An inverse method applied to the determination of deformation energy distributions in the presence of pre-hardening stresses - Collection of PhotoMechanics Association
Article Dans Une Revue Journal of Strain Analysis for Engineering Design Année : 2008

An inverse method applied to the determination of deformation energy distributions in the presence of pre-hardening stresses

Résumé

This paper presents an experimental procedure to estimate the deformation energy distribution within plane samples submitted to mechanical loading. This procedure combined a digital image correlation (DIC) technique giving in-plane displacement fields with an identification method that separately provided fields of material properties and stress distributions developed during the loading. The method was first applied to simulated data to characterize the capabilities of the image processing. Finite element computations were first performed on a complex structure using a standard linear kinematical hardening model to generate multistage loadings leading to heterogeneous displacements and distributions of deformation energy. Loads and displacements were then used as inputs to check the robustness of the image processing by comparing the identified deformation energy fields with the computed ones. The procedure was then applied to experimental data. Tests were conducted under conditions similar to the numerical tests. The identification of a linear kinematical hardening model gave deformation energy patterns showing a good agreement with the simulated results, even in the presence of residual stresses induced by a pre-hardening.
Fichier principal
Vignette du fichier
Chrysochoos_al_J. Strain-Analysis_2008.pdf (1.05 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00514561 , version 1 (24-09-2021)

Identifiants

Citer

Félix Latourte, Amine Samida, Andre Chrysochoos, Stéphane Pagano, Bertrand Wattrisse. An inverse method applied to the determination of deformation energy distributions in the presence of pre-hardening stresses. Journal of Strain Analysis for Engineering Design, 2008, 43, pp.705-717. ⟨10.1243/03093247JSA428⟩. ⟨hal-00514561⟩
126 Consultations
34 Téléchargements

Altmetric

Partager

More