same vector, thus directly adding the expanded
terms in the original vector. When a concept is in-
volved in several propagations conducted from dif-
ferent central concepts, a kind of aggregation func-
tion (like for example the maximum) is used. We
call this kind of method “rough” propagation. Al-
though its results are not bad, such a propagation
figures out some drawbacks among which a pos-
sible unbalance of the relative importance of the
initial concepts [16]. For example, assume that the
initial query vector is−→q [c1] = 0.5 and−→q [c2] = 0.5.
Then propagation from c2 also weights concepts
c3, c4 and c5, respectively with weights 0.3, 0.3
and 0.2; but propagation from c1 weights no other
concept. In that case, one could say that propa-
gation attributes more importance to the initial
concept c2. This is a reason why our choice is to
keep separate the results of the propagation from
different concepts of the query. In addition, as we
shall see in section 4, this choice eases query in-
terpretation, which would be more difficult if all
the effects of propagations would be mixed in the
initial query vector.

First, let us denote by C−→q the set of the central
concepts of query −→q , i.e. those weighted concepts
which best represent the query. One may consider
all the weighted concepts in −→q (as we did in our
experiments) or just those which weight is above
some threshold. To keep separate the effects of dif-
ferent propagations, each central concept of C−→q is
semantically enriched by propagation, in a sepa-
rate vector.

Definition 4 (Semantically Enriched Dimension)
Let −→q be a query vector and let c be a concept

in C−→q . A semantic vector
−→
sedc is a semantically

enriched dimension, iff ∀c′ ∈ CΩ,
−→
sedc[c

′] ≤
−→
sedc[c].

Definition 5 (Expansion of a query) Let −→q
be a query vector. An expansion of −→q , noted E−→q
is a set defined by:

E−→q = {
−→
sedc : c ∈ C−→q , ∀c′ ∈ CΩ,

−→
sedc[c

′] = Pfc(c
′)}



Figure 2 illustrates the expansion of a query −→q
with two weighted concepts c4 and c7. It contains
two semantically enriched dimensions. In dimen-

sion
−→
sedc7 , concept c7 has the same value as in

the query. The weight of c7 has been propagated
on c3, c11 and c6 according to their similarity with
c7. The other dimension is obtained from c4 in the
same way.

Figure 2: A query expansion composed of 2 seman-
tically enriched dimensions.

3.2. Image of a Document and Relevance

Intuitively, our aim is to better compare the
query and document representations. A way to do
so, is to be able to characterize the document wrt
each central concept c (dimension) of the query,
as far as it has concepts related to c, in partic-

ular even if c is not initially weighted in
−→
d . In

other words, if concept c′ is linked to concept c,

c′ being weighted in
−→
d , although it isn’t in −→q ,

the corresponding dimensions in the space should
not be considered as independent. This idea is im-
plemented in the definition of the image of the
document.

Given a SED
−→
sedc , we aim at valuating c in

the image of the document
−→
d according to the

relevance of
−→
d to

−→
sedc . To evaluate the impact

of
−→
sedc on

−→
d we consider the product of the

respective values of each concept in
−→
sedc and

−→
d .

Intuitively all the concepts of the document which

are linked to c through
−→
sedc have a nonnull

value. The image of
−→
d keeps track of the best

value attributed to one of the linked concepts if it

is better than
−→
d [ c ], which is the initial value

of c . This process is repeated for each SED of
the query. Algorithm 1 details the calculus of the

image of document
−→
d , noted

−→
i d.

This algorithm ensures that all the central con-
cepts of the initial query vector are also weighted
in the image of the document as far as the doc-
ument is related to them. With respect to the
query, the image of the document is more accu-
rate because it somewhat enforces the documents
characterization over each dimension of the query.
However, as can be noticed in the algorithm, in the
image, we keep unchanged the weights of the con-
cepts which are not linked to any concept of the
query (i.e. which are not weighted in any SED).
This has some importance when the document has
many unrelated concepts, for example if it is very
general. In that case, the norm of the vector gets
higher (and consequently, its relevance lower).

