A combinatorial approach to products of Pisot substitutions - Géométrie Discrète et Morphologie Mathématique
Article Dans Une Revue Ergodic Theory and Dynamical Systems Année : 2016

A combinatorial approach to products of Pisot substitutions

Résumé

We define a generic algorithmic framework to prove a pure discrete spectrum for the substitutive symbolic dynamical systems associated with some infinite families of Pisot substitutions. We focus on the families obtained as finite products of the three-letter substitutions associated with the multidimensional continued fraction algorithms of Brun and Jacobi–Perron. Our tools consist in a reformulation of some combinatorial criteria (coincidence conditions), in terms of properties of discrete plane generation using multidimensional (dual) substitutions. We also deduce some topological and dynamical properties of the Rauzy fractals, of the underlying symbolic dynamical systems, as well as some number-theoretical properties of the associated Pisot numbers.
Fichier principal
Vignette du fichier
1401.0704v2.pdf (987.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01196326 , version 1 (06-11-2024)

Identifiants

Citer

Valérie Berthé, Jérémie Bourdon, Timo Jolivet, Anne Siegel. A combinatorial approach to products of Pisot substitutions. Ergodic Theory and Dynamical Systems, 2016, 36 (6), pp.1757-1794. ⟨10.1017/etds.2014.141⟩. ⟨hal-01196326⟩
575 Consultations
4 Téléchargements

Altmetric

Partager

More