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Abstract. In semantic web applications where query initiators and in-
formation providers do not necessarily share the same ontology, semantic
interoperability generally relies on ontology matching or schema map-
pings. Information exchange is then not only enabled by the established
correspondences (the “shared” parts of the ontologies) but, in some sense,
limited to them. Then, how the “unshared” parts can also contribute
to and improve information exchange ? In this paper, we address this
question by considering a system where documents and queries are rep-
resented by semantic vectors. We propose a specific query expansion step
at the query initiator’s side and a query interpretation step at the doc-
ument provider’s. Through these steps, unshared concepts contribute to
evaluate the relevance of documents wrt. a given query. Our experiments
show an important improvement of retrieval relevance when concepts of
documents and queries are not shared. Even if the concepts of the initial
query are not shared by the document provider, our method still ensures
90% of the precision and recall obtained when the concepts are shared.

1 Introduction

In semantic web applications where query initiators and information providers
do not necessarily share the same ontology, semantic interoperability generally
relies on ontology matching or schema mappings. Several works in this domain
focus on what (i.e. the concepts and relations) the peers share [9, 18]. This is
quite important because, obviously if nothing is shared between the ontologies
of two peers, there is a little chance for them to understand the meaning of
the information exchanged. However, no matter how the shared part is obtained
(through consensus or mapping), there might be concepts (and relations) that
are not consensual, and thus not shared. The question is then to know whether
the unshared parts can still be useful for information exchange.

In this paper, we focus on semantic interoperability and information exchange
between a query initiator p1 and a document provider p2, which use different
ontologies but share some common concepts. The problem we address is to find
documents which are relevant to a given query although the documents and the



query may be both represented with concepts that are not shared. This problem
is very important because in semantic web applications with high numbers of
participants, the ontology (or ontologies) is rarely entirely shared. Most often,
participants agree on some part of a reference ontology to exchange information
and internally, keep working with their own ontology [18, 22].

We represent documents and queries by semantic vectors [25], a model based
on the vector space model [1] using concepts instead of terms. Although there
exist other, richer representations (conceptual graphs for example), semantic
vectors are a common way to represent unstructured documents in information
retrieval. Each concept of the ontology is weighted according to its represen-
tiveness of the document. The same is done for the query. The resulting vector
represents the document (respectively, the query) in the n-dimensional space
formed by the n concepts of the ontology. Then the relevance of a document
with respect to a query corresponds to the proximity of the vectors in the space.

In order to improve information exchange beyond the “shared part” of the
ontologies, we promote both query expansion (at the query initiator’s side)
and query interpretation (at the document provider’s side). Query expansion
may contribute to weight linked shared concepts, thus improving the document
provider’s understanding of the query. Similarly, by interpreting an expanded
query with respect to its own ontology (i.e. by weighting additional concepts of
its own ontology), the document provider may find additional related documents
for the query initiator that would not be found by only using the matching con-
cepts in the query and the documents. Although the basic idea of query expan-
sion and interpretation is simple, query interpretation is very difficult because
it requires to precisely weight additional concepts given some weighted shared
ones, while the whole space (i.e. the ontology) and similarity measures change.

In this context, our contributions are the following. First, we propose a spe-
cific query expansion method. Its property is to keep separate the results of the
propagation from each central concept of the query, thus limiting the noise due
to inaccurate expansion. Second, given this expansion, we define the relevance
of a document. Its main, original characteristic is to require the document vec-
tor to be requalified with respect to the expanded query, the result being called
image of the document. Third, a main contribution is the definition of query
interpretation which enables the expanded query to be expressed with respect
to the provider’s ontology. Fourth, we provide two series of experiments with
still very good results although few concepts are shared.

This paper is organized as follows. Section 2 gives preliminary definitions.
Section 3 presents our query expansion method and the image based relevance
of a document. For simplicity, we assume a context of shared ontology. This
assumption is relaxed after in Section 4, where we consider the case where the
query initiator and the document provider use different ontologies and present
the query interpretation. Section 5 discusses the experiments and their results.
The two last sections are respectively devoted to related work and conclusion.