Algorithm 1: Image of a document wrt a
query.

input : a semantic vector
−→
d on an ontology

Ω; an expanded query E−→q

output: a semantic vector
−→
i d, image of

−→
d .

begin
forall c ∈ C−→q do

forall c′ :
−→
sedc[c

′] 6= 0 do
−→
i d[c]←

max(
−→
d [c′]×

−→
sedc[c

′],
−→
i d[c]);

forall c 6∈ C−→q do

if ∃c′ ∈ C−→q :
−→
sedc′ [c] 6= 0 then

−→
i d[c]← 0

else
−→
i d[c]←

−→
d [c];

return
−→
i d;

end

The example of figure 3 illustrates the calculus
of the image of a document. Each SED of the ex-
panded query is combined with the semantic vec-

tor of the document. Let us consider
−→
sedc4 . In

the document, the weight of c4 is null. How-
ever, the semantically enriched dimension related
to c4 weights other concepts. In particular, we

have
−→
sedc4 [ c2 ] = 0.3. As

−→
d [ c2 ]= 1, the re-

sulting product is 0.3. Because this value improves
−→
d [ c4 ] (which is null) we keep it in the image of



the document. Hence, in the image, we can express
that the document is related to concept c4 of the
query, even if it wasn’t the case initially. Notice
that concepts c1 and c9, which are linked to no
SED keep their initial values.

Figure 3: Obtaining the image of a document.

The core of this type of expansion lies here. Cre-
ating and using a SED amounts to unfold addi-
tional nonnull dimensions to help recovering ad-
ditional information about the semantics of the
document, and then fold them again to evaluate
the relevance of the document.

3.2.1. Relevance of a document

We adopt a global measure of relevance using the
image of the document and the cosine.

Definition 6 Let
−→
d and −→q be respectively a doc-

ument and query vector and let
−→
i d be the image

of
−→
d . Then the relevance of

−→
d wrt −→q is:

Relevance(
−→
d ,−→q ) =

−→
i d·

−→q

|
−→
i d|×|−→q |

Considering the image enables to take into ac-
count the documents that have concepts linked to
those of the query. Using a cosine, and thus the
norm of the vectors, attributes a lower importance
to the documents with an important norm, which
are often very general.

3.2.2. Complexity of the process

Concerning the complexity of the expansion, the
theorical complexity is always O(n) (where n is
the number of concepts of the ontology), because
of the small number of dimensions in the query.
Theoretically, in the worst case, computation of

the image is O(n2). However, in practice, the com-
plexity remains reasonable because the number of
concepts of the query remains very small (5 in av-
erage according to our experiments) compared to
the number of concepts in the ontology. Relevance
evaluation itself is O(n).

4. Relevance in the context of unshared

concepts

In this section, we assume that the query ini-
tiator and the document provider do not use the
same ontology. However, if they wouldn’t be able
to establish any correspondence between some of
their own concepts, interoperability would be im-
possible. Thus we consider that they share some
common concepts, meaning that each of them reg-
ularly (although may be not often) computes an
ontology matching algorithm which provides a set
of correspondences (equivalences) between those
concepts. This is a minimal requirement for inter-
operability.

However, this doesn’t mean that the unshared
concepts are of no use to evaluate the relevance
of a document wrt a query. The problem is how
to take them into account. To do so, we keep on
with the philosophy adopted in section 3: we still
use a query expansion at the query initiator’s side
and the calculus of the image of the document
at the provider’s side. Things are complicated by
the fact that the query initiator and the document
provider do not use the same vector space. This is
why we introduce a query interpretation step at
the provider’s side. The interpreted query is used
to compute the image of the document.

4.1. Computing Relevance: Overview

As shown in Figure 4, the query initiator, de-
noted by p1, works within the context of ontol-
ogy Ω1, while the document provider, noted p2,
works with ontology Ω2. Through its semantic in-
dexing module, the query initiator (respectively
the document provider) produces the query vec-
tor (respectively the document vector), which is
expressed on Ω1 (respectively Ω2). Both p1 and p2

also have their own way of computing both the



similarity and the propagation.
We assume that the query initiator and the

document provider share some common concepts,
meaning that each of them regularly, although
may be not often, runs an ontology matching al-
gorithm. Ontology matching results in an align-
ment between two ontologies, which is composed
of a (non empty) set of correspondences with some
cardinality and, possibly some meta-data [4]. A
correspondence establishes a relation (equivalence,
subsumption, disjointness. . . ) between some enti-
ties (in our case, concepts), with some confidence
measure. Each correspondence has an identifier.
In this paper, we only consider the equivalence
relation between concepts and those couples of
equivalent concepts of which confidence measure
is above some threshold. We call them the shared
concepts. For simplicity, when there is an equiva-
lence, we make no distinction between the name
of the given concept at p1’s, its name at p2’s, and
the identifier of the correspondence, which all re-
fer to the same concept. Hence, the set of shared
concepts is denoted by CΩ1

∩ CΩ2
.

Given these assumptions, computing relevance
requires the following steps :
Query Expansion. It remains unchanged. The
query initiator p1 computes an expansion of its
query, which results in a set of SEDs. Each SED
is expressed on the set CΩ1

, no matter the ontology
used by p2. Then, the expanded query is sent to
p2, together with the initial query.
Query Interpretation. Query interpretation by
p2 provides a set of interpreted SEDs on the set
CΩ2

and an interpreted query. Each SED of the ex-
panded query is interpreted separately. Interpreta-

tion of a SED
−→
sedc is decomposed in two problems,

which we address in the next subsections:

• The first problem is to find a concept in CΩ2

that corresponds to c, noted c̃. This is diffi-
cult when the central concept is not shared.
In this case, we use the weights of the shared
concepts to guide the search. Of course, this
is only a “contextual” correspondence as op-
posed to one that would be obtained through
matching.

• The second problem is to attribute weights to

shared and unshared concepts of CΩ2
which

are linked to
−→
sedc. This amounts to interpret

the SED.

Image of the Document and Cosine Com-
putation. They remain unchanged. Provider p2

computes the image of its documents wrt. the in-
terpreted SEDs and then, their cosine based rel-
evance wrt. the interpreted query, no matter the
ontology used by p1.

In the following, we describe the steps involved
in the interpretation of a given SED.

4.2. Finding a Corresponding Concept

The interpretation of a given SED
−→
sedc leads to

a major problem: finding a concept in CΩ2
which

corresponds to the central concept c. This corre-
sponding concept is noted c̃ and will play the role

of the central concept in the interpretation of
−→
sedc,

noted
−→
sedc̃. If c is shared, we just keep it as the

central concept of the interpreted SED. When c is
not shared we have to find a concept which seems
to best respect the “flavor” of the initial SED.

Theoretically, all the concepts of CΩ2
should be

considered. Several criterias can apply to choose
one which seems to best correspond. We pro-
pose to define the notion of interpretation func-

tion which is relative to a SED
−→
sedc and a candi-

date concept c̃ and which assigns a weight to each
value of silmilarity wrt. c̃. Definition 7 consists of
four points. The first one requires the interpre-

tation function to assign the value of
−→
sedc[c] to

the similarity value 1, which corresponds to c̃. In
the second point, we use the weights assigned by
−→
sedc to the shared concepts (c1, c2, c3 and c6 in
figure 5) and the ranking of concepts in function
of simc̃. However, there might be several shared
concepts that have the same similarity value wrt.

c̃, but have a different weight according to
−→
sedc.

Thus, we require function f
−→
sedc,c̃
i to assign the min-

imum of these values to the corresponding simi-
larity value. This is a pessimistic choice and we
could either take the maximum or a combination
of these weights. As for the third point, let us call
cmin, the shared concept with the lowest similar-
ity value (c6 in Figure 5 (a) and c3 in Figure 5



Figure 4: Overview of relevance computation

(b)). We consider that we have not enough infor-
mation to weight the similarity values lower than
simc̃(cmin). Thus we assign them the zero value.
The fourth point is just a mathematical expres-
sion which ensures that the segments of the affine
function are only those defined by the previous
points.

Definition 7 (Interpretation function)

Given a SED
−→
sedc and a concept c̃,

f
−→
sedc,c̃
i : [0..1] → [0..1], noted fi if no ambi-

guity, is an interpretation function iff it is a
piecewise affine function and:

• fi(1) =
−→
sedc[c];

• ∀c′ ∈ CΩ1
∩ CΩ2

, fi(simc̃(c
′)) =

min c′′∈CΩ1
∩CΩ2

simc̃(c
′)=simc̃(c

′′)

(
−→
sedc[c

′′]);

• ∀x ∈ [0..1], x < simc̃(cmin) ⇒ fi(x) = 0;

• Seg = ‖{x : ∃c′ ∈ CΩ1
∩ CΩ2

, c′ 6=
c̃ and simc̃(c

′) = x}‖ + 1 where Seg is the
number of segments of fi.