2 Preliminary Definitions

We define an ontology as a set of concepts together with a set of relations be-
tween these concepts. In our experiments, we consider an ontology with only one
relation: the is-a relation (specialization link). This does not restrict the gener-
ality of our relevance computation. Indeed, the presence of several relations only
affects the definition of the similarity of a concept wrt. another. A semantic vec-
tor −→vΩ is an application defined on the set of concepts CΩ of the ontology Ω :
∀c ∈ CΩ,−→vΩ : c→ [0..1]. A popular way to compute the relevance of a document
is to use the cosine-based proximity of the document and query vectors in the
space [19]. The problem with cosine is the independence of dimensions : a query
on concept ci and a document on concept cj very close from ci could not match.
Query expansion is generally used to express these links between concepts, by
propagating initial weights on other linked concepts. To define a query expan-
sion, we need a similarity function [11] which expresses how much a concept is
similar to another within the ontology : simc: CΩ → [0, 1], is a similarity function
iff simc(c) = 1 and 0 ≤ simc(cj) < 1 for all cj 6= c in CΩ. Then, propagation
from a central concept c of weight v assigns a weight to every value of similarity
with c.

Definition 1 (Propagation function). Let c be a concept of Ω valued by v;
and let simc be a similarity function.

A function Pfc : [0..1] 7→ [0..1]
simc(c

′)→ Pfc(simc(c
′))

is a propagation function from c iff

– Pfc(simc(c)) = v, and
– ∀ck, cl ∈ CΩ simc(ck) ≤ simc(cl)⇒ Pfc(simc(ck)) ≤ Pfc(simc(cl))

Among different types of propagation functions those inspired by the mem-
bership functions used in fuzzy logic work fine (see Figure 1) in our experiments.
It is defined by three parameters v (weight of the central concept), l1 (similarity
value until which concepts have the same weight : v) and l2 (similarity value
until which concepts have non zero weight) such that, ∀x = simc(c

′), c′ ∈ cΩ :

Pfc(x) = fv,l1,l2(x) =

v if x ≥ l1
v

l1−l2
x + l2×v

l1−l2
if l1 > x > l2

0 if l2 ≥ x

3 Query expansion and Image based relevance

In this section, we present our method to compute the relevance of a document
wrt a query. For the sake of simplicity, we assume that the query initiator and the
document provider use the same ontology. However, they can still differ on the
similarity measures and the propagation functions. First, we compute a query
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Fig. 1. Example of a propagation function f1,0.7,0.4 with central concept c2 .

expansion, and then an image of a document vector to compute the relevance of
the document wrt. a query in a single space.

To our knowledge, most query expansion methods propagate the weight of
each weighted concept in the same vector, thus directly adding the expanded
terms in the original vector [13]. When a concept is involved in several propa-
gations conducted from different central concepts, an aggregation function (e.g.
the maximum) is used. We call this kind of method “rough” propagation. Al-
though its results are not bad, such a propagation has some drawbacks among
which a possible unbalance of the relative importance of the initial concepts [16].
First, let us denote by C−→q the set of the central concepts of query −→q , i.e. those
weighted concepts which represent the query. To keep separate the effects of
different propagations, each central concept of C−→q is semantically enriched by
propagation, in a separate vector.

Definition 2 (Semantically Enriched Dimension). Let −→q be a query vector

and let c be a concept in C−→q . A semantic vector
−→
sedc is a semantically enriched

dimension, iff ∀c′ ∈ CΩ,
−→
sedc[c

′] ≤
−→
sedc[c].

Definition 3 (Expansion of a query). Let −→q be a query vector. An expan-
sion of −→q , noted E−→q is a set defined by:

E−→q = {
−→
sedc : c ∈ C−→q , ∀c′ ∈ CΩ,

−→
sedc[c

′] = Pfc(c
′)}

Figure 2 illustrates the expansion of a query −→q with two weighted concepts

c4 and c7. It contains two semantically enriched dimensions. In dimension
−→
sedc7

, concept c7 has the same value as in the query. The weight of c7 has been
propagated on c3, c11 and c6 according to their similarity with c7. The other
dimension is obtained from c4 in the same way.

The expanded query is composed of several semantic vectors (the SEDs).

Our aim is then to transform the semantic vector of a document,
−→
d , in an

image through the expanded query, i.e. to characterize the document wrt. each
central concept c (dimension) of the query, as far as it has concepts related to c,

in particular even if c is not initially weighted in
−→
d . Given a SED

−→
sedc , we aim



Fig. 2. A query expansion composed of 2 semantically enriched dimensions.

at valuating c in the image of the document
−→
d according to the relevance of

−→
d

to
−→
sedc . To evaluate the impact of

−→
sedc on

−→
d we consider the product of the

respective values of each concept in
−→
sedc and

−→
d . Intuitively, all the concepts

of the document which are linked to c through
−→
sedc have a nonnull value. The

image of
−→
d keeps track of the best value assigned to one of the linked concepts

if it is better than
−→
d [ c ], which is the initial value of c . This process is repeated

for each SED of the query. Algorithm 1.1 gives the computation of the image of

document
−→
d , noted

−→
i d. This algorithm ensures that all the central concepts of

the initial query vector are also weighted in the image of the document as far
as the document is related to them. Wrt. the query, the image of the document
is more accurate because it enforces the documents characterization over each
dimension of the query. However, in the image, we keep unchanged the weights
of the concepts which are not linked to any concept of the query (i.e. which are
not weighted in any SED). The example of Figure 3 illustrates how the image
of a document is computed.

Algorithm 1.1. Image of a document wrt a query.

(∗ Input : a semant ic vec t or
−→
d on an on to logy Ω ;

an expanded query E−→q ∗)

(∗ Output : a semant ic vec t or
−→
i d , image o f

−→
d . ∗)

begin
for c ∈ C−→q do

for c′ :
−→
sedc[c

′] 6= 0 do
−→
i d[c]← max(

−→
d [c′]×

−→
sedc[c

′],
−→
i d[c]) ;

for c 6∈ C−→q do i f ∃c′ ∈ C−→q :
−→
sedc′ [c] 6= 0 then

−→
i d[c]← 0

else
−→
i d[c]←

−→
d [c] ;

r e turn
−→
i d

end ;

We define the relevance of
−→
d wrt. −→q by cos(

−→
i d,
−→q ). Considering the image

enables to take into account the documents that have concepts linked to those



Fig. 3. Obtaining the image of a document.

of the query. Using a cosine, and thus the norm of the vectors, assigns a lower
importance to the documents with an important norm, which are often very
general.

4 Relevance in the context of unshared concepts

In this section, we assume that the query initiator and the document provider do
not use the same ontology. We follow the approach adopted in Section 3, using a
query expansion at the query initiator’s side and the computation of the image
of the document at the provider’s side. But things get complicated by the fact
that the query initiator and the document provider do not use the same vector
space. An additional step is needed in order to evaluate relevance in a same and
single space. Thus, we introduce a query interpretation step at the provider’s
side.

4.1 Computing Relevance: Overview

As shown in Figure 4, the query initiator, denoted by p1, works within the context
of ontology Ω1, while the document provider, noted p2, works with ontology
Ω2. Through its semantic indexing module, the query initiator (respectively
the document provider) produces the query vector (respectively the document
vector), which is expressed on Ω1 (respectively Ω2). Both p1 and p2 also have
their own way of computing both the similarity and the propagation.

We assume that the query initiator and the document provider share some
common concepts, meaning that each of them regularly, although may be not
often, runs an ontology matching algorithm. Ontology matching results in an
alignment between two ontologies, which is composed of a (non empty) set of
correspondences with some cardinality and, possibly some meta-data [4]. A cor-
respondence establishes a relation (equivalence, subsumption, disjointness. . . )
between some entities (in our case, concepts), with some confidence measure.



Each correspondence has an identifier. In this paper, we only consider the equiv-
alence relation between concepts and those couples of equivalent concepts of
which confidence measure is above some threshold. We call them the shared
concepts. For simplicity, when there is an equivalence, we make no distinction
between the name of the given concept at p1’s, its name at p2’s, and the iden-
tifier of the correspondence, which all refer to the same concept. Hence, the set
of shared concepts is denoted by CΩ1

∩ CΩ2
.