Intuitively, the criterias for choosing a corre-
sponding concept among all the possible concepts
can be expressed in terms of the properties of the

piecewise affine function fi. Of course, there are as
many different function fi as candidate concepts.
But the general idea is to choose the function fi

wich resembles the more to a propagation func-
tion. Let us consider the example of Figure 5 (a)
and (b) where c1, c2, c3 and c6 are shared. The
function in Figure 5 (a) is obtained considering
c′1 as the corresponding concept (and thus rank-
ing the other concepts in function of their similar-
ity with c′1). The function in Figure 5 (b) is ob-
tained similarly, considering c′2. Having to choose
between c′1 and c′2 we would prefer c′1 because func-

tion f
−→
sedc,c′

1

i is monotonically decreasing whereas

f
−→
sedc,c′

2

i shows a higher “disorder” wrt. the general
curve of a propagation function.

Several characteristics of the interpretation
function can be considered to evaluate “disor-
der”. For example, one could choose the function
which minimizes the number of local minima (thus
minimizing the number of times the sign of the
derivated function changes). Another example is
to choose the function which minimizes the vari-
ations of weight between local minima and their
next local maximum (thus penalizing the functions
which do not decrease monotonically). A third
could combine these criteria.
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Figure 5: Two steps of the interpretation of a SED : (a) fi for candidate concept c′1, (b) fi for candidate
concept c′2 and (c) weighting the unshared concepts.

4.3. Interpreting a SED

We define the interpretation of a given SED
−→
sedc as another SED, with central concept c̃ which
has been computed at the previous step. We keep
their original weight to all the shared concepts.
The unshared concepts are weighted using an in-
terpretation function as defined above.

Definition 8 (Interpretation of a SED)

Let
−→
sedc be a SED on CΩ1

and let c̃ be the
concept corresponding to c in CΩ2

. Let simc̃ be

a similarity function and let f
−→
sedc,c̃
i , noted fi, be

an interpretation function. Then SED
−→
sedc̃ is an

interpretation of
−→
sedc iff:

•
−→
sedc̃[c̃] = fi(1);

• ∀c′ ∈ CΩ1
∩ CΩ2

,
−→
sedc̃[c

′] =
−→
sedc[c

′];

• ∀c′ ∈ CΩ2
\ CΩ1

,
−→
sedc̃[c

′] = fi(simc̃(c
′));

Figure 5 (c) illustrates this definition. Docu-
ment provider p2 ranks its own concepts in func-
tion of simc̃. Among these concepts, some are

shared ones for which the initial SED
−→
sedc pro-

vides a given weight. This is the case for c1, c2, c3

and c6 which are in bold face in the figure. The
unshared concepts are assigned the weight they
obtain by function fi (through their similarity to
c̃). This is illustrated for concepts c4 and c5 by a
dotted arrow.

5. Experimental Validation

In this section, we use our approach based on
image based relevance to find documents which are
the most relevant to given queries. We compare
our results with those obtained by the cosine based
method and the rough propagation method. In the
former method, relevance is defined by the cosine
between the query and document vectors. In the
latter, the effects of propagating weights from dif-
ferent concepts are mixed in a single vector; then
relevance is obtained using the cosine.

5.1. General Setup for the Experiments

We use the Cranfield corpus, a testing corpus
consisting of 1400 documents and 225 queries in
natural language, all related to aeronautical engi-
neering. For each query, each document is scored
by humans as relevant or not relevant (boolean rel-
evance). Our ontology is lightweight, in the mean-
ing of [7], i.e. an ontology composed of a taxon-
omy of concepts : WordNet [5]. In Information
Retrieval, there was a debate whether WordNet
is suitable for experimentation (see the discussion
in [23]). However, more recent works show that it
is possible to use WordNet, and sometimes other
resources, and still get good results [8]. Seman-
tic indexing [19] is the process which can compute
the semantic vectors from documents or queries in
natural language. The aim is to find the most rep-
resentative concepts for documents or queries. We



use a program made in our lab : RIIO [3], which
is based on the selection of synsets from WordNet.
Although it is not the best indexing module, one of
its advantages is that there is no human interven-
tion in the process. The semantic similarity func-
tion we use is that of [2], because it has good prop-
erties and results which are discussed in Section 6.
We slightly modified that function due to normal-
ization considerations. Following the framework of
membership functions presented in Section 2.3 we
can define many propagation functions. We tested
three different types of functions : “square” (of
type fv,l1,l1), “sloppy” (of type fv,1,l2), or hybrid
(of type fv,l1,l2 with l1 = 2× l2). Our experiments
show no important difference, but sloppy propa-
gation has slightly better results. So we use only
this propagation function, adding ten concepts in
average for a given central concept.