Given these assumptions, computing relevance requires the following steps :

Fig. 4. Overview of relevance computation

Query Expansion. It remains unchanged. The query initiator p1 computes an
expansion of its query, which results in a set of SEDs. Each SED is expressed
on the set CΩ1

, no matter the ontology used by p2. Then, the expanded query is
sent to p2, together with the initial query.
Query Interpretation. Query interpretation by p2 provides a set of interpreted
SEDs on the set CΩ2

and an interpreted query. Each SED of the expanded query

is interpreted separately. Interpretation of a SED
−→
sedc is decomposed in two

problems, which we address in the next subsections:

– The first problem is to find a concept in CΩ2
that corresponds to c, noted c̃.

This is difficult when the central concept is not shared. In this case, we use
the weights of the shared concepts to guide the search. Of course, this is only
a “contextual” correspondence as opposed to one that would be obtained
through matching.

– The second problem is to attribute weights to shared and unshared concepts

of CΩ2
which are linked to

−→
sedc. This amounts to interpret the SED.

Image of the Document and Cosine Computation. They remain un-
changed. Provider p2 computes the image of its documents wrt. the interpreted



SEDs and then, their cosine based relevance wrt. the interpreted query, no mat-
ter the ontology used by p1.

In the following, we describe the steps involved in the interpretation of a
given SED.

4.2 Finding a Corresponding Concept

The interpretation of a given SED
−→
sedc leads to a major problem: finding a

concept in CΩ2
which corresponds to the central concept c. This corresponding

concept is noted c̃ and will play the role of the central concept in the interpre-

tation of
−→
sedc, noted

−→
sedc̃. If c is shared, we just keep it as the central concept

of the interpreted SED. When c is not shared we have to find a concept which
seems to best respect the “flavor” of the initial SED.

Theoretically, all the concepts of CΩ2
should be considered. Several criterias

can apply to choose one which seems to best correspond. We propose to de-

fine the notion of interpretation function which is relative to a SED
−→
sedc and

a candidate concept c̃ and which assigns a weight to each value of silmilarity
wrt. c̃. Definition 4 consists of four points. The first one requires the interpre-

tation function to assign the value of
−→
sedc[c] to the similarity value 1, which

corresponds to c̃. In the second point, we use the weights assigned by
−→
sedc to

the shared concepts (c1, c2, c3 and c6 in figure 5) and the ranking of concepts
in function of simc̃. However, there might be several shared concepts that have

the same similarity value wrt. c̃, but have a different weight according to
−→
sedc.

Thus, we require function f
−→
sedc,c̃
i to assign the minimum of these values to the

corresponding similarity value. This is a pessimistic choice and we could either
take the maximum or a combination of these weights. As for the third point, let
us call cmin, the shared concept with the lowest similarity value (c6 in Figure 5
(a) and c3 in Figure 5 (b)). We consider that we have not enough information
to weight the similarity values lower than simc̃(cmin). Thus we assign them the
zero value. The fourth point is just a mathematical expression which ensures
that the segments of the affine function are only those defined by the previous
points.

Definition 4 (Interpretation function). Given a SED
−→
sedc and a concept c̃,

f
−→
sedc,c̃
i : [0..1]→ [0..1], noted fi if no ambiguity, is an interpretation function iff

it is a piecewise affine function and:

– fi(1) =
−→
sedc[c];

– ∀c′ ∈ CΩ1
∩ CΩ2

, fi(simc̃(c
′)) = min c′′∈CΩ1

∩CΩ2

simc̃(c
′)=simc̃(c

′′)

(
−→
sedc[c

′′]);

– ∀x ∈ [0..1], x < simc̃(cmin) ⇒ fi(x) = 0;

– Seg = ‖{x : ∃c′ ∈ CΩ1
∩ CΩ2

, c′ 6= c̃ and simc̃(c
′) = x}‖+ 1 where Seg is the

number of segments of fi.