In order to evaluate whether our solution is ro-
bust, we would need ontologies which agree on dif-
ferent percentages of concepts : 90%, 80%, 70%,
. . . , 10%. This is very difficult to obtain. We could
build artificial ontologies, but this would force us
to give up the experiments on a real corpus. Thus,
we decided to stick to WordNet and simulate se-
mantic heterogeneity. Both the query initiator and
the provider use WordNet, but we make so that
they are not able to understand each other on
some concepts (a given percentage of them). To
do so, we remove some mappings between the two
ontologies. Thus it simulates the case where the
query intiator and the document provider use the
same ontology but are not aware of it. It is then no
more possible to compare queries and documents
on those concepts. The aim is to evaluate how the
answers to queries expressed with removed match-
ings, change. Note that the case with no removed
matching reduces to a single ontology.

In a first experiment, we progressively reduce
the number of mappings, thus increasing the per-
centage of removed mappings (10%, 20%, . . . until
90%). The progressive reduction in their common
knowledge is done randomly. In a second exper-
iment, we remove the mappings concerning the
central concepts of the queries in the ontology of
the document manager. This is now an intentional
removing, which is the worst case for most of the

(a)

(b)

Figure 6: Evolution of (a) precision and (b) recall
in function of the random removal percentage of
mappings.

techniques in IR : removing only the elements that
match. For both experiments, we take into account
the results obtained with the 225 queries of the
corpus.

5.2. Results

Figure 6 shows the results obtained in average
for the all 225 queries of the testing corpus. The
reference method is the cosine one when no match-
ing is removed, which gives a given reference pre-
cision and recall. Then, for each method and each
percentage of removed matching, we compute the
ratio of the precision obtained (respectively recall)
by the reference precision. When the percentage



of randomly removed matchings increases, preci-
sion (Figure 6 (a)) and recall (Figure 6 (b)) de-
crease i.e. the results are less and less relevant.
However, our ”image and interpretation based” so-
lution shows much better results. When the per-
centage of removed matchings is under 70%, we
still get 80% or more of the answers obtained in
the reference case.

In the second experiment, we consider that the
document manager does not understand (i.e. share
with the query initiator) the central concepts of
the query (see Figure 7). With the cosine method,
there is no more matching between concepts in
queries and concepts in documents. Thus no rele-
vant document could be retrieved. With the query
expansion, some of the added concepts in the
query allow to match with concepts in documents
that are close to the central concepts of the query.
This leads to precision and recall at almost 10%.
Our image-based retrieving method has more than
90% of precision and recall in the retrieval. This is
also an important result. Obviously, as we have the
same ontology and the same similarity function,
the interpretation can retrieve most of the central
concepts of the query. But the case presented here
is hard for most of the classical techniques (con-
cepts of the query unshared) and we obtain a very
important improvement.

6. Related Work

The similarity that we use in our experiments
is the result of a thorough study of the properties
of different similarity measures. We looked for a
similarity which is not a distance (does not satisfy
similarity nor triangle inequality), based on the
result of [22]. Hence we use one classical bench-
mark of this domain : the work of Miller and
Charles [15] on the human assessments of similar-
ity between concepts. Thirty eight students were
asked to mark how similar thirty couples of con-
cepts were. We have implemented four similarity
measures: [25, 20, 12, 2], respectively noted Wu
and P., Seco, Lin and Bidault in table 1. Correla-
tion is the ratio between those measures on the hu-
man results. The results show that only Bidault’s
measure does not meet symmetry nor triangle in-

(a)

(b)

Figure 7: Precision (a) and recall (b) when the
central concepts of the query are unshared.

equality. Moreover, it obtains a slightly better cor-
relation. Hence, it was preferred to rank the con-
cepts according to their (dis)similarity with a cen-
tral concept.

Wu & P. Seco Lin Bidault

symmetry yes yes yes no

triangle inequality no no no no

correlation 0.74 0.77 0.80 0.82

Table 1: Comparison of similarity measures.

The idea of query expansion is shared by sev-
eral fields. It was already used in the late 1980’s
in Cooperative Answering Systems [6]. Some of
the suggested techniques expanded SQL queries



considering a taxonomy. In this paper, we do not
consider SQL queries, and we use more recent re-
sults about ontologies and their interoperability.
Expansion of query vectors is used for instance
in [17, 23]. However, this expansion produces a sin-
gle semantic vector only. This amounts to mix the
effects of the propagations from different concepts
of the query. Although this method avoids some
silence, it often generates too much noise, with-
out any highly accurate sense disambiguation [23].
Consequently, the results can be worse than in the
classical vector space model [1]. Our major dif-
ference with this approach is that (1) the propa-
gations from the concepts of the query are kept
separate and that (2) they are not directly com-
pared with the document. Rather, they are used
to modify its semantic vector. In our experiments,
our method gives better results. Also, we join [16]
on their criticism of the propagation in a single
vector, but our solutions are different.

Our approach also relies on the correspondences
resulting from the matching of the two ontolo-
gies. Several existing matching algorithms could
be used in our case [4]. In the interpretation step,
we provide a very general algorithm to find the
concept corresponding to the central concept of
a SED. In case the concept is not shared, one
could wonder whether matching algorithms could
be used. In the solution we propose, the problem is
quite different because the weights of the concepts
are also used to find the corresponding concept
(through the interpretation function). This is not
the case in traditional ontology matching, which
aim is to find general correspondences. In our case,
one can see the problem as finding a “contextual”
matching, the results of which cannot be used in
other contexts. Because it is difficult to compute
all the interpretation functions, one can use an
approximation algorithm (for example, taking the
least common ancestor as we did in our exper-
iments). In that case, existing proposals can fit
like [10, 14]. But it is clear that they do not find
the best solution every time.

Finally, the word interpretation is used very of-
ten and reflects very different problems. However,
to the best of our knowledge, it never refers to the
case of interpreting a query expressed on some on-

tology, within the space of another ontology, by
considering the weights of the concepts.

7. Conclusion

The main contribution of this paper is a pro-
posal improving information exchange between a
query initiator and a document provider that use
different ontologies, in a context where seman-
tic vectors are used to represent documents and
queries. The approach only requires the initiator
and the provider to share some concepts and also
uses the unshared ones to find additional relevant
documents. To our knowledge, the problem has
never been addressed before and our approach
is a first, encouraging solution. In short, when
performing query expansion, the query initiator
makes more precise the concepts of the query by
associating an expansion to each of them (SED).
The expansion depends on the initiator’s char-
acteristics: ontology, similarity, propagation func-
tion. However, as far as shared concepts appear
in a SED, expansion helps the document provider
interpreting what the initiator wants, especially
when the central concept is not shared. Interpre-
tation by the document provider is not easy be-
cause the peers do not share the same vector space.
Given its own ontology and similarity function,
it first finds out a correspondent concept for the
central concept of each SED, and then interprets
the whole SED. The interpreted SEDs are used
to compute an image of the documents and their
relevance. This is only possible because the cen-
tral concepts are expanded separately. Indeed if
the effects of propagations from different central
concepts were mixed in a single vector, the doc-
ument provider wouldn’t be able to interpret the
query as precisely.

Although our approach builds on several no-
tions (ontology, ontology matching, concept simi-
larity, semantic indexing, relevance of a document
wrt a query. . . ) it is not stuck to a specific defini-
tion or implementation of them and seems com-
patible with many instantiations of them. It is
important to notice that there is no human in-
tervention at all in our experiments, in particular
for semantic indexing. Clearly, in absolute, preci-



sion and recall could benefit from human inter-
ventions at different steps like indexation or the
definition of the SEDs. Results show that our ap-
proach significantly improves the information ex-
change, finding up to 90% of the documents that
would be found if all the concepts were shared.

As future work, we plan to test our approach
in several different contexts in order to verify
its robustness. Many different parameters can be
changed: similarity and propagation functions, on-
tologies, indexing methods, corpus. . . Complexity
is another point that should be considered care-
fully. Indeed, naive implementations would lead to
unacceptable execution time. Although an imple-
mentation is running for the experiments within
admissible times, it could benefit from a more
thorough study of theoretical complexity.
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