Intuitively, the criterias for choosing a corresponding concept among all the
possible concepts can be expressed in terms of the properties of the piecewise
affine function fi. Of course, there are as many different function fi as candidate
concepts. But the general idea is to choose the function fi wich resembles the
more to a propagation function. Let us consider the example of Figure 5 (a) and
(b) where c1, c2, c3 and c6 are shared. The function in Figure 5 (a) is obtained
considering c′1 as the corresponding concept (and thus ranking the other concepts
in function of their similarity with c′1). The function in Figure 5 (b) is obtained
similarly, considering c′2. Having to choose between c′1 and c′2 we would prefer

c′1 because function f
−→
sedc,c′

1

i is monotonically decreasing whereas f
−→
sedc,c′

2

i shows
a higher “disorder” wrt. the general curve of a propagation function.

Several characteristics of the interpretation function can be considered to
evaluate “disorder”. For example, one could choose the function which minimizes
the number of local minima (thus minimizing the number of times the sign of the
derivated function changes). Another example is to choose the function which
minimizes the variations of weight between local minima and their next local
maximum (thus penalizing the functions which do not decrease monotonically).
A third could combine these criteria.

W ei gh t
C 3 C 1 C 6C 2C '1 C 6 C '2 C 6 C 1 C 2 C 31 0 . 8 5 0 . 7 0 . 5 0 . 3 0 . 7 81 0 . 7 0 . 5 3 0 . 3 5 D e c r e a s i n g s i m i l a r i t yW ei gh t
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(a) (b) (c)

Fig. 5. Two steps of the interpretation of a SED : (a) fi for candidate concept c′1, (b)
fi for candidate concept c′2 and (c) weighting the unshared concepts.

4.3 Interpreting a SED

We define the interpretation of a given SED
−→
sedc as another SED, with central

concept c̃ which has been computed at the previous step. We keep their original
weight to all the shared concepts. The unshared concepts are weighted using an
interpretation function as defined above.

Definition 5 (Interpretation of a SED). Let
−→
sedc be a SED on CΩ1

and let
c̃ be the concept corresponding to c in CΩ2

. Let simc̃ be a similarity function

and let f
−→
sedc,c̃
i , noted fi, be an interpretation function. Then SED

−→
sedc̃ is an

interpretation of
−→
sedc iff:



–
−→
sedc̃[c̃] = fi(1);

– ∀c′ ∈ CΩ1
∩ CΩ2

,
−→
sedc̃[c

′] =
−→
sedc[c

′];

– ∀c′ ∈ CΩ2
\ CΩ1

,
−→
sedc̃[c

′] = fi(simc̃(c
′));

Figure 5 (c) illustrates this definition. Document provider p2 ranks its own
concepts in function of simc̃. Among these concepts, some are shared ones for

which the initial SED
−→
sedc provides a given weight. This is the case for c1, c2, c3

and c6 which are in bold face in the figure. The unshared concepts are assigned
the weight they obtain by function fi (through their similarity to c̃). This is
illustrated for concepts c4 and c5 by a dotted arrow.

5 Experimental Validation

In this section, we use our approach based on image based relevance to find docu-
ments which are the most relevant to given queries. We compare our results with
those obtained by the cosine based method and the rough propagation method.
In the former method, relevance is defined by the cosine between the query and
document vectors. In the latter, the effects of propagating weights from different
concepts are mixed in a single vector; then relevance is obtained using the cosine.

5.1 General Setup for the Experiments

We use the Cranfield corpus, a testing corpus consisting of 1400 documents and
225 queries in natural language, all related to aeronautical engineering. For each
query, each document is scored by humans as relevant or not relevant (boolean
relevance). Our ontology is lightweight, in the meaning of [7], i.e. an ontology
composed of a taxonomy of concepts : WordNet [5]. In Information Retrieval,
there was a debate whether WordNet is suitable for experimentation (see the
discussion in [24]). However, more recent works show that it is possible to use
WordNet, and sometimes other resources, and still get good results [8]. Seman-
tic indexing [20] is the process which can compute the semantic vectors from
documents or queries in natural language. The aim is to find the most represen-
tative concepts for documents or queries. We use a program made in our lab :
RIIO [3], which is based on the selection of synsets from WordNet. Although
it is not the best indexing module, one of its advantages is that there is no
human intervention in the process. The semantic similarity function we use is
that of [2], because it has good properties and results which are discussed in
Section 6. We slightly modified that function due to normalization considera-
tions. Following the framework of membership functions presented in Section
2 we can define many propagation functions. We tested three different types
of functions : “square” (of type fv,l1,l1), “sloppy” (of type fv,1,l2), or hybrid (of
type fv,l1,l2 with l1 = 2× l2). Our experiments show no important difference, but
sloppy propagation has slightly better results. So we use only this propagation
function, adding ten concepts in average for a given central concept.



(a) (b)

Fig. 6. Evolution of (a) precision and (b) recall in function of the random removal
percentage of mappings.

In order to evaluate whether our solution is robust, we would need ontologies
which agree on different percentages of concepts : 90%, 80%, 70%, . . . , 10%. This
is very difficult to obtain. We could build artificial ontologies, but this would
force us to give up the experiments on a real corpus. Thus, we decided to stick
to WordNet and simulate semantic heterogeneity. Both the query initiator and
the provider use WordNet, but we make so that they are not able to understand
each other on some concepts (a given percentage of them). To do so, we remove
some mappings between the two ontologies. Thus it simulates the case where
the query intiator and the document provider use the same ontology but are
not aware of it. It is then no more possible to compare queries and documents
on those concepts. The aim is to evaluate how the answers to queries expressed
with removed matchings, change. Note that the case with no removed matching
reduces to a single ontology.

In a first experiment, we progressively reduce the number of mappings, thus
increasing the percentage of removed mappings (10%, 20%, . . . until 90%). The
progressive reduction in their common knowledge is done randomly. In a second
experiment, we remove the mappings concerning the central concepts of the
queries in the ontology of the document manager. This is now an intentional
removing, which is the worst case for most of the techniques in IR : removing
only the elements that match. For both experiments, we take into account the
results obtained with the 225 queries of the corpus.

5.2 Results

Figure 6 shows the results obtained in average for the all 225 queries of the testing
corpus. The reference method is the cosine one when no matching is removed,
which gives a given reference precision and recall. Then, for each method and
each percentage of removed matching, we compute the ratio of the precision
obtained (respectively recall) by the reference precision. When the percentage
of randomly removed matchings increases, precision (Figure 6 (a)) and recall



(Figure 6 (b)) decrease i.e. the results are less and less relevant. However, our
”image and interpretation based” solution shows much better results. When the
percentage of removed matchings is under 70%, we still get 80% or more of the
answers obtained in the reference case.

In the second experiment, we consider that the document manager does not
understand (i.e. share with the query initiator) the central concepts of the query
(see Figure 7). With the cosine method, there is no more matching between
concepts in queries and concepts in documents. Thus no relevant document could
be retrieved. With the query expansion, some of the added concepts in the query
allow to match with concepts in documents that are close to the central concepts
of the query. This leads to precision and recall at almost 10%. Our image-based
retrieving method has more than 90% of precision and recall in the retrieval.
This is also an important result. Obviously, as we have the same ontology and
the same similarity function, the interpretation can retrieve most of the central
concepts of the query. But the case presented here is hard for most of the classical
techniques (concepts of the query unshared) and we obtain a very important
improvement.

(a) (b)

Fig. 7. Precision (a) and recall (b) when the central concepts of the query are unshared.

6 Related Work

The similarity that we use in our experiments is the result of a thorough study of
the properties of different similarity measures. We looked for a similarity which
is not a distance (does not satisfy similarity nor triangle inequality), based on
the result of [23]. Hence we use one classical benchmark of this domain : the
work of Miller and Charles [15] on the human assessments of similarity between
concepts. Thirty eight students were asked to mark how similar thirty couples
of concepts were. We have implemented four similarity measures: [26, 21, 12, 2],
respectively noted Wu and P., Seco, Lin and Bidault in table 1. Correlation is the
ratio between those measures on the human results. The results show that only



Bidault’s measure does not meet symmetry nor triangle inequality. Moreover, it
obtains a slightly better correlation. Hence, it was preferred to rank the concepts
according to their (dis)similarity with a central concept.

Wu & P. Seco Lin Bidault

symmetry yes yes yes no

triangle inequality no no no no

correlation 0.74 0.77 0.80 0.82

Table 1. Comparison of similarity measures.

The idea of query expansion is shared by several fields. It was already used
in the late 1980’s in Cooperative Answering Systems [6]. Some of the suggested
techniques expanded SQL queries considering a taxonomy. In this paper, we do
not consider SQL queries, and we use more recent results about ontologies and
their interoperability. Expansion of query vectors is used for instance in [17, 24].
However, this expansion produces a single semantic vector only. This amounts to
mix the effects of the propagations from different concepts of the query. Although
this method avoids some silence, it often generates too much noise, without
any highly accurate sense disambiguation [24]. Consequently, the results can be
worse than in the classical vector space model [1]. Our major difference with this
approach is that (1) the propagations from the concepts of the query are kept
separate and that (2) they are not directly compared with the document. Rather,
they are used to modify its semantic vector. In our experiments, our method gives
better results. Also, we join [16] on their criticism of the propagation in a single
vector, but our solutions are different.

Our approach also relies on the correspondences resulting from the matching
of the two ontologies. Several existing matching algorithms could be used in our
case [4]. In the interpretation step, we provide a very general algorithm to find
the concept corresponding to the central concept of a SED. In case the concept
is not shared, one could wonder whether matching algorithms could be used.
In the solution we propose, the problem is quite different because the weights
of the concepts are also used to find the corresponding concept (through the
interpretation function). This is not the case in traditional ontology matching,
which aim is to find general correspondences. In our case, one can see the prob-
lem as finding a “contextual” matching, the results of which cannot be used in
other contexts. Because it is difficult to compute all the interpretation functions,
one can use an approximation algorithm (for example, taking the least common
ancestor as we did in our experiments). In that case, existing proposals can fit
like [10, 14]. But it is clear that they do not find the best solution every time.

Finally, the word interpretation is used very often and reflects very different
problems. However, to the best of our knowledge, it never refers to the case of
interpreting a query expressed on some ontology, within the space of another
ontology, by considering the weights of the concepts.



7 Conclusion

The main contribution of this paper is a proposal improving information ex-
change between a query initiator and a document provider that use different
ontologies, in a context where semantic vectors are used to represent documents
and queries. The approach only requires the initiator and the provider to share
some concepts and also uses the unshared ones to find additional relevant doc-
uments. To our knowledge, the problem has never been addressed before and
our approach is a first, encouraging solution. In short, when performing query
expansion, the query initiator makes more precise the concepts of the query by
associating an expansion to each of them (SED). The expansion depends on the
initiator’s characteristics: ontology, similarity, propagation function. However, as
far as shared concepts appear in a SED, expansion helps the document provider
interpreting what the initiator wants, especially when the central concept is not
shared. Interpretation by the document provider is not easy because the peers
do not share the same vector space. Given its own ontology and similarity func-
tion, it first finds out a correspondent concept for the central concept of each
SED, and then interprets the whole SED. The interpreted SEDs are used to
compute an image of the documents and their relevance. This is only possible
because the central concepts are expanded separately. Indeed if the effects of
propagations from different central concepts were mixed in a single vector, the
document provider wouldn’t be able to interpret the query as precisely.

Although our approach builds on several notions (ontology, ontology match-
ing, concept similarity, semantic indexing, relevance of a document wrt a
query. . . ) it is not stuck to a specific definition or implementation of them and
seems compatible with many instantiations of them. It is important to notice
that there is no human intervention at all in our experiments, in particular for
semantic indexing. Clearly, in absolute, precision and recall could benefit from
human interventions at different steps like indexation or the definition of the
SEDs. Results show that our approach significantly improves the information
exchange, finding up to 90% of the documents that would be found if all the
concepts were shared.

As future work, we plan to test our approach in several different con-
texts in order to verify its robustness. Many different parameters can be
changed: similarity and propagation functions, ontologies, indexing methods,
corpus. . . Complexity is another point that should be considered carefully. In-
deed, naive implementations would lead to unacceptable execution time. Al-
though an implementation is running for the experiments within admissible
times, it could benefit from a more thorough study of theoretical complexity.
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